mirror of
https://github.com/RVC-Boss/GPT-SoVITS.git
synced 2025-04-06 03:57:44 +08:00
Merge pull request #730 from ChasonJiang/fast_inference
增加flash attention选项,防止影响训练
This commit is contained in:
commit
a680939ce2
@ -13,11 +13,11 @@ from AR.modules.lr_schedulers import WarmupCosineLRSchedule
|
||||
from AR.modules.optim import ScaledAdam
|
||||
|
||||
class Text2SemanticLightningModule(LightningModule):
|
||||
def __init__(self, config, output_dir, is_train=True):
|
||||
def __init__(self, config, output_dir, is_train=True, flash_attn_enabled:bool = False):
|
||||
super().__init__()
|
||||
self.config = config
|
||||
self.top_k = 3
|
||||
self.model = Text2SemanticDecoder(config=config, top_k=self.top_k)
|
||||
self.model = Text2SemanticDecoder(config=config, top_k=self.top_k,flash_attn_enabled=flash_attn_enabled)
|
||||
pretrained_s1 = config.get("pretrained_s1")
|
||||
if pretrained_s1 and is_train:
|
||||
# print(self.load_state_dict(torch.load(pretrained_s1,map_location="cpu")["state_dict"]))
|
||||
|
@ -1,7 +1,9 @@
|
||||
# modified from https://github.com/yangdongchao/SoundStorm/blob/master/soundstorm/s1/AR/models/t2s_model.py
|
||||
# reference: https://github.com/lifeiteng/vall-e
|
||||
import os, sys
|
||||
now_dir = os.getcwd()
|
||||
sys.path.append(now_dir)
|
||||
from typing import List
|
||||
|
||||
import torch
|
||||
from tqdm import tqdm
|
||||
|
||||
@ -174,7 +176,7 @@ class T2STransformer:
|
||||
|
||||
|
||||
class Text2SemanticDecoder(nn.Module):
|
||||
def __init__(self, config, norm_first=False, top_k=3):
|
||||
def __init__(self, config, norm_first=False, top_k=3, flash_attn_enabled:bool=False):
|
||||
super(Text2SemanticDecoder, self).__init__()
|
||||
self.model_dim = config["model"]["hidden_dim"]
|
||||
self.embedding_dim = config["model"]["embedding_dim"]
|
||||
@ -226,37 +228,42 @@ class Text2SemanticDecoder(nn.Module):
|
||||
multidim_average="global",
|
||||
ignore_index=self.EOS,
|
||||
)
|
||||
|
||||
blocks = []
|
||||
|
||||
for i in range(self.num_layers):
|
||||
layer = self.h.layers[i]
|
||||
t2smlp = T2SMLP(
|
||||
layer.linear1.weight,
|
||||
layer.linear1.bias,
|
||||
layer.linear2.weight,
|
||||
layer.linear2.bias
|
||||
)
|
||||
|
||||
block = T2SBlock(
|
||||
self.num_head,
|
||||
self.model_dim,
|
||||
t2smlp,
|
||||
layer.self_attn.in_proj_weight,
|
||||
layer.self_attn.in_proj_bias,
|
||||
layer.self_attn.out_proj.weight,
|
||||
layer.self_attn.out_proj.bias,
|
||||
layer.norm1.weight,
|
||||
layer.norm1.bias,
|
||||
layer.norm1.eps,
|
||||
layer.norm2.weight,
|
||||
layer.norm2.bias,
|
||||
layer.norm2.eps
|
||||
)
|
||||
|
||||
blocks.append(block)
|
||||
|
||||
self.t2s_transformer = T2STransformer(self.num_layers, blocks)
|
||||
if not flash_attn_enabled:
