mirror of
https://github.com/RVC-Boss/GPT-SoVITS.git
synced 2025-10-07 07:02:57 +08:00
Add files via upload
This commit is contained in:
parent
57dde51e11
commit
9cd3ff4c18
48
emotion_file_config.py
Normal file
48
emotion_file_config.py
Normal file
@ -0,0 +1,48 @@
|
||||
#coder: 芙宁娜_荒性
|
||||
import os
|
||||
|
||||
|
||||
|
||||
class emotionGetFilePath:
|
||||
def __init__(self):
|
||||
#这里我想要获取GPT_SoVITS\emotions的具体路径,比如
|
||||
#f"GPT_SoVITS\emotions\{character}\{wavs}\{name}.wav"
|
||||
#f"GPT_SoVITS\emotions\{character}\{lists}\{name}.list"
|
||||
self.basePath = "GPT_SoVITS/emotions"
|
||||
pass
|
||||
def FileExists(self, character: str = None,type: str = None,emotion:str = None):
|
||||
return os.path.exists(f"{self.basePath}/{character}/{type}/{emotion}.{type}")
|
||||
|
||||
def getFilePath(self, character: str = None,type: str = None,emotion:str = None):
|
||||
#返回前要校验文件是否存在,不存在直接返回None
|
||||
exists = os.path.exists(f"{self.basePath}/{character}/{type}/{emotion}.{type}")
|
||||
print(exists)
|
||||
if exists == False:
|
||||
return None
|
||||
else:
|
||||
return f"{self.basePath}/{character}/{type}/{emotion}.{type}"
|
||||
|
||||
def IfNotExistsCreate(self, character: str = None, type: str = None):
|
||||
file_path = f"{self.basePath}/{character}/{type}/{type}.{type}"
|
||||
if not os.path.exists(file_path):
|
||||
os.makedirs(os.path.dirname(file_path), exist_ok=True)
|
||||
open(file_path, 'w').close()
|
||||
|
||||
def FileCreateToList(self, character: str = None, type: str = "list",emotion:str = None,text: str = None):
|
||||
file_path = f"{self.basePath}/{character}/{type}/{emotion}.{type}"
|
||||
if not os.path.exists(file_path):
|
||||
os.makedirs(os.path.dirname(file_path), exist_ok=True)
|
||||
with open(file_path, "w", encoding="utf-8") as f:
|
||||
f.write(text)
|
||||
f.close()
|
||||
print(f"list写入完成")
|
||||
|
||||
emotionPath = emotionGetFilePath()
|
||||
|
||||
if __name__ == "__main__":
|
||||
value1 = emotionPath.getFilePath("娜维娅","wav","平静")
|
||||
value2 =emotionPath.getFilePath("娜维娅","list","平静")
|
||||
print(value1)
|
||||
print(value2)
|
||||
emotionPath.IfNotExistsCreate("芙宁娜","wav")
|
||||
emotionPath.IfNotExistsCreate("芙宁娜","list")
|
732
inference_webui.py
Normal file
732
inference_webui.py
Normal file
@ -0,0 +1,732 @@
|
||||
'''
|
||||
按中英混合识别
|
||||
按日英混合识别
|
||||
多语种启动切分识别语种
|
||||
全部按中文识别
|
||||
全部按英文识别
|
||||
全部按日文识别
|
||||
'''
|
||||
import os, re, logging
|
||||
import LangSegment
|
||||
logging.getLogger("markdown_it").setLevel(logging.ERROR)
|
||||
logging.getLogger("urllib3").setLevel(logging.ERROR)
|
||||
logging.getLogger("httpcore").setLevel(logging.ERROR)
|
||||
logging.getLogger("httpx").setLevel(logging.ERROR)
|
||||
logging.getLogger("asyncio").setLevel(logging.ERROR)
|
||||
logging.getLogger("charset_normalizer").setLevel(logging.ERROR)
|
||||
logging.getLogger("torchaudio._extension").setLevel(logging.ERROR)
|
||||
import pdb
|
||||
|
||||
if os.path.exists("./gweight.txt"):
|
||||
with open("./gweight.txt", 'r', encoding="utf-8") as file:
|
||||
gweight_data = file.read()
|
||||
gpt_path = os.environ.get(
|
||||
"gpt_path", gweight_data)
|
||||
else:
|
||||
gpt_path = os.environ.get(
|
||||
"gpt_path", "GPT_SoVITS/pretrained_models/s1bert25hz-2kh-longer-epoch=68e-step=50232.ckpt")
|
||||
|
||||
if os.path.exists("./sweight.txt"):
|
||||
with open("./sweight.txt", 'r', encoding="utf-8") as file:
|
||||
sweight_data = file.read()
|
||||
sovits_path = os.environ.get("sovits_path", sweight_data)
|
||||
else:
|
||||
sovits_path = os.environ.get("sovits_path", "GPT_SoVITS/pretrained_models/s2G488k.pth")
|
||||
# gpt_path = os.environ.get(
|
||||
# "gpt_path", "pretrained_models/s1bert25hz-2kh-longer-epoch=68e-step=50232.ckpt"
|
||||
# )
|
||||
# sovits_path = os.environ.get("sovits_path", "pretrained_models/s2G488k.pth")
|
||||
cnhubert_base_path = os.environ.get(
|
||||
