refactor: load base model once for api v2 % v3

This commit is contained in:
kevin.zhang 2024-05-16 15:11:25 +08:00
parent b8b273ad0c
commit 95c761f492
7 changed files with 298 additions and 285 deletions

View File

@ -5,6 +5,7 @@ import random
import traceback
from tqdm import tqdm
now_dir = os.getcwd()
sys.path.append(now_dir)
import ffmpeg
@ -26,6 +27,7 @@ from my_utils import load_audio
from module.mel_processing import spectrogram_torch
from TTS_infer_pack.text_segmentation_method import splits
from TTS_infer_pack.TextPreprocessor import TextPreprocessor
i18n = I18nAuto()
# configs/tts_infer.yaml
@ -49,7 +51,8 @@ custom:
"""
def set_seed(seed:int):
def set_seed(seed: int):
seed = int(seed)
seed = seed if seed != -1 else random.randrange(1 << 32)
print(f"Set seed to {seed}")
@ -71,40 +74,42 @@ def set_seed(seed:int):
pass
return seed
class TTS_Config:
default_configs={
"device": "cpu",
"is_half": False,
"t2s_weights_path": "GPT_SoVITS/pretrained_models/s1bert25hz-2kh-longer-epoch=68e-step=50232.ckpt",
"vits_weights_path": "GPT_SoVITS/pretrained_models/s2G488k.pth",
"cnhuhbert_base_path": "GPT_SoVITS/pretrained_models/chinese-hubert-base",
"bert_base_path": "GPT_SoVITS/pretrained_models/chinese-roberta-wwm-ext-large",
}
configs:dict = None
def __init__(self, configs: Union[dict, str]=None):
default_configs = {
"device": "cpu",
"is_half": False,
"t2s_weights_path": "GPT_SoVITS/pretrained_models/s1bert25hz-2kh-longer-epoch=68e-step=50232.ckpt",
"vits_weights_path": "GPT_SoVITS/pretrained_models/s2G488k.pth",
"cnhuhbert_base_path": "GPT_SoVITS/pretrained_models/chinese-hubert-base",
"bert_base_path": "GPT_SoVITS/pretrained_models/chinese-roberta-wwm-ext-large",
"load_base": True,
}
configs: dict = None
def __init__(self, configs: Union[dict, str] = None):
# 设置默认配置文件路径
configs_base_path:str = "GPT_SoVITS/configs/"
configs_base_path: str = "GPT_SoVITS/configs/"
os.makedirs(configs_base_path, exist_ok=True)
self.configs_path:str = os.path.join(configs_base_path, "tts_infer.yaml")
self.configs_path: str = os.path.join(configs_base_path, "tts_infer.yaml")
if configs in ["", None]:
if not os.path.exists(self.configs_path):
self.save_configs()
print(f"Create default config file at {self.configs_path}")
configs:dict = {"default": deepcopy(self.default_configs)}
configs: dict = {"default": deepcopy(self.default_configs)}
if isinstance(configs, str):
self.configs_path = configs
configs:dict = self._load_configs(self.configs_path)
configs: dict = self._load_configs(self.configs_path)
assert isinstance(configs, dict)
default_configs:dict = configs.get("default", None)
default_configs: dict = configs.get("default", None)
if default_configs is not None:
self.default_configs = default_configs
self.configs:dict = configs.get("custom", deepcopy(self.default_configs))
self.configs: dict = configs.get("custom", deepcopy(self.default_configs))
self.device = self.configs.get("device", torch.device("cpu"))
self.is_half = self.configs.get("is_half", False)
@ -112,7 +117,7 @@ class TTS_Config:
self.vits_weights_path = self.configs.get("vits_weights_path", None)
self.bert_base_path = self.configs.get("bert_base_path", None)
self.cnhuhbert_base_path = self.configs.get("cnhuhbert_base_path", None)
self.load_base = self.configs.get("load_base", True)
if (self.t2s_weights_path in [None, ""]) or (not os.path.exists(self.t2s_weights_path)):
self.t2s_weights_path = self.default_configs['t2s_weights_path']
@ -128,29 +133,27 @@ class TTS_Config:
print(f"fall back to default cnhuhbert_base_path: {self.cnhuhbert_base_path}")
self.update_configs()
self.max_sec = None
self.hz:int = 50
self.semantic_frame_rate:str = "25hz"
self.segment_size:int = 20480
self.filter_length:int = 2048
self.sampling_rate:int = 32000
self.hop_length:int = 640
self.win_length:int = 2048
self.n_speakers:int = 300
self.hz: int = 50
self.semantic_frame_rate: str = "25hz"
self.segment_size: int = 20480