|
||||
print("Not Using Flash Attention")
|
||||
self.infer_panel = self.infer_panel_batch_only
|
||||
else:
|
||||
print("Using Flash Attention")
|
||||
blocks = []
|
||||
|
||||
for i in range(self.num_layers):
|
||||
layer = self.h.layers[i]
|
||||
t2smlp = T2SMLP(
|
||||
layer.linear1.weight,
|
||||
layer.linear1.bias,
|
||||
layer.linear2.weight,
|
||||
layer.linear2.bias
|
||||
)
|
||||
|
||||
block = T2SBlock(
|
||||
self.num_head,
|
||||
self.model_dim,
|
||||
t2smlp,
|
||||
layer.self_attn.in_proj_weight,
|
||||
layer.self_attn.in_proj_bias,
|
||||
layer.self_attn.out_proj.weight,
|
||||
layer.self_attn.out_proj.bias,
|
||||
layer.norm1.weight,
|
||||
layer.norm1.bias,
|
||||
layer.norm1.eps,
|
||||
layer.norm2.weight,
|
||||
layer.norm2.bias,
|
||||
layer.norm2.eps
|
||||
)
|
||||
|
||||
blocks.append(block)
|
||||
|
||||
self.t2s_transformer = T2STransformer(self.num_layers, blocks)
|
||||
|
||||
def make_input_data(self, x, x_lens, y, y_lens, bert_feature):
|
||||
x = self.ar_text_embedding(x)
|
||||
@ -640,6 +647,168 @@ class Text2SemanticDecoder(nn.Module):
|
||||
if idx_list[i] is None:
|
||||
idx_list[i] = 1500-1 ###如果没有生成到EOS,就用最大长度代替
|
||||
|
||||
if ref_free:
|
||||
return y_list, [0]*x.shape[0]
|
||||
return y_list, idx_list
|
||||
|
||||
def infer_panel_batch_only(
|
||||
self,
|
||||
x, #####全部文本token
|
||||
x_lens,
|
||||
prompts, ####参考音频token
|
||||
bert_feature,
|
||||
top_k: int = -100,
|
||||
top_p: int = 100,
|
||||
early_stop_num: int = -1,
|
||||
temperature: float = 1.0,
|
||||
):
|
||||
x = self.ar_text_embedding(x)
|
||||
x = x + self.bert_proj(bert_feature.transpose(1, 2))
|
||||
x = self.ar_text_position(x)
|
||||
|
||||
# AR Decoder
|
||||
y = prompts
|
||||
|
||||
x_len = x.shape[1]
|
||||
x_attn_mask = torch.zeros((x_len, x_len), dtype=torch.bool)
|
||||
stop = False
|
||||
# print(1111111,self.num_layers)
|
||||
cache = {
|
||||
"all_stage": self.num_layers,
|
||||
"k": [None] * self.num_layers, ###根据配置自己手写
|
||||
"v": [None] * self.num_layers,
|
||||
# "xy_pos":None,##y_pos位置编码每次都不一样的没法缓存,每次都要重新拼xy_pos.主要还是写法原因,其实是可以历史统一一样的,但也没啥计算量就不管了
|
||||
"y_emb": None, ##只需要对最新的samples求emb,再拼历史的就行
|
||||
# "logits":None,###原版就已经只对结尾求再拼接了,不用管
|
||||
# "xy_dec":None,###不需要,本来只需要最后一个做logits
|
||||
"first_infer": 1,
|
||||
"stage": 0,
|
||||
}
|
||||
################### first step ##########################
|
||||
if y is not None:
|
||||
y_emb = self.ar_audio_embedding(y)
|
||||
y_len = y_emb.shape[1]
|
||||
prefix_len = y.shape[1]
|
||||
y_pos = self.ar_audio_position(y_emb)
|
||||
xy_pos = torch.concat([x, y_pos], dim=1)
|
||||
cache["y_emb"] = y_emb
|
||||
ref_free = False
|
||||
else:
|
||||
y_emb = None
|
||||
y_len = 0
|
||||
prefix_len = 0
|
||||
y_pos = None
|
||||