"cnhubert_base_path", "GPT_SoVITS/pretrained_models/chinese-hubert-base"
|
||||
)
|
||||
bert_path = os.environ.get(
|
||||
"bert_path", "GPT_SoVITS/pretrained_models/chinese-roberta-wwm-ext-large"
|
||||
)
|
||||
infer_ttswebui = os.environ.get("infer_ttswebui", 9872)
|
||||
infer_ttswebui = int(infer_ttswebui)
|
||||
is_share = os.environ.get("is_share", "False")
|
||||
is_share = eval(is_share)
|
||||
if "_CUDA_VISIBLE_DEVICES" in os.environ:
|
||||
os.environ["CUDA_VISIBLE_DEVICES"] = os.environ["_CUDA_VISIBLE_DEVICES"]
|
||||
is_half = eval(os.environ.get("is_half", "True"))
|
||||
import gradio as gr
|
||||
from transformers import AutoModelForMaskedLM, AutoTokenizer
|
||||
import numpy as np
|
||||
import librosa, torch
|
||||
from feature_extractor import cnhubert
|
||||
|
||||
cnhubert.cnhubert_base_path = cnhubert_base_path
|
||||
|
||||
from module.models import SynthesizerTrn
|
||||
from AR.models.t2s_lightning_module import Text2SemanticLightningModule
|
||||
from text import cleaned_text_to_sequence
|
||||
from text.cleaner import clean_text
|
||||
from time import time as ttime
|
||||
from module.mel_processing import spectrogram_torch
|
||||
from my_utils import load_audio
|
||||
from tools.i18n.i18n import I18nAuto
|
||||
from typing import Union
|
||||
from emotion_file_config import emotionPath
|
||||
i18n = I18nAuto()
|
||||
|
||||
os.environ['PYTORCH_ENABLE_MPS_FALLBACK'] = '1' # 确保直接启动推理UI时也能够设置。
|
||||
|
||||
if torch.cuda.is_available():
|
||||
device = "cuda"
|
||||
elif torch.backends.mps.is_available():
|
||||
device = "mps"
|
||||
else:
|
||||
device = "cpu"
|
||||
|
||||
tokenizer = AutoTokenizer.from_pretrained(bert_path)
|
||||
bert_model = AutoModelForMaskedLM.from_pretrained(bert_path)
|
||||
if is_half == True:
|
||||
bert_model = bert_model.half().to(device)
|
||||
else:
|
||||
bert_model = bert_model.to(device)
|
||||
|
||||
|
||||
def get_bert_feature(text, word2ph):
|
||||
with torch.no_grad():
|
||||
inputs = tokenizer(text, return_tensors="pt")
|
||||
for i in inputs:
|
||||
inputs[i] = inputs[i].to(device)
|
||||
res = bert_model(**inputs, output_hidden_states=True)
|
||||
res = torch.cat(res["hidden_states"][-3:-2], -1)[0].cpu()[1:-1]
|
||||
assert len(word2ph) == len(text)
|
||||
phone_level_feature = []
|
||||
for i in range(len(word2ph)):
|
||||
repeat_feature = res[i].repeat(word2ph[i], 1)
|
||||
phone_level_feature.append(repeat_feature)
|
||||
phone_level_feature = torch.cat(phone_level_feature, dim=0)
|
||||
return phone_level_feature.T
|
||||
|
||||
|
||||
class DictToAttrRecursive(dict):
|
||||
def __init__(self, input_dict):
|
||||
super().__init__(input_dict)
|
||||
for key, value in input_dict.items():
|
||||
if isinstance(value, dict):
|
||||
value = DictToAttrRecursive(value)
|
||||
self[key] = value
|
||||
setattr(self, key, value)
|
||||
|
||||
def __getattr__(self, item):
|
||||
try:
|
||||
return self[item]
|
||||
except KeyError:
|
||||
raise AttributeError(f"Attribute {item} not found")
|
||||
|
||||
def __setattr__(self, key, value):
|
||||
if isinstance(value, dict):
|
||||
value = DictToAttrRecursive(value)
|
||||
super(DictToAttrRecursive, self).__setitem__(key, value)
|
||||
super().__setattr__(key, value)
|
||||
|
||||
def __delattr__(self, item):
|
||||
try:
|
||||
del self[item]
|
||||
except KeyError:
|
||||
raise AttributeError(f"Attribute {item} not found")
|
||||
|
||||
|
||||
ssl_model = cnhubert.get_model()
|
||||
if is_half == True:
|
||||
ssl_model = ssl_model.half().to(device)
|
||||
else:
|
||||
ssl_model = ssl_model.to(device)
|
||||
|
||||
|
||||
def change_sovits_weights(sovits_path):
|
||||
global vq_model, hps
|
||||
dict_s2 = torch.load(sovits_path, map_location="cpu")
|
||||
hps = dict_s2["config"]
|
||||
hps = DictToAttrRecursive(hps)
|
||||
hps.model.semantic_frame_rate = "25hz"
|
||||
vq_model = SynthesizerTrn(
|
||||
hps.data.filter_length // 2 + 1,
|
||||