self.filter_length: int = 2048
self.sampling_rate: int = 32000
self.hop_length: int = 640
self.win_length: int = 2048
self.n_speakers: int = 300
self.languages:list = ["auto", "en", "zh", "ja", "all_zh", "all_ja"]
self.languages: list = ["auto", "en", "zh", "ja", "all_zh", "all_ja"]
def _load_configs(self, configs_path: str)->dict:
def _load_configs(self, configs_path: str) -> dict:
with open(configs_path, 'r') as f:
configs = yaml.load(f, Loader=yaml.FullLoader)
return configs
def save_configs(self, configs_path:str=None)->None:
configs={
"default":self.default_configs,
def save_configs(self, configs_path: str = None) -> None:
configs = {
"default": self.default_configs,
}
if self.configs is not None:
configs["custom"] = self.update_configs()
@ -162,12 +165,13 @@ class TTS_Config:
def update_configs(self):
self.config = {
"device" : str(self.device),
"is_half" : self.is_half,
"t2s_weights_path" : self.t2s_weights_path,
"vits_weights_path" : self.vits_weights_path,
"bert_base_path" : self.bert_base_path,
"device": str(self.device),
"is_half": self.is_half,
"t2s_weights_path": self.t2s_weights_path,
"vits_weights_path": self.vits_weights_path,
"bert_base_path": self.bert_base_path,
"cnhuhbert_base_path": self.cnhuhbert_base_path,
"load_base": self.load_base,
}
return self.config
@ -190,68 +194,74 @@ class TTS_Config:
class TTS:
bert_tokenizer: AutoTokenizer = None
bert_model: AutoModelForMaskedLM = None
cnhuhbert_model: CNHubert = None
def __init__(self, configs: Union[dict, str, TTS_Config]):
if isinstance(configs, TTS_Config):
self.configs = configs
else:
self.configs:TTS_Config = TTS_Config(configs)
self.configs: TTS_Config = TTS_Config(configs)
self.t2s_model:Text2SemanticLightningModule = None
self.vits_model:SynthesizerTrn = None
self.bert_tokenizer:AutoTokenizer = None
self.bert_model:AutoModelForMaskedLM = None
self.cnhuhbert_model:CNHubert = None
self.t2s_model: Text2SemanticLightningModule = None
self.vits_model: SynthesizerTrn = None
# self.bert_tokenizer:AutoTokenizer = None
# self.bert_model:AutoModelForMaskedLM = None
# self.cnhuhbert_model:CNHubert = None
self._init_models()
self.text_preprocessor:TextPreprocessor = \
TextPreprocessor(self.bert_model,
self.bert_tokenizer,
self.configs.device)
self.text_preprocessor: TextPreprocessor = \
TextPreprocessor(TTS.bert_model,
TTS.bert_tokenizer,
self.configs.device)
self.prompt_cache:dict = {
"ref_audio_path" : None,
self.prompt_cache: dict = {
"ref_audio_path": None,
"prompt_semantic": None,
"refer_spec" : None,
"prompt_text" : None,
"prompt_lang" : None,
"phones" : None,
"bert_features" : None,
"norm_text" : None,
"refer_spec": None,
"prompt_text": None,
"prompt_lang": None,
"phones": None,
"bert_features": None,
"norm_text": None,
}
self.stop_flag: bool = False
self.precision: torch.dtype = torch.float16 if self.configs.is_half else torch.float32
self.stop_flag:bool = False
self.precision:torch.dtype = torch.float16 if self.configs.is_half else torch.float32
def _init_models(self,):
def _init_models(self):
self.init_t2s_weights(self.configs.t2s_weights_path)
self.init_vits_weights(self.configs.vits_weights_path)
self.init_bert_weights(self.configs.bert_base_path)
self.init_cnhuhbert_weights(self.configs.cnhuhbert_base_path)
if self.configs.load_base:
TTS.init_bert_weights(self.configs)
TTS.init_cnhuhbert_weights(self.configs)
# self.enable_half_precision(self.configs.is_half)
@staticmethod
def init_base_models(configs: TTS_Config):
TTS.init_bert_weights(configs)
TTS.init_cnhuhbert_weights(configs)
@staticmethod
def init_cnhuhbert_weights(configs: TTS_Config):
print(f"Loading CNHuBERT weights from {configs.cnhuhbert_base_path}")
TTS.cnhuhbert_model = CNHubert(configs.cnhuhbert_base_path)
TTS.cnhuhbert_model = TTS.cnhuhbert_model.eval()
TTS.cnhuhbert_model = TTS.cnhuhbert_model.to(configs.device)
if configs.is_half and str(configs.device) != "cpu":
TTS.cnhuhbert_model = TTS.cnhuhbert_model.half()