xy_pos = x
|
||||
y = torch.zeros(x.shape[0], 0, dtype=torch.int, device=x.device)
|
||||
ref_free = True
|
||||
|
||||
x_attn_mask_pad = F.pad(
|
||||
x_attn_mask,
|
||||
(0, y_len), ###xx的纯0扩展到xx纯0+xy纯1,(x,x+y)
|
||||
value=True,
|
||||
)
|
||||
y_attn_mask = F.pad( ###yy的右上1扩展到左边xy的0,(y,x+y)
|
||||
torch.triu(torch.ones(y_len, y_len, dtype=torch.bool), diagonal=1),
|
||||
(x_len, 0),
|
||||
value=False,
|
||||
)
|
||||
xy_attn_mask = torch.concat([x_attn_mask_pad, y_attn_mask], dim=0).to(
|
||||
x.device
|
||||
)
|
||||
|
||||
y_list = [None]*y.shape[0]
|
||||
batch_idx_map = list(range(y.shape[0]))
|
||||
idx_list = [None]*y.shape[0]
|
||||
for idx in tqdm(range(1500)):
|
||||
|
||||
xy_dec, _ = self.h((xy_pos, None), mask=xy_attn_mask, cache=cache)
|
||||
logits = self.ar_predict_layer(
|
||||
xy_dec[:, -1]
|
||||
) ##不用改,如果用了cache的默认就是只有一帧,取最后一帧一样的
|
||||
# samples = topk_sampling(logits, top_k=top_k, top_p=1.0, temperature=temperature)
|
||||
if(idx==0):###第一次跑不能EOS否则没有了
|
||||
logits = logits[:, :-1] ###刨除1024终止符号的概率
|
||||
samples = sample(
|
||||
logits, y, top_k=top_k, top_p=top_p, repetition_penalty=1.35, temperature=temperature
|
||||
)[0]
|
||||
# 本次生成的 semantic_ids 和之前的 y 构成新的 y
|
||||
# print(samples.shape)#[1,1]#第一个1是bs
|
||||
y = torch.concat([y, samples], dim=1)
|
||||
|
||||
# 移除已经生成完毕的序列
|
||||
reserved_idx_of_batch_for_y = None
|
||||
if (self.EOS in torch.argmax(logits, dim=-1)) or \
|
||||
(self.EOS in samples[:, 0]): ###如果生成到EOS,则停止
|
||||
l = samples[:, 0]==self.EOS
|
||||
removed_idx_of_batch_for_y = torch.where(l==True)[0].tolist()
|
||||
reserved_idx_of_batch_for_y = torch.where(l==False)[0]
|
||||
# batch_indexs = torch.tensor(batch_idx_map, device=y.device)[removed_idx_of_batch_for_y]
|
||||
for i in removed_idx_of_batch_for_y:
|
||||
batch_index = batch_idx_map[i]
|
||||
idx_list[batch_index] = idx - 1
|
||||
y_list[batch_index] = y[i, :-1]
|
||||
|
||||
batch_idx_map = [batch_idx_map[i] for i in reserved_idx_of_batch_for_y.tolist()]
|
||||
|
||||
# 只保留未生成完毕的序列
|
||||
if reserved_idx_of_batch_for_y is not None:
|
||||
# index = torch.LongTensor(batch_idx_map).to(y.device)
|
||||
y = torch.index_select(y, dim=0, index=reserved_idx_of_batch_for_y)
|
||||
if cache["y_emb"] is not None:
|
||||
cache["y_emb"] = torch.index_select(cache["y_emb"], dim=0, index=reserved_idx_of_batch_for_y)
|
||||
if cache["k"] is not None:
|
||||
for i in range(self.num_layers):
|
||||
# 因为kv转置了,所以batch dim是1
|
||||
cache["k"][i] = torch.index_select(cache["k"][i], dim=1, index=reserved_idx_of_batch_for_y)
|
||||
cache["v"][i] = torch.index_select(cache["v"][i], dim=1, index=reserved_idx_of_batch_for_y)
|
||||
|
||||
|
||||
if early_stop_num != -1 and (y.shape[1] - prefix_len) > early_stop_num:
|
