Add files via upload

This commit is contained in:
Ναρουσέ·μ·γιουμεμί·Χινακάννα 2025-04-03 16:42:15 +08:00 committed by GitHub
parent 70f1ec719e
commit a889187b84
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194

View File

@ -1,80 +1,88 @@
# modified from https://github.com/feng-yufei/shared_debugging_code/blob/main/model/t2s_model.py
# modified from https://github.com/yangdongchao/SoundStorm/blob/master/soundstorm/s1/AR/models/t2s_model.py
# reference: https://github.com/lifeiteng/vall-e
import math
from typing import List, Optional
import torch
from tqdm import tqdm
from AR.modules.embedding_onnx import SinePositionalEmbedding
from AR.modules.embedding_onnx import TokenEmbedding
from AR.modules.transformer_onnx import LayerNorm
from AR.modules.transformer_onnx import TransformerEncoder
from AR.modules.transformer_onnx import TransformerEncoderLayer
from AR.models.utils import (
sample,
)
from AR.modules.embedding import TokenEmbedding
from AR.modules.transformer import LayerNorm
from AR.modules.transformer import TransformerEncoder
from AR.modules.transformer import TransformerEncoderLayer
from torch import nn
from torch.nn import functional as F
from torchmetrics.classification import MulticlassAccuracy
from torch.distributions import Exponential
ISONNXEXPORT = False
default_config = {
"embedding_dim": 512,
"hidden_dim": 512,
"num_head": 8,
"num_layers": 12,
"num_codebook": 8,
"p_dropout": 0.0,
"vocab_size": 1024 + 1,
"model": {
"vocab_size": 1025,
"phoneme_vocab_size": 512,
"embedding_dim": 1024,
"hidden_dim": 1024,
"head": 16,
"linear_units": 2048,
"n_layer": 16,
"dropout": 0,
"EOS": 1024,
}
}
inf_tensor_value = torch.FloatTensor([-float("Inf")]).float()
def multinomial_sample_one_no_sync(
probs_sort,
): # Does multinomial sampling without a cuda synchronization
q = -torch.log(torch.rand_like(probs_sort)) #https://github.com/RVC-Boss/GPT-SoVITS/pull/835
return torch.argmax(probs_sort / q, dim=-1, keepdim=True).to(dtype=torch.long)
def logits_to_probs(
logits,
previous_tokens = None,
temperature: float = 1.0,
top_k = None,
top_p = None,
repetition_penalty: float = 1.0,
previous_tokens: torch.Tensor,
temperature: torch.Tensor,
top_k: torch.Tensor,
top_p: torch.Tensor,
repetition_penalty: torch.Tensor
):
previous_tokens = previous_tokens.squeeze()
if previous_tokens is not None and repetition_penalty != 1.0:
# if previous_tokens is not None:
# previous_tokens = previous_tokens.squeeze()
# print(logits.shape,previous_tokens.shape)
# pdb.set_trace()
previous_tokens = previous_tokens.long()
score = torch.gather(logits, dim=0, index=previous_tokens)
score = torch.gather(logits, dim=1, index=previous_tokens)
score = torch.where(
score < 0, score * repetition_penalty, score / repetition_penalty
)
logits.scatter_(dim=0, index=previous_tokens, src=score)
logits.scatter_(dim=1, index=previous_tokens, src=score)
if top_p is not None and top_p < 1.0:
sorted_logits, sorted_indices = torch.sort(logits, descending=True)
cum_probs = torch.cumsum(
torch.nn.functional.softmax(sorted_logits, dim=-1), dim=-1
)
sorted_indices_to_remove = cum_probs > top_p
sorted_indices_to_remove[0] = False # keep at least one option
sorted_indices_to_remove[:, 0] = False # keep at least one option
indices_to_remove = sorted_indices_to_remove.scatter(
dim=0, index=sorted_indices, src=sorted_indices_to_remove