def init_cnhuhbert_weights(self, base_path: str):
print(f"Loading CNHuBERT weights from {base_path}")
self.cnhuhbert_model = CNHubert(base_path)
self.cnhuhbert_model=self.cnhuhbert_model.eval()
self.cnhuhbert_model = self.cnhuhbert_model.to(self.configs.device)
if self.configs.is_half and str(self.configs.device)!="cpu":
self.cnhuhbert_model = self.cnhuhbert_model.half()
def init_bert_weights(self, base_path: str):
print(f"Loading BERT weights from {base_path}")
self.bert_tokenizer = AutoTokenizer.from_pretrained(base_path)
self.bert_model = AutoModelForMaskedLM.from_pretrained(base_path)
self.bert_model=self.bert_model.eval()
self.bert_model = self.bert_model.to(self.configs.device)
if self.configs.is_half and str(self.configs.device)!="cpu":
self.bert_model = self.bert_model.half()
@staticmethod
def init_bert_weights(configs: TTS_Config):
print(f"Loading BERT weights from {configs.bert_base_path}")
TTS.bert_tokenizer = AutoTokenizer.from_pretrained(configs.bert_base_path)
TTS.bert_model = AutoModelForMaskedLM.from_pretrained(configs.bert_base_path)
TTS.bert_model = TTS.bert_model.eval()
TTS.bert_model = TTS.bert_model.to(configs.device)
if configs.is_half and str(configs.device) != "cpu":
TTS.bert_model = TTS.bert_model.half()
def init_vits_weights(self, weights_path: str):
print(f"Loading VITS weights from {weights_path}")
@ -281,10 +291,9 @@ class TTS:
vits_model = vits_model.eval()
vits_model.load_state_dict(dict_s2["weight"], strict=False)
self.vits_model = vits_model
if self.configs.is_half and str(self.configs.device)!="cpu":
if self.configs.is_half and str(self.configs.device) != "cpu":
self.vits_model = self.vits_model.half()
def init_t2s_weights(self, weights_path: str):
print(f"Loading Text2Semantic weights from {weights_path}")
self.configs.t2s_weights_path = weights_path
@ -298,7 +307,7 @@ class TTS:
t2s_model = t2s_model.to(self.configs.device)
t2s_model = t2s_model.eval()
self.t2s_model = t2s_model
if self.configs.is_half and str(self.configs.device)!="cpu":
if self.configs.is_half and str(self.configs.device) != "cpu":
self.t2s_model = self.t2s_model.half()
def enable_half_precision(self, enable: bool = True):
@ -317,22 +326,22 @@ class TTS:
self.configs.save_configs()
if enable:
if self.t2s_model is not None:
self.t2s_model =self.t2s_model.half()
self.t2s_model = self.t2s_model.half()
if self.vits_model is not None:
self.vits_model = self.vits_model.half()
if self.bert_model is not None:
self.bert_model =self.bert_model.half()
if self.cnhuhbert_model is not None:
self.cnhuhbert_model = self.cnhuhbert_model.half()
if TTS.bert_model is not None:
TTS.bert_model = TTS.bert_model.half()
if TTS.cnhuhbert_model is not None:
TTS.cnhuhbert_model = TTS.cnhuhbert_model.half()
else:
if self.t2s_model is not None:
self.t2s_model = self.t2s_model.float()
if self.vits_model is not None:
self.vits_model = self.vits_model.float()
if self.bert_model is not None:
self.bert_model = self.bert_model.float()
if self.cnhuhbert_model is not None:
self.cnhuhbert_model = self.cnhuhbert_model.float()
if TTS.bert_model is not None:
TTS.bert_model = TTS.bert_model.float()
if TTS.cnhuhbert_model is not None:
TTS.cnhuhbert_model = TTS.cnhuhbert_model.float()
def set_device(self, device: torch.device):
'''
@ -346,12 +355,12 @@ class TTS:
self.t2s_model = self.t2s_model.to(device)
if self.vits_model is not None:
self.vits_model = self.vits_model.to(device)
if self.bert_model is not None:
self.bert_model = self.bert_model.to(device)
if self.cnhuhbert_model is not None:
self.cnhuhbert_model = self.cnhuhbert_model.to(device)
if TTS.bert_model is not None:
TTS.bert_model = TTS.bert_model.to(device)
if TTS.cnhuhbert_model is not None:
TTS.cnhuhbert_model = TTS.cnhuhbert_model.to(device)
def set_ref_audio(self, ref_audio_path:str):
def set_ref_audio(self, ref_audio_path: str):
'''
To set the reference audio for the TTS model,
including the prompt_semantic and refer_spepc.