hps.train.segment_size // hps.data.hop_length,
|
||||
n_speakers=hps.data.n_speakers,
|
||||
**hps.model
|
||||
)
|
||||
if ("pretrained" not in sovits_path):
|
||||
del vq_model.enc_q
|
||||
if is_half == True:
|
||||
vq_model = vq_model.half().to(device)
|
||||
else:
|
||||
vq_model = vq_model.to(device)
|
||||
vq_model.eval()
|
||||
print(vq_model.load_state_dict(dict_s2["weight"], strict=False))
|
||||
with open("./sweight.txt", "w", encoding="utf-8") as f:
|
||||
f.write(sovits_path)
|
||||
|
||||
|
||||
change_sovits_weights(sovits_path)
|
||||
|
||||
|
||||
def change_gpt_weights(gpt_path):
|
||||
global hz, max_sec, t2s_model, config
|
||||
hz = 50
|
||||
dict_s1 = torch.load(gpt_path, map_location="cpu")
|
||||
config = dict_s1["config"]
|
||||
max_sec = config["data"]["max_sec"]
|
||||
t2s_model = Text2SemanticLightningModule(config, "****", is_train=False)
|
||||
t2s_model.load_state_dict(dict_s1["weight"])
|
||||
if is_half == True:
|
||||
t2s_model = t2s_model.half()
|
||||
t2s_model = t2s_model.to(device)
|
||||
t2s_model.eval()
|
||||
total = sum([param.nelement() for param in t2s_model.parameters()])
|
||||
print("Number of parameter: %.2fM" % (total / 1e6))
|
||||
with open("./gweight.txt", "w", encoding="utf-8") as f: f.write(gpt_path)
|
||||
|
||||
|
||||
change_gpt_weights(gpt_path)
|
||||
|
||||
|
||||
def get_spepc(hps, filename):
|
||||
audio = load_audio(filename, int(hps.data.sampling_rate))
|
||||
audio = torch.FloatTensor(audio)
|
||||
audio_norm = audio
|
||||
audio_norm = audio_norm.unsqueeze(0)
|
||||
spec = spectrogram_torch(
|
||||
audio_norm,
|
||||
hps.data.filter_length,
|
||||
hps.data.sampling_rate,
|
||||
hps.data.hop_length,
|
||||
hps.data.win_length,
|
||||
center=False,
|
||||
)
|
||||
return spec
|
||||
|
||||
|
||||
dict_language = {
|
||||
i18n("中文"): "all_zh",#全部按中文识别
|
||||
i18n("英文"): "en",#全部按英文识别#######不变
|
||||
i18n("日文"): "all_ja",#全部按日文识别
|
||||
i18n("中英混合"): "zh",#按中英混合识别####不变
|
||||
i18n("日英混合"): "ja",#按日英混合识别####不变
|
||||
i18n("多语种混合"): "auto",#多语种启动切分识别语种
|
||||
}
|
||||
|
||||
|
||||
def splite_en_inf(sentence, language):
|
||||
pattern = re.compile(r'[a-zA-Z ]+')
|
||||
textlist = []
|
||||
langlist = []
|
||||
pos = 0
|
||||
for match in pattern.finditer(sentence):
|
||||
start, end = match.span()
|
||||
if start > pos:
|
||||
textlist.append(sentence[pos:start])
|
||||
langlist.append(language)
|
||||
textlist.append(sentence[start:end])
|
||||
langlist.append("en")
|
||||
pos = end
|
||||
if pos < len(sentence):
|
||||
textlist.append(sentence[pos:])
|
||||
langlist.append(language)
|
||||
# Merge punctuation into previous word
|
||||
for i in range(len(textlist)-1, 0, -1):
|
||||
if re.match(r'^[\W_]+$', textlist[i]):
|
||||
textlist[i-1] += textlist[i]
|
||||
del textlist[i]
|
||||
del langlist[i]
|
||||
# Merge consecutive words with the same language tag
|
||||
i = 0
|
||||
while i < len(langlist) - 1:
|
||||
if langlist[i] == langlist[i+1]:
|
||||
textlist[i] += textlist[i+1]
|
||||
del textlist[i+1]
|
||||
del langlist[i+1]
|
||||
else:
|
||||
i += 1
|
||||
|
||||
return textlist, langlist
|
||||
|
||||
|
||||
def clean_text_inf(text, language):
|
||||
phones, word2ph, norm_text = clean_text(text, language.replace("all_",""))
|
||||
phones = cleaned_text_to_sequence(phones)
|
||||
return phones, word2ph, norm_text
|
||||
|
||||
dtype=torch.float16 if is_half == True else torch.float32
|
||||
def get_bert_inf(phones, word2ph, norm_text, language):
|
||||
language=language.replace("all_","")
|
||||
if language == "zh":
|
||||
bert = get_bert_feature(norm_text, word2ph).to(device)#.to(dtype)
|
||||
else:
|
||||
bert = torch.zeros(
|
||||
(1024, len(phones)),
|
||||
dtype=torch.float16 if is_half == True else torch.float32,
|
||||
).to(device)
|
||||
|
||||
return bert
|
||||
|
||||
|
||||
def nonen_clean_text_inf(text, language):
|
||||
if(language!="auto"):
|
||||
textlist, langlist = splite_en_inf(text, language)