||||
print("use early stop num:", early_stop_num)
|
||||
stop = True
|
||||
|
||||
if not (None in idx_list):
|
||||
# print(torch.argmax(logits, dim=-1)[0] == self.EOS, samples[0, 0] == self.EOS)
|
||||
stop = True
|
||||
if stop:
|
||||
# if prompts.shape[1] == y.shape[1]:
|
||||
# y = torch.concat([y, torch.zeros_like(samples)], dim=1)
|
||||
# print("bad zero prediction")
|
||||
if y.shape[1]==0:
|
||||
y = torch.concat([y, torch.zeros_like(samples)], dim=1)
|
||||
print("bad zero prediction")
|
||||
print(f"T2S Decoding EOS [{prefix_len} -> {y.shape[1]}]")
|
||||
break
|
||||
|
||||
####################### update next step ###################################
|
||||
cache["first_infer"] = 0
|
||||
if cache["y_emb"] is not None:
|
||||
y_emb = torch.cat(
|
||||
[cache["y_emb"], self.ar_audio_embedding(y[:, -1:])], dim = 1
|
||||
)
|
||||
cache["y_emb"] = y_emb
|
||||
y_pos = self.ar_audio_position(y_emb)
|
||||
xy_pos = y_pos[:, -1:]
|
||||
else:
|
||||
y_emb = self.ar_audio_embedding(y[:, -1:])
|
||||
cache["y_emb"] = y_emb
|
||||
y_pos = self.ar_audio_position(y_emb)
|
||||
xy_pos = y_pos
|
||||
y_len = y_pos.shape[1]
|
||||
|
||||
###最右边一列(是错的)
|
||||
# xy_attn_mask=torch.ones((1, x_len+y_len), dtype=torch.bool,device=xy_pos.device)
|
||||
# xy_attn_mask[:,-1]=False
|
||||
###最下面一行(是对的)
|
||||
xy_attn_mask = torch.zeros(
|
||||
(1, x_len + y_len), dtype=torch.bool, device=xy_pos.device
|
||||
)
|
||||
|
||||
if (None in idx_list):
|
||||
for i in range(x.shape[0]):
|
||||
if idx_list[i] is None:
|
||||
idx_list[i] = 1500-1 ###如果没有生成到EOS,就用最大长度代替
|
||||
|
||||
if ref_free:
|
||||
return y_list, [0]*x.shape[0]
|
||||
return y_list, idx_list
|
@ -17,8 +17,8 @@ from time import time as ttime
|
||||
from tools.i18n.i18n import I18nAuto
|
||||
from my_utils import load_audio
|
||||
from module.mel_processing import spectrogram_torch
|
||||
from .text_segmentation_method import splits
|
||||
from .TextPreprocessor import TextPreprocessor
|
||||
from TTS_infer_pack.text_segmentation_method import splits
|
||||
from TTS_infer_pack.TextPreprocessor import TextPreprocessor
|
||||
i18n = I18nAuto()
|
||||
|
||||
# configs/tts_infer.yaml
|
||||
@ -30,6 +30,7 @@ default:
|
||||
cnhuhbert_base_path: GPT_SoVITS/pretrained_models/chinese-hubert-base
|
||||
t2s_weights_path: GPT_SoVITS/pretrained_models/s1bert25hz-2kh-longer-epoch=68e-step=50232.ckpt
|
||||
vits_weights_path: GPT_SoVITS/pretrained_models/s2G488k.pth
|
||||
flash_attn_enabled: true
|
||||
|
||||
custom:
|
||||
device: cuda
|
||||
@ -38,7 +39,7 @@ custom:
|
||||
cnhuhbert_base_path: GPT_SoVITS/pretrained_models/chinese-hubert-base
|
||||
t2s_weights_path: GPT_SoVITS/pretrained_models/s1bert25hz-2kh-longer-epoch=68e-step=50232.ckpt
|
||||