dim=1, index=sorted_indices, src=sorted_indices_to_remove
)
logits = logits.masked_fill(indices_to_remove, -float("Inf"))
logits = logits / max(temperature, 1e-5)
logits = logits / torch.clamp_min(temperature, 1e-5)
if top_k is not None:
v, _ = torch.topk(logits, top_k)
pivot = v.select(-1, -1).unsqueeze(-1)
logits = torch.where(logits < pivot, inf_tensor_value, logits)
pivot = v[: , -1].unsqueeze(-1)
logits = torch.where(logits < pivot, -float("Inf"), logits)
probs = torch.nn.functional.softmax(logits, dim=-1)
return probs
def multinomial_sample_one_no_sync(
probs_sort
): # Does multinomial sampling without a cuda synchronization
q = torch.randn_like(probs_sort)
return torch.argmax(probs_sort / q, dim=-1, keepdim=True).to(dtype=torch.int)
def sample(
logits,
previous_tokens,
previous_tokens: Optional[torch.Tensor] = None,
**sampling_kwargs,
):
probs = logits_to_probs(
@ -83,125 +91,326 @@ def sample(
idx_next = multinomial_sample_one_no_sync(probs)
return idx_next, probs
# @torch.jit.script ## 使用的话首次推理会非常慢,而且推理速度不稳定
# Efficient implementation equivalent to the following:
def scaled_dot_product_attention(query:torch.Tensor, key:torch.Tensor, value:torch.Tensor, attn_mask:Optional[torch.Tensor]=None, scale:Optional[torch.Tensor]=None) -> torch.Tensor:
B, H, L, S =query.size(0), query.size(1), query.size(-2), key.size(-2)
if scale is None:
scale_factor = torch.tensor(1 / math.sqrt(query.size(-1)))
else:
scale_factor = scale
attn_bias = torch.zeros(B, H, L, S, dtype=query.dtype, device=query.device)
class OnnxEncoder(nn.Module):
def __init__(self, ar_text_embedding, bert_proj, ar_text_position):
if attn_mask is not None:
if attn_mask.dtype == torch.bool:
attn_bias = attn_bias.masked_fill(attn_mask, float("-inf"))
else:
attn_bias = attn_bias + attn_mask
attn_weight = query @ key.transpose(-2, -1) * scale_factor
attn_weight += attn_bias
attn_weight = torch.softmax(attn_weight, dim=-1)
if attn_mask is not None:
if attn_mask.dtype == torch.bool:
attn_weight = attn_weight.masked_fill(attn_mask, 0)
else:
attn_mask = attn_mask.clone()
attn_mask[attn_mask!=float("-inf")] =0
attn_mask[attn_mask==float("-inf")] =1
attn_weight = attn_weight.masked_fill(attn_mask, 0)
return attn_weight @ value
@torch.jit.script
class T2SMLP:
def __init__(self, w1, b1, w2, b2):
self.w1 = w1
self.b1 = b1
self.w2 = w2
self.b2 = b2
def forward(self, x):
x = F.relu(F.linear(x, self.w1, self.b1))
x = F.linear(x, self.w2, self.b2)
return x
@torch.jit.script
class T2SBlock:
def __init__(
self,
num_heads,
hidden_dim: int,
mlp: T2SMLP,
qkv_w,
qkv_b,
out_w,
out_b,
norm_w1,
norm_b1,
norm_eps1,
norm_w2,
norm_b2,
norm_eps2,
):
self.num_heads = num_heads
self.mlp = mlp
self.hidden_dim: int = hidden_dim
self.qkv_w = qkv_w
self.qkv_b = qkv_b
self.out_w = out_w
self.out_b = out_b
self.norm_w1 = norm_w1
self.norm_b1 = norm_b1
self.norm_eps1 = norm_eps1
self.norm_w2 = norm_w2
self.norm_b2 = norm_b2
self.norm_eps2 = norm_eps2
self.false = torch.tensor(False, dtype=torch.bool)
@torch.jit.ignore
def to_mask(self, x:torch.Tensor, padding_mask:Optional[torch.Tensor]):
if padding_mask is None:
return x
if padding_mask.dtype == torch.bool:
return x.masked_fill(padding_mask, 0)
else:
return x * padding_mask
def process_prompt(self, x:torch.Tensor, attn_mask : torch.Tensor, padding_mask:Optional[torch.Tensor]=None, torch_sdpa:bool=True):