@ -380,8 +389,7 @@ class TTS:
# self.refer_spec = spec
self.prompt_cache["refer_spec"] = spec
def _set_prompt_semantic(self, ref_wav_path:str):
def _set_prompt_semantic(self, ref_wav_path: str):
zero_wav = np.zeros(
int(self.configs.sampling_rate * 0.3),
dtype=np.float16 if self.configs.is_half else np.float32,
@ -409,12 +417,12 @@ class TTS:
prompt_semantic = codes[0, 0].to(self.configs.device)
self.prompt_cache["prompt_semantic"] = prompt_semantic
def batch_sequences(self, sequences: List[torch.Tensor], axis: int = 0, pad_value: int = 0, max_length:int=None):
def batch_sequences(self, sequences: List[torch.Tensor], axis: int = 0, pad_value: int = 0, max_length: int = None):
seq = sequences[0]
ndim = seq.dim()
if axis < 0:
axis += ndim
dtype:torch.dtype = seq.dtype
dtype: torch.dtype = seq.dtype
pad_value = torch.tensor(pad_value, dtype=dtype)
seq_lengths = [seq.shape[axis] for seq in sequences]
if max_length is None:
@ -430,15 +438,15 @@ class TTS:
batch = torch.stack(padded_sequences)
return batch
def to_batch(self, data:list,
prompt_data:dict=None,
batch_size:int=5,
threshold:float=0.75,
split_bucket:bool=True,
device:torch.device=torch.device("cpu"),
precision:torch.dtype=torch.float32,
def to_batch(self, data: list,
prompt_data: dict = None,
batch_size: int = 5,
threshold: float = 0.75,
split_bucket: bool = True,
device: torch.device = torch.device("cpu"),
precision: torch.dtype = torch.float32,
):
_data:list = []
_data: list = []
index_and_len_list = []
for idx, item in enumerate(data):
norm_text_len = len(item["norm_text"])
@ -451,29 +459,28 @@ class TTS:
batch_index_list_len = 0
pos = 0
while pos <index_and_len_list.shape[0]:
while pos < index_and_len_list.shape[0]:
# batch_index_list.append(index_and_len_list[pos:min(pos+batch_size,len(index_and_len_list))])
pos_end = min(pos+batch_size,index_and_len_list.shape[0])
pos_end = min(pos + batch_size, index_and_len_list.shape[0])
while pos < pos_end:
batch=index_and_len_list[pos:pos_end, 1].astype(np.float32)
score=batch[(pos_end-pos)//2]/(batch.mean()+1e-8)
if (score>=threshold) or (pos_end-pos==1):
batch_index=index_and_len_list[pos:pos_end, 0].tolist()
batch = index_and_len_list[pos:pos_end, 1].astype(np.float32)
score = batch[(pos_end - pos) // 2] / (batch.mean() + 1e-8)
if (score >= threshold) or (pos_end - pos == 1):
batch_index = index_and_len_list[pos:pos_end, 0].tolist()
batch_index_list_len += len(batch_index)
batch_index_list.append(batch_index)
pos = pos_end
break
pos_end=pos_end-1
pos_end = pos_end - 1
assert batch_index_list_len == len(data)
else:
for i in range(len(data)):
if i%batch_size == 0:
if i % batch_size == 0:
batch_index_list.append([])
batch_index_list[-1].append(i)
for batch_idx, index_list in enumerate(batch_index_list):
item_list = [data[idx] for idx in index_list]
phones_list = []
@ -487,14 +494,14 @@ class TTS:
phones_max_len = 0
for item in item_list:
if prompt_data is not None:
all_bert_features = torch.cat([prompt_data["bert_features"], item["bert_features"]], 1)\
.to(dtype=precision, device=device)
all_phones = torch.LongTensor(prompt_data["phones"]+item["phones"]).to(device)
all_bert_features = torch.cat([prompt_data["bert_features"], item["bert_features"]], 1) \
.to(dtype=precision, device=device)
all_phones = torch.LongTensor(prompt_data["phones"] + item["phones"]).to(device)
phones = torch.LongTensor(item["phones"]).to(device)
# norm_text = prompt_data["norm_text"]+item["norm_text"]
else:
all_bert_features = item["bert_features"]\
.to(dtype=precision, device=device)
all_bert_features = item["bert_features"] \
.to(dtype=precision, device=device)
phones = torch.LongTensor(item["phones"]).to(device)
all_phones = phones
# norm_text = item["norm_text"]
@ -513,7 +520,6 @@ class TTS:
all_phones_batch = all_phones_list
all_bert_features_batch = all_bert_features_list
max_len = max(bert_max_len, phones_max_len)
# phones_batch = self.batch_sequences(phones_list, axis=0, pad_value=0, max_length=max_len)
#### 直接对phones和bert_features进行pad。padding策略会影响T2S模型生成的结果但不直接影响复读概率。影响复读概率的主要因素是mask的策略
@ -545,7 +551,7 @@ class TTS:
return _data, batch_index_list
def recovery_order(self, data:list, batch_index_list:list)->list:
def recovery_order(self, data: list, batch_index_list: list) -> list:
'''
Recovery the order of the audio according to the batch_index_list.
@ -557,20 +563,20 @@ class TTS:
list (List[np.ndarray]): the data in the original order.
'''
length = len(sum(batch_index_list, []))
_data = [None]*length
_data = [None] * length
for i, index_list in enumerate(batch_index_list):
for j, index in enumerate(index_list):
_data[index] = data[i][j]
return _data
def stop(self,):
def stop(self, ):
'''
Stop the inference process.
'''
self.stop_flag = True
@torch.no_grad()
def run(self, inputs:dict):
def run(self, inputs: dict):
"""
Text to speech inference.
@ -600,16 +606,16 @@ class TTS:
tuple[int, np.ndarray]: sampling rate and audio data.
"""
########## variables initialization ###########
self.stop_flag:bool = False
text:str = inputs.get("text", "")
text_lang:str = inputs.get("text_lang", "")
ref_audio_path:str = inputs.get("ref_audio_path", "")
prompt_text:str = inputs.get("prompt_text", "")
prompt_lang:str = inputs.get("prompt_lang", "")
top_k:int = inputs.get("top_k", 5)
top_p:float = inputs.get("top_p", 1)
temperature:float = inputs.get("temperature", 1)
text_split_method:str = inputs.get("text_split_method", "cut0")
self.stop_flag: bool = False
text: str = inputs.get("text", "")
text_lang: str = inputs.get("text_lang", "")
ref_audio_path: str = inputs.get("ref_audio_path", "")
prompt_text: str = inputs.get("prompt_text", "")
prompt_lang: str = inputs.get("prompt_lang", "")
top_k: int = inputs.get("top_k", 5)
top_p: float = inputs.get("top_p", 1)
temperature: float = inputs.get("temperature", 1)
text_split_method: str = inputs.get("text_split_method", "cut0")
batch_size = inputs.get("batch_size", 1)
batch_threshold = inputs.get("batch_threshold", 0.75)
speed_factor = inputs.get("speed_factor", 1.0)
@ -638,7 +644,7 @@ class TTS:
if split_bucket:
print(i18n("分桶处理模式已开启"))
if fragment_interval<0.01:
if fragment_interval < 0.01:
fragment_interval = 0.01
print(i18n("分段间隔过小已自动设置为0.01"))
@ -651,8 +657,9 @@ class TTS:
assert prompt_lang in self.configs.languages
if ref_audio_path in [None, ""] and \
((self.prompt_cache["prompt_semantic"] is None) or (self.prompt_cache["refer_spec"] is None)):
raise ValueError("ref_audio_path cannot be empty, when the reference audio is not set using set_ref_audio()")
((self.prompt_cache["prompt_semantic"] is None) or (self.prompt_cache["refer_spec"] is None)):
raise ValueError(
"ref_audio_path cannot be empty, when the reference audio is not set using set_ref_audio()")
###### setting reference audio and prompt text preprocessing ########
t0 = ttime()
@ -668,37 +675,37 @@ class TTS:
self.prompt_cache["prompt_lang"] = prompt_lang
phones, bert_features, norm_text = \