vits_weights_path: GPT_SoVITS/pretrained_models/s2G488k.pth
|
||||
|
||||
flash_attn_enabled: true
|
||||
|
||||
|
||||
"""
|
||||
@ -63,7 +64,8 @@ class TTS_Config:
|
||||
"t2s_weights_path": "GPT_SoVITS/pretrained_models/s1bert25hz-2kh-longer-epoch=68e-step=50232.ckpt",
|
||||
"vits_weights_path": "GPT_SoVITS/pretrained_models/s2G488k.pth",
|
||||
"cnhuhbert_base_path": "GPT_SoVITS/pretrained_models/chinese-hubert-base",
|
||||
"bert_base_path": "GPT_SoVITS/pretrained_models/chinese-roberta-wwm-ext-large"
|
||||
"bert_base_path": "GPT_SoVITS/pretrained_models/chinese-roberta-wwm-ext-large",
|
||||
"flash_attn_enabled": True
|
||||
}
|
||||
self.configs:dict = configs.get("custom", self.default_configs)
|
||||
|
||||
@ -73,6 +75,7 @@ class TTS_Config:
|
||||
self.vits_weights_path = self.configs.get("vits_weights_path")
|
||||
self.bert_base_path = self.configs.get("bert_base_path")
|
||||
self.cnhuhbert_base_path = self.configs.get("cnhuhbert_base_path")
|
||||
self.flash_attn_enabled = self.configs.get("flash_attn_enabled")
|
||||
|
||||
|
||||
self.max_sec = None
|
||||
@ -103,7 +106,8 @@ class TTS_Config:
|
||||
"t2s_weights_path": "GPT_SoVITS/pretrained_models/s1bert25hz-2kh-longer-epoch=68e-step=50232.ckpt",
|
||||
"vits_weights_path": "GPT_SoVITS/pretrained_models/s2G488k.pth",
|
||||
"cnhuhbert_base_path": "GPT_SoVITS/pretrained_models/chinese-hubert-base",
|
||||
"bert_base_path": "GPT_SoVITS/pretrained_models/chinese-roberta-wwm-ext-large"
|
||||
"bert_base_path": "GPT_SoVITS/pretrained_models/chinese-roberta-wwm-ext-large",
|
||||
"flash_attn_enabled": True
|
||||
},
|
||||
"custom": {
|
||||
"device": str(self.device),
|
||||
@ -111,7 +115,8 @@ class TTS_Config:
|
||||
"t2s_weights_path": self.t2s_weights_path,
|
||||
"vits_weights_path": self.vits_weights_path,
|
||||
"bert_base_path": self.bert_base_path,
|
||||
"cnhuhbert_base_path": self.cnhuhbert_base_path
|
||||
"cnhuhbert_base_path": self.cnhuhbert_base_path,
|
||||
"flash_attn_enabled": self.flash_attn_enabled
|
||||
}
|
||||
}
|
||||
if configs_path is None:
|
||||
@ -128,6 +133,7 @@ class TTS_Config:
|
||||
string += "t2s_weights_path: {}\n".format(self.t2s_weights_path)
|
||||
string += "vits_weights_path: {}\n".format(self.vits_weights_path)
|
||||
string += "cnhuhbert_base_path: {}\n".format(self.cnhuhbert_base_path)
|
||||
string += "flash_attn_enabled: {}\n".format(self.flash_attn_enabled)
|
||||
string += "----------------------------------------\n"
|
||||
return string
|
||||
|
||||
@ -231,7 +237,8 @@ class TTS:
|
||||
dict_s1 = torch.load(weights_path, map_location=self.configs.device)
|
||||
config = dict_s1["config"]
|
||||
self.configs.max_sec = config["data"]["max_sec"]
|
||||
t2s_model = Text2SemanticLightningModule(config, "****", is_train=False)