q, k, v = F.linear(self.to_mask(x, padding_mask), self.qkv_w, self.qkv_b).chunk(3, dim=-1)
batch_size = q.shape[0]
q_len = q.shape[1]
kv_len = k.shape[1]
q = self.to_mask(q, padding_mask)
k_cache = self.to_mask(k, padding_mask)
v_cache = self.to_mask(v, padding_mask)
q = q.view(batch_size, q_len, self.num_heads, -1).transpose(1, 2)
k = k_cache.view(batch_size, kv_len, self.num_heads, -1).transpose(1, 2)
v = v_cache.view(batch_size, kv_len, self.num_heads, -1).transpose(1, 2)
if torch_sdpa:
attn = F.scaled_dot_product_attention(q, k, v, ~attn_mask)
else:
attn = scaled_dot_product_attention(q, k, v, attn_mask)
attn = attn.transpose(1, 2).reshape(batch_size, q_len, -1)
attn = F.linear(self.to_mask(attn, padding_mask), self.out_w, self.out_b)
x = x + attn
x = F.layer_norm(
x, [self.hidden_dim], self.norm_w1, self.norm_b1, self.norm_eps1
)
x = x + self.mlp.forward(x)
x = F.layer_norm(
x,
[self.hidden_dim],
self.norm_w2,
self.norm_b2,
self.norm_eps2,
)
return x, k_cache, v_cache
def decode_next_token(self, x, k_cache, v_cache):
q, k, v = F.linear(x, self.qkv_w, self.qkv_b).chunk(3, dim=-1)
k_cache = torch.cat([k_cache, k], dim=1)
v_cache = torch.cat([v_cache, v], dim=1)
batch_size = q.shape[0]
q_len = q.shape[1]
kv_len = k_cache.shape[1]
q = q.view(batch_size, q_len, self.num_heads, -1).transpose(1, 2)
k = k_cache.view(batch_size, kv_len, self.num_heads, -1).transpose(1, 2)
v = v_cache.view(batch_size, kv_len, self.num_heads, -1).transpose(1, 2)
attn = F.scaled_dot_product_attention(q, k, v)
attn = attn.transpose(1, 2).reshape(batch_size, q_len, -1)
attn = F.linear(attn, self.out_w, self.out_b)
x = x + attn
x = F.layer_norm(
x, [self.hidden_dim], self.norm_w1, self.norm_b1, self.norm_eps1
)
x = x + self.mlp.forward(x)
x = F.layer_norm(
x,
[self.hidden_dim],
self.norm_w2,
self.norm_b2,
self.norm_eps2,
)
return x, k_cache, v_cache
@torch.jit.script
class T2STransformer:
def __init__(self, num_blocks : int, blocks: List[T2SBlock]):
self.num_blocks : int = num_blocks
self.blocks = blocks
def process_prompt(
self, x:torch.Tensor, attn_mask : torch.Tensor,
padding_mask : Optional[torch.Tensor]=None,
torch_sdpa:bool=True
):
k_cache : List[torch.Tensor] = []
v_cache : List[torch.Tensor] = []
for i in range(self.num_blocks):
x, k_cache_, v_cache_ = self.blocks[i].process_prompt(x, attn_mask, padding_mask, torch_sdpa)
k_cache.append(k_cache_)
v_cache.append(v_cache_)
return x, k_cache, v_cache
def decode_next_token(
self, x:torch.Tensor,
k_cache,
v_cache,
):
K_Cache = []
V_Cache = []
for i in range(self.num_blocks):
x, k, v = self.blocks[i].decode_next_token(x, k_cache[i], v_cache[i])
K_Cache.append(k)
V_Cache.append(v)
K_Cache = torch.stack(K_Cache, dim=0)
V_Cache = torch.stack(V_Cache, dim=0)
return x, K_Cache, V_Cache
class SinePositionalEmbedding(nn.Module):
def __init__(
self,
embedding_dim: int,
dropout: float = 0.0,
scale: bool = False,
alpha: bool = False,
):
super().__init__()
self.ar_text_embedding = ar_text_embedding
self.bert_proj = bert_proj
self.ar_text_position = ar_text_position
self.embedding_dim = embedding_dim
self.x_scale = math.sqrt(embedding_dim) if scale else 1.0
self.alpha = nn.Parameter(torch.ones(1), requires_grad=alpha)
self.dropout = torch.nn.Dropout(p=dropout)
def forward(self, x, bert_feature):
x = self.ar_text_embedding(x)