self.text_preprocessor.segment_and_extract_feature_for_text(
prompt_text,
prompt_lang)
prompt_text,
prompt_lang)
self.prompt_cache["phones"] = phones
self.prompt_cache["bert_features"] = bert_features
self.prompt_cache["norm_text"] = norm_text
###### text preprocessing ########
t1 = ttime()
data:list = None
data: list = None
if not return_fragment:
data = self.text_preprocessor.preprocess(text, text_lang, text_split_method)
if len(data) == 0:
yield self.configs.sampling_rate, np.zeros(int(self.configs.sampling_rate),
dtype=np.int16)
dtype=np.int16)
return
batch_index_list:list = None
batch_index_list: list = None
data, batch_index_list = self.to_batch(data,
prompt_data=self.prompt_cache if not no_prompt_text else None,
batch_size=batch_size,
threshold=batch_threshold,
split_bucket=split_bucket,
device=self.configs.device,
precision=self.precision
)
prompt_data=self.prompt_cache if not no_prompt_text else None,
batch_size=batch_size,
threshold=batch_threshold,
split_bucket=split_bucket,
device=self.configs.device,
precision=self.precision
)
else:
print(i18n("############ 切分文本 ############"))
texts = self.text_preprocessor.pre_seg_text(text, text_lang, text_split_method)
data = []
for i in range(len(texts)):
if i%batch_size == 0:
if i % batch_size == 0:
data.append([])
data[-1].append(texts[i])
@ -706,10 +713,11 @@ class TTS:
batch_data = []
print(i18n("############ 提取文本Bert特征 ############"))
for text in tqdm(batch_texts):
phones, bert_features, norm_text = self.text_preprocessor.segment_and_extract_feature_for_text(text, text_lang)
phones, bert_features, norm_text = self.text_preprocessor.segment_and_extract_feature_for_text(text,
text_lang)
if phones is None:
continue
res={
res = {
"phones": phones,
"bert_features": bert_features,
"norm_text": norm_text,
@ -718,16 +726,15 @@ class TTS:
if len(batch_data) == 0:
return None
batch, _ = self.to_batch(batch_data,
prompt_data=self.prompt_cache if not no_prompt_text else None,
batch_size=batch_size,
threshold=batch_threshold,
split_bucket=False,
device=self.configs.device,
precision=self.precision
)
prompt_data=self.prompt_cache if not no_prompt_text else None,
batch_size=batch_size,
threshold=batch_threshold,
split_bucket=False,
device=self.configs.device,
precision=self.precision
)
return batch[0]
t2 = ttime()
try:
print("############ 推理 ############")
@ -742,21 +749,21 @@ class TTS:
if item is None:
continue
batch_phones:List[torch.LongTensor] = item["phones"]
batch_phones: List[torch.LongTensor] = item["phones"]
# batch_phones:torch.LongTensor = item["phones"]
batch_phones_len:torch.LongTensor = item["phones_len"]
all_phoneme_ids:torch.LongTensor = item["all_phones"]
all_phoneme_lens:torch.LongTensor = item["all_phones_len"]
all_bert_features:torch.LongTensor = item["all_bert_features"]
norm_text:str = item["norm_text"]
batch_phones_len: torch.LongTensor = item["phones_len"]
all_phoneme_ids: torch.LongTensor = item["all_phones"]
all_phoneme_lens: torch.LongTensor = item["all_phones_len"]
all_bert_features: torch.LongTensor = item["all_bert_features"]
norm_text: str = item["norm_text"]
max_len = item["max_len"]
print(i18n("前端处理后的文本(每句):"), norm_text)
if no_prompt_text :
if no_prompt_text:
prompt = None
else:
prompt = self.prompt_cache["prompt_semantic"].expand(len(all_phoneme_ids), -1).to(self.configs.device)
prompt = self.prompt_cache["prompt_semantic"].expand(len(all_phoneme_ids), -1).to(
self.configs.device)
pred_semantic_list, idx_list = self.t2s_model.model.infer_panel(