|
||||
t2s_model = Text2SemanticLightningModule(config, "****", is_train=False,
|
||||
flash_attn_enabled=self.configs.flash_attn_enabled)
|
||||
t2s_model.load_state_dict(dict_s1["weight"])
|
||||
if self.configs.is_half:
|
||||
t2s_model = t2s_model.half()
|
||||
|
@ -1,4 +1,7 @@
|
||||
|
||||
import os, sys
|
||||
now_dir = os.getcwd()
|
||||
sys.path.append(now_dir)
|
||||
|
||||
import re
|
||||
import torch
|
||||
@ -7,7 +10,7 @@ from typing import Dict, List, Tuple
|
||||
from text.cleaner import clean_text
|
||||
from text import cleaned_text_to_sequence
|
||||
from transformers import AutoModelForMaskedLM, AutoTokenizer
|
||||
from .text_segmentation_method import splits, get_method as get_seg_method
|
||||
from TTS_infer_pack.text_segmentation_method import splits, get_method as get_seg_method
|
||||
|
||||
# from tools.i18n.i18n import I18nAuto
|
||||
|
||||
|
@ -2,6 +2,7 @@ custom:
|
||||
bert_base_path: GPT_SoVITS/pretrained_models/chinese-roberta-wwm-ext-large
|
||||
cnhuhbert_base_path: GPT_SoVITS/pretrained_models/chinese-hubert-base
|
||||
device: cuda
|
||||
flash_attn_enabled: true
|
||||
is_half: true
|
||||
t2s_weights_path: GPT_SoVITS/pretrained_models/s1bert25hz-2kh-longer-epoch=68e-step=50232.ckpt
|
||||
vits_weights_path: GPT_SoVITS/pretrained_models/s2G488k.pth
|
||||
@ -9,6 +10,7 @@ default:
|
||||
bert_base_path: GPT_SoVITS/pretrained_models/chinese-roberta-wwm-ext-large
|
||||
cnhuhbert_base_path: GPT_SoVITS/pretrained_models/chinese-hubert-base
|
||||
device: cpu
|
||||
flash_attn_enabled: true
|
||||
is_half: false
|
||||
t2s_weights_path: GPT_SoVITS/pretrained_models/s1bert25hz-2kh-longer-epoch=68e-step=50232.ckpt
|
||||
vits_weights_path: GPT_SoVITS/pretrained_models/s2G488k.pth
|
||||
|
@ -20,7 +20,6 @@ logging.getLogger("charset_normalizer").setLevel(logging.ERROR)
|
||||
logging.getLogger("torchaudio._extension").setLevel(logging.ERROR)
|
||||
import pdb
|
||||
import torch
|
||||
# modified from https://github.com/feng-yufei/shared_debugging_code/blob/main/model/t2s_lightning_module.py
|
||||
|
||||
|
||||
infer_ttswebui = os.environ.get("infer_ttswebui", 9872)
|
||||
@ -33,8 +32,9 @@ is_half = eval(os.environ.get("is_half", "True")) and not torch.backends.mps.is_
|
||||
import gradio as gr
|
||||
from TTS_infer_pack.TTS import TTS, TTS_Config
|
||||
from TTS_infer_pack.text_segmentation_method import cut1, cut2, cut3, cut4, cut5
|
||||
from tools.i18n.i18n import I18nAuto
|
||||
from TTS_infer_pack.text_segmentation_method import get_method
|
||||
from tools.i18n.i18n import I18nAuto
|
||||
|
||||
i18n = I18nAuto()
|
||||
|
||||
os.environ['PYTORCH_ENABLE_MPS_FALLBACK'] = '1' # 确保直接启动推理UI时也能够设置。
|
||||
|
Loading…
x
Reference in New Issue
Block a user