x = x + self.bert_proj(bert_feature.transpose(1, 2))
return self.ar_text_position(x)
self.reverse = False
self.pe = None
self.extend_pe(torch.tensor(0.0).expand(1, 114514))
def extend_pe(self, x):
if self.pe is not None:
if self.pe.size(1) >= x.size(1):
if self.pe.dtype != x.dtype or self.pe.device != x.device:
self.pe = self.pe.to(dtype=x.dtype, device=x.device)
return
pe = torch.zeros(x.size(1), self.embedding_dim)
if self.reverse:
position = torch.arange(
x.size(1) - 1, -1, -1.0, dtype=torch.float32
).unsqueeze(1)
else:
position = torch.arange(0, x.size(1), dtype=torch.float32).unsqueeze(1)
div_term = torch.exp(
torch.arange(0, self.embedding_dim, 2, dtype=torch.float32)
* -(math.log(10000.0) / self.embedding_dim)
)
pe[:, 0::2] = torch.sin(position * div_term)
pe[:, 1::2] = torch.cos(position * div_term)
pe = pe.unsqueeze(0)
self.pe = pe.to(device=x.device, dtype=x.dtype).detach()
def forward(self, x: torch.Tensor, x_size) -> torch.Tensor:
output = x.unsqueeze(-1) if x.ndim == 2 else x
output[:,:x_size,:] = output[:,:x_size,:] * self.x_scale + self.alpha * self.pe[:, : x_size]
return self.dropout(output)
class T2SFirstStageDecoder(nn.Module):
def __init__(self, ar_audio_embedding, ar_audio_position, h, ar_predict_layer, loss_fct, ar_accuracy_metric,
top_k, early_stop_num, num_layers):
super().__init__()
self.ar_audio_embedding = ar_audio_embedding
self.ar_audio_position = ar_audio_position
self.h = h
self.ar_predict_layer = ar_predict_layer
self.loss_fct = loss_fct
self.ar_accuracy_metric = ar_accuracy_metric
class PromptProcessor(nn.Module):
def __init__(self, cache_len, model, top_k):
super(PromptProcessor, self).__init__()
self.top_k = top_k
self.early_stop_num = early_stop_num
self.num_layers = num_layers
self.model = model
self.ar_text_embedding = model.ar_text_embedding
self.ar_text_position = model.ar_text_position
self.ar_audio_embedding = model.ar_audio_embedding
self.ar_audio_position = model.ar_audio_position
self.bert_proj = model.bert_proj
cache_len = torch.tensor(cache_len)
self.register_buffer("cache_len", cache_len, persistent=False)
def forward(self, x, prompt):
y = prompt
x_example = x[:,:,0] * 0.0
#N, 1, 512
cache = {
"all_stage": self.num_layers,
"k": None,
"v": None,
"y_emb": None,
"first_infer": 1,
"stage": 0,
}
def forward(self, x, x_len, y, y_len, bert_feature, top_p, repetition_penalty, temperature):
bsz = x.size(0)
src_len = x_len + y_len
x_emb = self.ar_text_embedding(x)
x_emb = x_emb + self.bert_proj(bert_feature)
x_pos = self.ar_text_position(x_emb, x_len)
x_attn_mask = torch.zeros((x_len, x_len), dtype=torch.bool)
y_emb = self.ar_audio_embedding(y)
y_pos = self.ar_audio_position(y_emb, y_len)
y_attn_mask = F.pad(torch.triu(torch.ones(y_len, y_len, dtype=torch.bool), diagonal=1),(x_len, 0),value=False)
cache["y_emb"] = y_emb
y_pos = self.ar_audio_position(y_emb)
xy_pos = torch.concat([x_pos, y_pos], dim=1)
xy_pos = torch.concat([x, y_pos], dim=1)
x_attn_mask_pad = F.pad(x_attn_mask,(0, y_len),value=True)
xy_attn_mask = torch.concat([x_attn_mask_pad, y_attn_mask], dim=0).unsqueeze(0)\
.expand(bsz * self.model.num_head, -1, -1)\
.view(bsz, self.model.num_head, src_len, src_len)\
.to(device=x.device, dtype=torch.bool)
y_example = y_pos[:,:,0] * 0.0
x_attn_mask = torch.matmul(x_example.transpose(0, 1) , x_example).bool()