|
||||
else:
|
||||
textlist=[]
|
||||
langlist=[]
|
||||
for tmp in LangSegment.getTexts(text):
|
||||
langlist.append(tmp["lang"])
|
||||
textlist.append(tmp["text"])
|
||||
print(textlist)
|
||||
print(langlist)
|
||||
phones_list = []
|
||||
word2ph_list = []
|
||||
norm_text_list = []
|
||||
for i in range(len(textlist)):
|
||||
lang = langlist[i]
|
||||
phones, word2ph, norm_text = clean_text_inf(textlist[i], lang)
|
||||
phones_list.append(phones)
|
||||
if lang == "zh":
|
||||
word2ph_list.append(word2ph)
|
||||
norm_text_list.append(norm_text)
|
||||
print(word2ph_list)
|
||||
phones = sum(phones_list, [])
|
||||
word2ph = sum(word2ph_list, [])
|
||||
norm_text = ' '.join(norm_text_list)
|
||||
|
||||
return phones, word2ph, norm_text
|
||||
|
||||
|
||||
def nonen_get_bert_inf(text, language):
|
||||
if(language!="auto"):
|
||||
textlist, langlist = splite_en_inf(text, language)
|
||||
else:
|
||||
textlist=[]
|
||||
langlist=[]
|
||||
for tmp in LangSegment.getTexts(text):
|
||||
langlist.append(tmp["lang"])
|
||||
textlist.append(tmp["text"])
|
||||
print(textlist)
|
||||
print(langlist)
|
||||
bert_list = []
|
||||
for i in range(len(textlist)):
|
||||
text = textlist[i]
|
||||
lang = langlist[i]
|
||||
phones, word2ph, norm_text = clean_text_inf(text, lang)
|
||||
bert = get_bert_inf(phones, word2ph, norm_text, lang)
|
||||
bert_list.append(bert)
|
||||
bert = torch.cat(bert_list, dim=1)
|
||||
|
||||
return bert
|
||||
|
||||
|
||||
splits = {",", "。", "?", "!", ",", ".", "?", "!", "~", ":", ":", "—", "…", }
|
||||
|
||||
|
||||
def get_first(text):
|
||||
pattern = "[" + "".join(re.escape(sep) for sep in splits) + "]"
|
||||
text = re.split(pattern, text)[0].strip()
|
||||
return text
|
||||
|
||||
|
||||
def get_cleaned_text_final(text,language):
|
||||
if language in {"en","all_zh","all_ja"}:
|
||||
phones, word2ph, norm_text = clean_text_inf(text, language)
|
||||
elif language in {"zh", "ja","auto"}:
|
||||
phones, word2ph, norm_text = nonen_clean_text_inf(text, language)
|
||||
return phones, word2ph, norm_text
|
||||
|
||||
def get_bert_final(phones, word2ph, text,language,device):
|
||||
if language == "en":
|
||||
bert = get_bert_inf(phones, word2ph, text, language)
|
||||
elif language in {"zh", "ja","auto"}:
|
||||
bert = nonen_get_bert_inf(text, language)
|
||||
elif language == "all_zh":
|
||||
bert = get_bert_feature(text, word2ph).to(device)
|
||||
else:
|
||||
bert = torch.zeros((1024, len(phones))).to(device)
|
||||
return bert
|
||||
|
||||
def merge_short_text_in_array(texts, threshold):
|
||||
if (len(texts)) < 2:
|
||||
return texts
|
||||
result = []
|
||||
text = ""
|
||||
for ele in texts:
|
||||
text += ele
|
||||
if len(text) >= threshold:
|
||||
result.append(text)
|
||||
text = ""
|
||||
if (len(text) > 0):
|
||||
if len(result) == 0:
|
||||
result.append(text)
|
||||
else:
|
||||
result[len(result) - 1] += text
|
||||
return result
|
||||
|
||||
def get_tts_wav(ref_wav_path, prompt_text, prompt_language, text, text_language, how_to_cut=i18n("不切")):
|
||||
t0 = ttime()
|
||||
prompt_language = dict_language[prompt_language]
|
||||
text_language = dict_language[text_language]
|
||||
prompt_text = prompt_text.strip("\n")
|
||||
if (prompt_text[-1] not in splits): prompt_text += "。" if prompt_language != "en" else "."
|
||||
text = text.strip("\n")
|
||||
if (text[0] not in splits and len(get_first(text)) < 4): text = "。" + text if text_language != "en" else "." + text
|
||||
print(i18n("实际输入的参考文本:"), prompt_text)
|
||||
print(i18n("实际输入的目标文本:"), text)
|
||||
zero_wav = np.zeros(
|
||||
int(hps.data.sampling_rate * 0.3),
|
||||
dtype=np.float16 if is_half == True else np.float32,
|
||||
)
|
||||
with torch.no_grad():
|
||||
wav16k, sr = librosa.load(ref_wav_path, sr=16000)
|
||||
if (wav16k.shape[0] > 160000 or wav16k.shape[0] < 48000):
|
||||
raise OSError(i18n("参考音频在3~10秒范围外,请更换!"))
