mirror of
https://github.com/RVC-Boss/GPT-SoVITS.git
synced 2025-10-06 22:50:00 +08:00
Delete GPT_SoVITS/module/patched_mha_with_cache_onnx.py
This commit is contained in:
parent
96ff0008a4
commit
a17399d75b
@ -1,92 +0,0 @@
|
||||
from torch.nn.functional import *
|
||||
from torch.nn.functional import (
|
||||
_mha_shape_check,
|
||||
_canonical_mask,
|
||||
_none_or_dtype,
|
||||
_in_projection_packed,
|
||||
)
|
||||
|
||||
def multi_head_attention_forward_patched(
|
||||
query,
|
||||
key,
|
||||
value,
|
||||
embed_dim_to_check: int,
|
||||
num_heads: int,
|
||||
in_proj_weight,
|
||||
in_proj_bias: Optional[Tensor],
|
||||
bias_k: Optional[Tensor],
|
||||
bias_v: Optional[Tensor],
|
||||
add_zero_attn: bool,
|
||||
dropout_p: float,
|
||||
out_proj_weight: Tensor,
|
||||
out_proj_bias: Optional[Tensor],
|
||||
training: bool = True,
|
||||
key_padding_mask: Optional[Tensor] = None,
|
||||
need_weights: bool = True,
|
||||
attn_mask: Optional[Tensor] = None,
|
||||
use_separate_proj_weight: bool = False,
|
||||
q_proj_weight: Optional[Tensor] = None,
|
||||
k_proj_weight: Optional[Tensor] = None,
|
||||
v_proj_weight: Optional[Tensor] = None,
|
||||
static_k: Optional[Tensor] = None,
|
||||
static_v: Optional[Tensor] = None,
|
||||
average_attn_weights: bool = True,
|
||||
is_causal: bool = False,
|
||||
cache=None,
|
||||
) -> Tuple[Tensor, Optional[Tensor]]:
|
||||
|
||||
# set up shape vars
|
||||
_, _, embed_dim = query.shape
|
||||
attn_mask = _canonical_mask(
|
||||
mask=attn_mask,
|
||||
mask_name="attn_mask",
|
||||
other_type=None,
|
||||
other_name="",
|
||||
target_type=query.dtype,
|
||||
check_other=False,
|
||||
)
|
||||
head_dim = embed_dim // num_heads
|
||||
|
||||
proj_qkv = linear(query, in_proj_weight, in_proj_bias)
|
||||
proj_qkv = proj_qkv.unflatten(-1, (3, query.size(-1))).unsqueeze(0).transpose(0, -2).squeeze(-2).contiguous()
|
||||
q, k, v = proj_qkv[0], proj_qkv[1], proj_qkv[2]
|
||||
|
||||
if cache["first_infer"] == 1:
|
||||
cache["k"][cache["stage"]] = k
|
||||
cache["v"][cache["stage"]] = v
|
||||
else:
|
||||
cache["k"][cache["stage"]] = torch.cat([cache["k"][cache["stage"]][:-1], k], 0)
|
||||
cache["v"][cache["stage"]] = torch.cat([cache["v"][cache["stage"]][:-1], v], 0)
|
||||
k = cache["k"][cache["stage"]]
|
||||
v = cache["v"][cache["stage"]]
|
||||
cache["stage"] = (cache["stage"] + 1) % cache["all_stage"]
|
||||
|
||||
attn_mask = _canonical_mask(
|
||||
mask=attn_mask,
|
||||
mask_name="attn_mask",
|
||||
other_type=None,
|
||||
other_name="",
|
||||
target_type=q.dtype,
|
||||
check_other=False,
|
||||
)
|
||||
attn_mask = attn_mask.unsqueeze(0)
|
||||
|
||||
q = q.view(-1, num_heads, head_dim).transpose(0, 1)
|
||||
k = k.view(-1, num_heads, head_dim).transpose(0, 1)
|
||||
v = v.view(-1, num_heads, head_dim).transpose(0, 1)
|
||||
|
||||
dropout_p = 0.0
|
||||
attn_mask = attn_mask.unsqueeze(0)
|
||||
q = q.view(num_heads, -1, head_dim).unsqueeze(0)
|
||||
k = k.view(num_heads, -1, head_dim).unsqueeze(0)
|
||||
v = v.view(num_heads, -1, head_dim).unsqueeze(0)
|
||||
attn_output = scaled_dot_product_attention(
|
||||
q, k, v, attn_mask, dropout_p, is_causal
|
||||
)
|
||||
attn_output = (
|
||||
attn_output.permute(2, 0, 1, 3).contiguous().view(-1, embed_dim)
|
||||
)
|
||||
attn_output = linear(attn_output, out_proj_weight, out_proj_bias)
|
||||
attn_output = attn_output.view(-1, 1, attn_output.size(1))
|
||||
|
||||
return attn_output
|
Loading…
x
Reference in New Issue
Block a user