y_attn_mask = torch.ones_like(torch.matmul(y_example.transpose(0, 1), y_example), dtype=torch.int64)
y_attn_mask = torch.cumsum(y_attn_mask, dim=1) - torch.cumsum(
torch.ones_like(y_example.transpose(0, 1), dtype=torch.int64), dim=0
xy_dec, k_cache, v_cache = self.model.t2s_transformer.process_prompt(xy_pos, xy_attn_mask, None)
logits = self.model.ar_predict_layer(
xy_dec[:, -1]
)
y_attn_mask = y_attn_mask > 0
x_y_pad = torch.matmul(x_example.transpose(0, 1), y_example).bool()
y_x_pad = torch.matmul(y_example.transpose(0, 1), x_example).bool()
x_attn_mask_pad = torch.cat([x_attn_mask, torch.ones_like(x_y_pad)], dim=1)
y_attn_mask = torch.cat([y_x_pad, y_attn_mask], dim=1)
xy_attn_mask = torch.concat([x_attn_mask_pad, y_attn_mask], dim=0)
cache["k"] = torch.matmul(x_attn_mask_pad[0].float().unsqueeze(-1), torch.zeros((1, 512)))\
.unsqueeze(1).repeat(self.num_layers, 1, 1, 1)
cache["v"] = torch.matmul(x_attn_mask_pad[0].float().unsqueeze(-1), torch.zeros((1, 512)))\
.unsqueeze(1).repeat(self.num_layers, 1, 1, 1)
xy_dec = self.h(xy_pos, mask=xy_attn_mask, cache=cache)
logits = self.ar_predict_layer(xy_dec[:, -1])
samples = sample(logits[0], y, top_k=self.top_k, top_p=1.0, repetition_penalty=1.35)[0].unsqueeze(0)
samples = sample(
logits, y, top_k=self.top_k, top_p=top_p, repetition_penalty=repetition_penalty, temperature=temperature
)[0]
y = torch.concat([y, samples], dim=1)
return y, cache["k"], cache["v"], cache["y_emb"], x_example
y_emb = self.ar_audio_embedding(samples)
xy_pos = y_emb * self.ar_audio_position.x_scale + self.ar_audio_position.alpha * self.ar_audio_position.pe[:, y_len].to(dtype=y_emb.dtype,device=y_emb.device)
k_cache = torch.stack(k_cache, dim=0)
v_cache = torch.stack(v_cache, dim=0)
return y, k_cache, v_cache, xy_pos, y_len + 1, samples
class T2SStageDecoder(nn.Module):
def __init__(self, ar_audio_embedding, ar_audio_position, h, ar_predict_layer, loss_fct, ar_accuracy_metric,
top_k, early_stop_num, num_layers):
super().__init__()
self.ar_audio_embedding = ar_audio_embedding
self.ar_audio_position = ar_audio_position
self.h = h
self.ar_predict_layer = ar_predict_layer
self.loss_fct = loss_fct
self.ar_accuracy_metric = ar_accuracy_metric
class DecodeNextToken(nn.Module):
def __init__(self, cache_len, model, top_k):
super(DecodeNextToken, self).__init__()
self.top_k = top_k
self.early_stop_num = early_stop_num
self.num_layers = num_layers
self.model = model
self.ar_text_embedding = model.ar_text_embedding
self.ar_text_position = model.ar_text_position
self.ar_audio_embedding = model.ar_audio_embedding
self.ar_audio_position = model.ar_audio_position
cache_len = torch.tensor(cache_len)
self.register_buffer("cache_len", cache_len, persistent=False)
def forward(self, y, k, v, y_emb, x_example):
cache = {
"all_stage": self.num_layers,
"k": torch.nn.functional.pad(k, (0, 0, 0, 0, 0, 1)),
"v": torch.nn.functional.pad(v, (0, 0, 0, 0, 0, 1)),
"y_emb": y_emb,
"first_infer": 0,
"stage": 0,
}
y_emb = torch.cat(
[cache["y_emb"], self.ar_audio_embedding(y[:, -1:])], 1
def forward(self, y, k_cache, v_cache, xy_pos, y_idx, top_p, repetition_penalty, temperature):
xy_dec, k_cache, v_cache = self.model.t2s_transformer.decode_next_token(xy_pos, k_cache, v_cache)
logits = self.model.ar_predict_layer(
xy_dec[:, -1]
)
cache["y_emb"] = y_emb
y_pos = self.ar_audio_position(y_emb)
xy_pos = y_pos[:, -1:]
y_example = y_pos[:,:,0] * 0.0