|
||||
wav16k = torch.from_numpy(wav16k)
|
||||
zero_wav_torch = torch.from_numpy(zero_wav)
|
||||
if is_half == True:
|
||||
wav16k = wav16k.half().to(device)
|
||||
zero_wav_torch = zero_wav_torch.half().to(device)
|
||||
else:
|
||||
wav16k = wav16k.to(device)
|
||||
zero_wav_torch = zero_wav_torch.to(device)
|
||||
wav16k = torch.cat([wav16k, zero_wav_torch])
|
||||
ssl_content = ssl_model.model(wav16k.unsqueeze(0))[
|
||||
"last_hidden_state"
|
||||
].transpose(
|
||||
1, 2
|
||||
) # .float()
|
||||
codes = vq_model.extract_latent(ssl_content)
|
||||
prompt_semantic = codes[0, 0]
|
||||
t1 = ttime()
|
||||
|
||||
phones1, word2ph1, norm_text1=get_cleaned_text_final(prompt_text, prompt_language)
|
||||
|
||||
if (how_to_cut == i18n("凑四句一切")):
|
||||
text = cut1(text)
|
||||
elif (how_to_cut == i18n("凑50字一切")):
|
||||
text = cut2(text)
|
||||
elif (how_to_cut == i18n("按中文句号。切")):
|
||||
text = cut3(text)
|
||||
elif (how_to_cut == i18n("按英文句号.切")):
|
||||
text = cut4(text)
|
||||
elif (how_to_cut == i18n("按标点符号切")):
|
||||
text = cut5(text)
|
||||
while "\n\n" in text:
|
||||
text = text.replace("\n\n", "\n")
|
||||
print(i18n("实际输入的目标文本(切句后):"), text)
|
||||
texts = text.split("\n")
|
||||
texts = merge_short_text_in_array(texts, 5)
|
||||
audio_opt = []
|
||||
bert1=get_bert_final(phones1, word2ph1, norm_text1,prompt_language,device).to(dtype)
|
||||
|
||||
for text in texts:
|
||||
# 解决输入目标文本的空行导致报错的问题
|
||||
if (len(text.strip()) == 0):
|
||||
continue
|
||||
if (text[-1] not in splits): text += "。" if text_language != "en" else "."
|
||||
print(i18n("实际输入的目标文本(每句):"), text)
|
||||
phones2, word2ph2, norm_text2 = get_cleaned_text_final(text, text_language)
|
||||
bert2 = get_bert_final(phones2, word2ph2, norm_text2, text_language, device).to(dtype)
|
||||
bert = torch.cat([bert1, bert2], 1)
|
||||
|
||||
all_phoneme_ids = torch.LongTensor(phones1 + phones2).to(device).unsqueeze(0)
|
||||
bert = bert.to(device).unsqueeze(0)
|
||||
all_phoneme_len = torch.tensor([all_phoneme_ids.shape[-1]]).to(device)
|
||||
prompt = prompt_semantic.unsqueeze(0).to(device)
|
||||
t2 = ttime()
|
||||
with torch.no_grad():
|
||||
# pred_semantic = t2s_model.model.infer(
|
||||
pred_semantic, idx = t2s_model.model.infer_panel(
|
||||
all_phoneme_ids,
|
||||
all_phoneme_len,
|
||||
prompt,
|
||||
bert,
|
||||
# prompt_phone_len=ph_offset,
|
||||
top_k=config["inference"]["top_k"],
|
||||
early_stop_num=hz * max_sec,
|
||||
)
|
||||
t3 = ttime()
|
||||
# print(pred_semantic.shape,idx)
|
||||
pred_semantic = pred_semantic[:, -idx:].unsqueeze(
|
||||
0
|
||||
) # .unsqueeze(0)#mq要多unsqueeze一次
|
||||
refer = get_spepc(hps, ref_wav_path) # .to(device)
|
||||
if is_half == True:
|
||||
refer = refer.half().to(device)
|
||||
else:
|
||||
refer = refer.to(device)
|
||||
# audio = vq_model.decode(pred_semantic, all_phoneme_ids, refer).detach().cpu().numpy()[0, 0]
|
||||
audio = (
|
||||
vq_model.decode(
|
||||
pred_semantic, torch.LongTensor(phones2).to(device).unsqueeze(0), refer
|
||||
)
|
||||
.detach()
|
||||
.cpu()
|
||||
.numpy()[0, 0]
|
||||
) ###试试重建不带上prompt部分
|
||||
max_audio=np.abs(audio).max()#简单防止16bit爆音
|
||||
if max_audio>1:audio/=max_audio
|
||||
audio_opt.append(audio)
|
||||
audio_opt.append(zero_wav)
|
||||
t4 = ttime()
|
||||
print("%.3f\t%.3f\t%.3f\t%.3f" % (t1 - t0, t2 - t1, t3 - t2, t4 - t3))
|
||||
yield hps.data.sampling_rate, (np.concatenate(audio_opt, 0) * 32768).astype(
|
||||
np.int16
|
||||
)
|
||||
|
||||
|
||||
def split(todo_text):
|
||||
todo_text = todo_text.replace("……", "。").replace("——", ",")
|
||||
if todo_text[-1] not in splits:
|
||||
todo_text += "。"
|
||||
i_split_head = i_split_tail = 0
|
||||
