diff --git a/api.py b/api.py index fc4a2a0c..3e4eba62 100644 --- a/api.py +++ b/api.py @@ -19,8 +19,11 @@ `-fp` - `覆盖 config.py 使用全精度` `-hp` - `覆盖 config.py 使用半精度` `-sm` - `流式返回模式, 默认不启用, "close","c", "normal","n", "keepalive","k"` -·-mt` - `返回的音频编码格式, 流式默认ogg, 非流式默认wav, "wav", "ogg", "aac"` -·-cp` - `文本切分符号设定, 默认为空, 以",.,。"字符串的方式传入` +`-mt` - `返回的音频编码格式, 流式默认ogg, 非流式默认wav, "wav", "ogg", "aac"` +`-cp` - `文本切分符号设定, 默认为空, 以",.,。"字符串的方式传入` +`-bs` - `批处理大小,默认为1` +`-rf` - `碎片返回,约等于流` +`-sb` - `分桶处理,可能可以减少计算量,与碎片返回冲突` `-hb` - `cnhubert路径` `-b` - `bert路径` @@ -484,7 +487,6 @@ def only_punc(text): def preprocess(text:list, lang:str)->List[Dict]: result = [] - print(i18n("############ 提取文本Bert特征 ############")) for _text in text: phones, bert_features, norm_text = extract_feature_for_text(_text, lang) if phones is None: @@ -979,12 +981,12 @@ change_gpt_weights(gpt_path) # ????? -if split_bucket and is_fast_inference: - return_fragment = False - logger.info("分桶处理已开启") - logger.info("碎片返回已关闭") - if return_fragment: + split_bucket = False + logger.info("碎片返回已开启") + logger.info("分桶处理已关闭") + +if split_bucket and is_fast_inference: logger.info("碎片返回已开启") if batch_size != 1 and is_fast_inference: @@ -1140,4 +1142,4 @@ async def tts_endpoint( if __name__ == "__main__": - uvicorn.run(app, host=host, port=port, workers=1) \ No newline at end of file + uvicorn.run(app, host=host, port=port, workers=1)