xy_attn_mask = torch.cat([x_example, y_example], dim=1)
xy_attn_mask = torch.zeros_like(xy_attn_mask, dtype=torch.bool)
xy_dec = self.h(xy_pos, mask=xy_attn_mask, cache=cache)
logits = self.ar_predict_layer(xy_dec[:, -1])
samples = sample(logits[0], y, top_k=self.top_k, top_p=1.0, repetition_penalty=1.35)[0].unsqueeze(0)
samples = sample(
logits, y, top_k=self.top_k, top_p=top_p, repetition_penalty=repetition_penalty, temperature=temperature
)[0]
y = torch.concat([y, samples], dim=1)
return y, cache["k"], cache["v"], cache["y_emb"], logits, samples
y_emb = self.ar_audio_embedding(samples)
xy_pos = y_emb * self.ar_audio_position.x_scale + self.ar_audio_position.alpha * self.ar_audio_position.pe[:, y_idx].to(dtype=y_emb.dtype,device=y_emb.device)
return y, k_cache, v_cache, xy_pos, y_idx + 1, samples
class Text2SemanticDecoder(nn.Module):
@ -214,15 +423,24 @@ class Text2SemanticDecoder(nn.Module):
self.norm_first = norm_first
self.vocab_size = config["model"]["vocab_size"]
self.phoneme_vocab_size = config["model"]["phoneme_vocab_size"]
self.p_dropout = float(config["model"]["dropout"])
self.p_dropout = config["model"]["dropout"]
self.EOS = config["model"]["EOS"]
self.norm_first = norm_first
assert self.EOS == self.vocab_size - 1
self.bert_proj = nn.Linear(1024, self.embedding_dim)
self.ar_text_embedding = TokenEmbedding(self.embedding_dim, self.phoneme_vocab_size, self.p_dropout)
self.ar_text_position = SinePositionalEmbedding(self.embedding_dim, dropout=0.1, scale=False, alpha=True)
self.ar_audio_embedding = TokenEmbedding(self.embedding_dim, self.vocab_size, self.p_dropout)
self.ar_audio_position = SinePositionalEmbedding(self.embedding_dim, dropout=0.1, scale=False, alpha=True)
self.ar_text_embedding = TokenEmbedding(
self.embedding_dim, self.phoneme_vocab_size, self.p_dropout
)
self.ar_text_position = SinePositionalEmbedding(
self.embedding_dim, dropout=0.1, scale=False, alpha=True
)
self.ar_audio_embedding = TokenEmbedding(
self.embedding_dim, self.vocab_size, self.p_dropout
)
self.ar_audio_position = SinePositionalEmbedding(
self.embedding_dim, dropout=0.1, scale=False, alpha=True
)
self.h = TransformerEncoder(
TransformerEncoderLayer(
d_model=self.model_dim,
@ -235,8 +453,10 @@ class Text2SemanticDecoder(nn.Module):
num_layers=self.num_layers,
norm=LayerNorm(self.model_dim) if norm_first else None,
)
self.ar_predict_layer = nn.Linear(self.model_dim, self.vocab_size, bias=False)
self.loss_fct = nn.CrossEntropyLoss(reduction="sum")
self.ar_accuracy_metric = MulticlassAccuracy(
self.vocab_size,
top_k=top_k,
@ -244,37 +464,126 @@ class Text2SemanticDecoder(nn.Module):
multidim_average="global",
ignore_index=self.EOS,
)
self.top_k = torch.LongTensor([1])
self.early_stop_num = torch.LongTensor([-1])
def init_onnx(self):
self.onnx_encoder = OnnxEncoder(self.ar_text_embedding, self.bert_proj, self.ar_text_position)
self.first_stage_decoder = T2SFirstStageDecoder(self.ar_audio_embedding, self.ar_audio_position, self.h,
self.ar_predict_layer, self.loss_fct, self.ar_accuracy_metric, self.top_k, self.early_stop_num,
self.num_layers)
self.stage_decoder = T2SStageDecoder(self.ar_audio_embedding, self.ar_audio_position, self.h,
self.ar_predict_layer, self.loss_fct, self.ar_accuracy_metric, self.top_k, self.early_stop_num,
self.num_layers)
blocks = []
def forward(self, x, prompts, bert_feature):