len_text = len(todo_text)
|
||||
todo_texts = []
|
||||
while 1:
|
||||
if i_split_head >= len_text:
|
||||
break # 结尾一定有标点,所以直接跳出即可,最后一段在上次已加入
|
||||
if todo_text[i_split_head] in splits:
|
||||
i_split_head += 1
|
||||
todo_texts.append(todo_text[i_split_tail:i_split_head])
|
||||
i_split_tail = i_split_head
|
||||
else:
|
||||
i_split_head += 1
|
||||
return todo_texts
|
||||
|
||||
|
||||
def cut1(inp):
|
||||
inp = inp.strip("\n")
|
||||
inps = split(inp)
|
||||
split_idx = list(range(0, len(inps), 4))
|
||||
split_idx[-1] = None
|
||||
if len(split_idx) > 1:
|
||||
opts = []
|
||||
for idx in range(len(split_idx) - 1):
|
||||
opts.append("".join(inps[split_idx[idx]: split_idx[idx + 1]]))
|
||||
else:
|
||||
opts = [inp]
|
||||
return "\n".join(opts)
|
||||
|
||||
|
||||
def cut2(inp):
|
||||
inp = inp.strip("\n")
|
||||
inps = split(inp)
|
||||
if len(inps) < 2:
|
||||
return inp
|
||||
opts = []
|
||||
summ = 0
|
||||
tmp_str = ""
|
||||
for i in range(len(inps)):
|
||||
summ += len(inps[i])
|
||||
tmp_str += inps[i]
|
||||
if summ > 50:
|
||||
summ = 0
|
||||
opts.append(tmp_str)
|
||||
tmp_str = ""
|
||||
if tmp_str != "":
|
||||
opts.append(tmp_str)
|
||||
# print(opts)
|
||||
if len(opts) > 1 and len(opts[-1]) < 50: ##如果最后一个太短了,和前一个合一起
|
||||
opts[-2] = opts[-2] + opts[-1]
|
||||
opts = opts[:-1]
|
||||
return "\n".join(opts)
|
||||
|
||||
|
||||
def cut3(inp):
|
||||
inp = inp.strip("\n")
|
||||
return "\n".join(["%s" % item for item in inp.strip("。").split("。")])
|
||||
|
||||
|
||||
def cut4(inp):
|
||||
inp = inp.strip("\n")
|
||||
return "\n".join(["%s" % item for item in inp.strip(".").split(".")])
|
||||
|
||||
|
||||
# contributed by https://github.com/AI-Hobbyist/GPT-SoVITS/blob/main/GPT_SoVITS/inference_webui.py
|
||||
def cut5(inp):
|
||||
# if not re.search(r'[^\w\s]', inp[-1]):
|
||||
# inp += '。'
|
||||
inp = inp.strip("\n")
|
||||
punds = r'[,.;?!、,。?!;:]'
|
||||
items = re.split(f'({punds})', inp)
|
||||
items = ["".join(group) for group in zip(items[::2], items[1::2])]
|
||||
opt = "\n".join(items)
|
||||
return opt
|
||||
|
||||
|
||||
def custom_sort_key(s):
|
||||
# 使用正则表达式提取字符串中的数字部分和非数字部分
|
||||
parts = re.split('(\d+)', s)
|
||||
# 将数字部分转换为整数,非数字部分保持不变
|
||||
parts = [int(part) if part.isdigit() else part for part in parts]
|
||||
return parts
|
||||
|
||||
|
||||
def change_choices():
|
||||
SoVITS_names, GPT_names = get_weights_names()
|
||||
return {"choices": sorted(SoVITS_names, key=custom_sort_key), "__type__": "update"}, {"choices": sorted(GPT_names, key=custom_sort_key), "__type__": "update"}
|
||||
|
||||
|
||||
pretrained_sovits_name = "GPT_SoVITS/pretrained_models/s2G488k.pth"
|
||||
pretrained_gpt_name = "GPT_SoVITS/pretrained_models/s1bert25hz-2kh-longer-epoch=68e-step=50232.ckpt"
|
||||
SoVITS_weight_root = "SoVITS_weights"
|
||||
GPT_weight_root = "GPT_weights"
|
||||
os.makedirs(SoVITS_weight_root, exist_ok=True)
|
||||
os.makedirs(GPT_weight_root, exist_ok=True)
|
||||
|
||||
|
||||
def get_weights_names():
|
||||
SoVITS_names = [pretrained_sovits_name]
|
||||
for name in os.listdir(SoVITS_weight_root):
|
||||
if name.endswith(".pth"): SoVITS_names.append("%s/%s" % (SoVITS_weight_root, name))
|
||||
GPT_names = [pretrained_gpt_name]
|
||||
for name in os.listdir(GPT_weight_root):
|
||||
if name.endswith(".ckpt"): GPT_names.append("%s/%s" % (GPT_weight_root, name))
|
||||
return SoVITS_names, GPT_names
|
||||
|
||||
|
||||
SoVITS_names, GPT_names = get_weights_names()
|
||||
|
||||
with gr.Blocks(title="GPT-SoVITS WebUI") as app:
|
||||
gr.Markdown(
|
||||
value=i18n("本软件以MIT协议开源, 作者不对软件具备任何控制力, 使用软件者、传播软件导出的声音者自负全责. <br>如不认可该条款, 则不能使用或引用软件包内任何代码和文件. 详见根目录<b>LICENSE</b>.")