early_stop_num = self.early_stop_num
prefix_len = prompts.shape[1]
for i in range(self.num_layers):
layer = self.h.layers[i]
t2smlp = T2SMLP(
layer.linear1.weight,
layer.linear1.bias,
layer.linear2.weight,
layer.linear2.bias
)
x = self.onnx_encoder(x, bert_feature)
y, k, v, y_emb, stage, x_example = self.first_stage_decoder(x, prompts)
block = T2SBlock(
self.num_head,
self.model_dim,
t2smlp,
layer.self_attn.in_proj_weight,
layer.self_attn.in_proj_bias,
layer.self_attn.out_proj.weight,
layer.self_attn.out_proj.bias,
layer.norm1.weight,
layer.norm1.bias,
layer.norm1.eps,
layer.norm2.weight,
layer.norm2.bias,
layer.norm2.eps
)
blocks.append(block)
self.t2s_transformer = T2STransformer(self.num_layers, blocks)
def infer_panel_naive(
self,
x:torch.LongTensor, #####全部文本token
x_lens:torch.LongTensor,
prompts:torch.LongTensor, ####参考音频token
bert_feature:torch.LongTensor,
top_k: int = -100,
top_p: int = 100,
early_stop_num: int = -1,
temperature: float = 1.0,
repetition_penalty: float = 1.35,
**kwargs
):
x = self.ar_text_embedding(x)
x = x + self.bert_proj(bert_feature.transpose(1, 2))
x = self.ar_text_position(x)
y = prompts
x_len = x.shape[1]
x_attn_mask = torch.zeros((x_len, x_len), dtype=torch.bool)
stop = False
for idx in range(1, 1500):
enco = self.stage_decoder(y, k, v, y_emb, stage, x_example)
y, k, v, y_emb, stage, logits, samples = enco
k_cache = None
v_cache = None
y_emb = self.ar_audio_embedding(y)
y_len = y_emb.shape[1]
prefix_len = y.shape[1]
y_pos = self.ar_audio_position(y_emb)
xy_pos = torch.concat([x, y_pos], dim=1)
bsz = x.shape[0]
src_len = x_len + y_len
x_attn_mask_pad = F.pad(
x_attn_mask,
(0, y_len),
value=True,
)
y_attn_mask = F.pad(
torch.triu(torch.ones(y_len, y_len, dtype=torch.bool), diagonal=1),
(x_len, 0),
value=False,
)
xy_attn_mask = torch.concat([x_attn_mask_pad, y_attn_mask], dim=0)\
.unsqueeze(0)\
.expand(bsz*self.num_head, -1, -1)\
.view(bsz, self.num_head, src_len, src_len)\
.to(device=x.device, dtype=torch.bool)
for idx in tqdm(range(1500)):
if xy_attn_mask is not None:
xy_dec, k_cache, v_cache = self.t2s_transformer.process_prompt(xy_pos, xy_attn_mask, None)
else:
xy_dec, k_cache, v_cache = self.t2s_transformer.decode_next_token(xy_pos, k_cache, v_cache)
logits = self.ar_predict_layer(
xy_dec[:, -1]
)
if idx == 0:
xy_attn_mask = None
if(idx<11):###至少预测出10个token不然不给停止0.4s
logits = logits[:, :-1]
samples = sample(
logits, y, top_k=top_k, top_p=top_p, repetition_penalty=repetition_penalty, temperature=temperature
)[0]
y = torch.concat([y, samples], dim=1)
if early_stop_num != -1 and (y.shape[1] - prefix_len) > early_stop_num:
print("use early stop num:", early_stop_num)
stop = True
if torch.argmax(logits, dim=-1)[0] == self.EOS or samples[0, 0] == self.EOS:
stop = True
if stop:
if y.shape[1] == 0:
y = torch.concat([y, torch.zeros_like(samples)], dim=1)
print("bad zero prediction")
print(f"T2S Decoding EOS [{prefix_len} -> {y.shape[1]}]")
break
y[0, -1] = 0
return y, idx
####################### update next step ###################################
y_emb = self.ar_audio_embedding(y[:, -1:])
xy_pos = y_emb * self.ar_audio_position.x_scale + self.ar_audio_position.alpha * self.ar_audio_position.pe[:, y_len + idx].to(dtype=y_emb.dtype,device=y_emb.device)
return y[:, :-1], idx
def infer(self, x, prompts, bert_feature):
top_k = self.top_k