|
||||
)
|
||||
with gr.Group():
|
||||
gr.Markdown(value=i18n("模型切换"))
|
||||
with gr.Row():
|
||||
GPT_dropdown = gr.Dropdown(label=i18n("GPT模型列表"), choices=sorted(GPT_names, key=custom_sort_key), value=gpt_path, interactive=True)
|
||||
SoVITS_dropdown = gr.Dropdown(label=i18n("SoVITS模型列表"), choices=sorted(SoVITS_names, key=custom_sort_key), value=sovits_path, interactive=True)
|
||||
refresh_button = gr.Button(i18n("刷新模型路径"), variant="primary")
|
||||
refresh_button.click(fn=change_choices, inputs=[], outputs=[SoVITS_dropdown, GPT_dropdown])
|
||||
SoVITS_dropdown.change(change_sovits_weights, [SoVITS_dropdown], [])
|
||||
GPT_dropdown.change(change_gpt_weights, [GPT_dropdown], [])
|
||||
gr.Markdown(value=i18n("*请上传并填写参考信息"))
|
||||
with gr.Row():
|
||||
inp_ref = gr.Audio(label=i18n("请上传3~10秒内参考音频,超过会报错!"), type="filepath")
|
||||
prompt_text = gr.Textbox(label=i18n("参考音频的文本"), value="")
|
||||
prompt_language = gr.Dropdown(
|
||||
label=i18n("参考音频的语种"), choices=[i18n("中文"), i18n("英文"), i18n("日文"), i18n("中英混合"), i18n("日英混合"), i18n("多语种混合")], value=i18n("中文")
|
||||
)
|
||||
gr.Markdown(value=i18n("*请填写需要合成的目标文本。中英混合选中文,日英混合选日文,中日混合暂不支持,非目标语言文本自动遗弃。"))
|
||||
with gr.Row():
|
||||
text = gr.Textbox(label=i18n("需要合成的文本"), value="")
|
||||
text_language = gr.Dropdown(
|
||||
label=i18n("需要合成的语种"), choices=[i18n("中文"), i18n("英文"), i18n("日文"), i18n("中英混合"), i18n("日英混合"), i18n("多语种混合")], value=i18n("中文")
|
||||
)
|
||||
#自己改的部分coder: 芙宁娜_荒性
|
||||
character_textbox = gr.Textbox(label=i18n("请输入角色名(可以是实验文件名)"), value="")
|
||||
emotion_button = gr.Button(i18n("填充"), variant="primary")
|
||||
emotion_button2 = gr.Button(i18n("创建情感模板文件"),variant="primary")
|
||||
prompt_emotion = gr.Dropdown(
|
||||
label=i18n("请选择转换的参考情感"),choices=[i18n("开心"),i18n("生气"),i18n("伤心"),i18n("平静"),i18n("兴奋")],value=i18n("平静")
|
||||
)
|
||||
prompt_emotion_type = gr.Dropdown(
|
||||
label=i18n("请选择写入模板的情感"),choices=[i18n("开心"),i18n("生气"),i18n("伤心"),i18n("平静"),i18n("兴奋")],value=i18n("平静")
|
||||
)
|
||||
emotion_self_typing = gr.Button(i18n("自定义参考音频写入情感文件"),variant="primary")
|
||||
emotion_self_typ_status = gr.Textbox(label=i18n("写入状态"),value=i18n("空闲"))
|
||||
def emotionSelfFileCreator(character:str,emotion:str,type:str,data: Union[str, bytes] = None):
|
||||
base_path = f"GPT_SoVITS/emotions/{character}/{type}/{emotion}.{type}"
|
||||
if not os.path.exists(base_path):
|
||||
emotionPath.IfNotExistsCreate(character,type)
|
||||
if type == "list":
|
||||
try:
|
||||
emotionPath.FileCreateToList(character,type,emotion,data)
|
||||
print("list写入完成")
|
||||
return "成功"
|
||||
except Exception as e:
|
||||
print(f"错误:{e}")
|
||||
return f"错误: {e}"
|
||||
elif type == "wav":
|
||||
try:
|
||||
audio_compotent = data
|
||||
audio_file_path = audio_compotent
|
||||
shutil.copy(audio_file_path,base_path)
|
||||
print("wav写入完成")
|
||||
except Exception as e:
|
||||
print(f"错误:{e}")
|
||||
return f"错误: {e}"
|
||||
|
||||
def emotionSelfTypingEvent(character:str,emotion:str,list_data:str = None,audio_path:str = None):
|
||||
try:
|
||||
emotionSelfFileCreator(character,emotion,"list",data=list_data)
|
||||
emotionSelfFileCreator(character,emotion,"wav",data=audio_path)
|
||||
return "成功"
|
||||
except Exception as e:
|
||||
print(f"错误:{e}")
|
||||
return f"错误: {e}"
|
||||
|
||||
def FileCreateAndCheck(character:str):
|
||||
result = emotionPath.FileExists(character, type="list")
|
||||
result2 = emotionPath.FileExists(character, type="wav")
|
||||
if result == False or result2 == False:
|
||||
emotionPath.IfNotExistsCreate(character, type="list")
|
||||
emotionPath.IfNotExistsCreate(character, type="wav")
|
||||
def fullEmotionToList(emotion: str,character:str):
|
||||
try:
|
||||
print("调试:" + character)
|
||||
text_path = emotionPath.getFilePath(character, type="list", emotion=emotion)
|
||||
with open(text_path, "r", encoding="utf-8") as f:
|
||||
lists = f.read()
|
||||
print("填充完成")
|
||||
return lists
|
||||
except Exception as e:
|
||||
gr.Error(i18n("填充的时候发生了异常,将自动跳过填充") + str(e))
|
||||
print(f"自动填充发生异常: {e}")
|
||||
pass
|
||||
def fullEmotionToWav(emotion: str,character: str):
|
||||
try:
|
||||
print("调试:" + character)
|
||||
audio_path = emotionPath.getFilePath(character, type="wav", emotion=emotion)
|
||||
return audio_path
|
||||
except Exception as e:
|
||||
gr.Error(i18n("填充的时候发生了异常,将自动跳过填充") + str(e))
|
||||
print(f"自动填充发生异常: {e}")
|
||||
pass
|
||||
|
||||
|
||||
print(f"调试用户选择的情感:{prompt_emotion}")
|
||||
|
||||
emotion_button.click(fullEmotionToList,[prompt_emotion,character_textbox],[prompt_text])
|
||||
emotion_button.click(fullEmotionToWav,[prompt_emotion,character_textbox],[inp_ref])
|
||||
emotion_button2.click(FileCreateAndCheck,[character_textbox],[])
|
||||
emotion_self_typing.click(emotionSelfTypingEvent,[character_textbox,prompt_emotion_type,prompt_text,inp_ref],[emotion_self_typ_status])
|
||||
#=============-===============
|
||||
how_to_cut = gr.Radio(
|
||||
label=i18n("怎么切"),
|
||||
choices=[i18n("不切"), i18n("凑四句一切"), i18n("凑50字一切"), i18n("按中文句号。切"), i18n("按英文句号.切"), i18n("按标点符号切"), ],
|
||||
value=i18n("凑四句一切"),
|
||||
interactive=True,
|
||||
)
|
||||
inference_button = gr.Button(i18n("合成语音"), variant="primary")
|
||||
output = gr.Audio(label=i18n("输出的语音"))
|
||||
def FuncToNone(emotion: str):
|
||||
print(f"用户选择的情感是{emotion}")
|
||||
inference_button.click(FuncToNone,[prompt_emotion],[])
|
||||
|
||||
inference_button.click(
|
||||
get_tts_wav,
|
||||
[inp_ref, prompt_text, prompt_language, text, text_language, how_to_cut],
|
||||
[output],
|
||||
)
|
||||
|
||||
gr.Markdown(value=i18n("文本切分工具。太长的文本合成出来效果不一定好,所以太长建议先切。合成会根据文本的换行分开合成再拼起来。"))
|
||||
with gr.Row():
|
||||
text_inp = gr.Textbox(label=i18n("需要合成的切分前文本"), value="")
|
||||
button1 = gr.Button(i18n("凑四句一切"), variant="primary")
|
||||
button2 = gr.Button(i18n("凑50字一切"), variant="primary")
|
||||
button3 = gr.Button(i18n("按中文句号。切"), variant="primary")
|
||||
button4 = gr.Button(i18n("按英文句号.切"), variant="primary")
|
||||
button5 = gr.Button(i18n("按标点符号切"), variant="primary")
|
||||
text_opt = gr.Textbox(label=i18n("切分后文本"), value="")
|
||||
button1.click(cut1, [text_inp], [text_opt])
|
||||
button2.click(cut2, [text_inp], [text_opt])
|
||||
button3.click(cut3, [text_inp], [text_opt])
|
||||
button4.click(cut4, [text_inp], [text_opt])
|
||||
button5.click(cut5, [text_inp], [text_opt])
|
||||
gr.Markdown(value=i18n("后续将支持混合语种编码文本输入。"))
|
||||
|
||||
app.queue(concurrency_count=511, max_size=1022).launch(
|
||||
server_name="0.0.0.0",
|
||||
inbrowser=True,
|
||||
share=is_share,
|
||||
server_port=infer_ttswebui,
|
||||
quiet=True,
|
||||
)
|
Loading…
x
Reference in New Issue
Block a user