all_phoneme_ids,
@ -774,8 +781,8 @@ class TTS:
t4 = ttime()
t_34 += t4 - t3
refer_audio_spec:torch.Tensor = self.prompt_cache["refer_spec"]\
.to(dtype=self.precision, device=self.configs.device)
refer_audio_spec: torch.Tensor = self.prompt_cache["refer_spec"] \
.to(dtype=self.precision, device=self.configs.device)
batch_audio_fragment = []
@ -798,15 +805,17 @@ class TTS:
# ## vits并行推理 method 2
pred_semantic_list = [item[-idx:] for item, idx in zip(pred_semantic_list, idx_list)]
upsample_rate = math.prod(self.vits_model.upsample_rates)
audio_frag_idx = [pred_semantic_list[i].shape[0]*2*upsample_rate for i in range(0, len(pred_semantic_list))]
audio_frag_end_idx = [ sum(audio_frag_idx[:i+1]) for i in range(0, len(audio_frag_idx))]
audio_frag_idx = [pred_semantic_list[i].shape[0] * 2 * upsample_rate for i in
range(0, len(pred_semantic_list))]
audio_frag_end_idx = [sum(audio_frag_idx[:i + 1]) for i in range(0, len(audio_frag_idx))]
all_pred_semantic = torch.cat(pred_semantic_list).unsqueeze(0).unsqueeze(0).to(self.configs.device)
_batch_phones = torch.cat(batch_phones).unsqueeze(0).to(self.configs.device)
_batch_audio_fragment = (self.vits_model.decode(
all_pred_semantic, _batch_phones, refer_audio_spec
).detach()[0, 0, :])
all_pred_semantic, _batch_phones, refer_audio_spec
).detach()[0, 0, :])
audio_frag_end_idx.insert(0, 0)
batch_audio_fragment= [_batch_audio_fragment[audio_frag_end_idx[i-1]:audio_frag_end_idx[i]] for i in range(1, len(audio_frag_end_idx))]
batch_audio_fragment = [_batch_audio_fragment[audio_frag_end_idx[i - 1]:audio_frag_end_idx[i]] for i in
range(1, len(audio_frag_end_idx))]
# ## vits串行推理
# for i, idx in enumerate(idx_list):
@ -824,35 +833,35 @@ class TTS:
if return_fragment:
print("%.3f\t%.3f\t%.3f\t%.3f" % (t1 - t0, t2 - t1, t4 - t3, t5 - t4))
yield self.audio_postprocess([batch_audio_fragment],
self.configs.sampling_rate,
None,
speed_factor,
False,
fragment_interval
)
self.configs.sampling_rate,
None,
speed_factor,
False,
fragment_interval
)
else:
audio.append(batch_audio_fragment)
if self.stop_flag:
yield self.configs.sampling_rate, np.zeros(int(self.configs.sampling_rate),
dtype=np.int16)
dtype=np.int16)
return
if not return_fragment:
print("%.3f\t%.3f\t%.3f\t%.3f" % (t1 - t0, t2 - t1, t_34, t_45))
yield self.audio_postprocess(audio,
self.configs.sampling_rate,
batch_index_list,
speed_factor,
split_bucket,
fragment_interval
)
self.configs.sampling_rate,
batch_index_list,
speed_factor,
split_bucket,
fragment_interval
)
except Exception as e:
traceback.print_exc()
# 必须返回一个空音频, 否则会导致显存不释放。
yield self.configs.sampling_rate, np.zeros(int(self.configs.sampling_rate),
dtype=np.int16)
dtype=np.int16)
# 重置模型, 否则会导致显存释放不完全。
del self.t2s_model
del self.vits_model
@ -874,34 +883,32 @@ class TTS:
pass
def audio_postprocess(self,
audio:List[torch.Tensor],
sr:int,
batch_index_list:list=None,
speed_factor:float=1.0,
split_bucket:bool=True,
fragment_interval:float=0.3
)->tuple[int, np.ndarray]:
audio: List[torch.Tensor],
sr: int,
batch_index_list: list = None,
speed_factor: float = 1.0,
split_bucket: bool = True,
fragment_interval: float = 0.3
) -> tuple[int, np.ndarray]:
zero_wav = torch.zeros(
int(self.configs.sampling_rate * fragment_interval),
dtype=self.precision,
device=self.configs.device
)
int(self.configs.sampling_rate * fragment_interval),
dtype=self.precision,
device=self.configs.device
)
for i, batch in enumerate(audio):
for j, audio_fragment in enumerate(batch):
max_audio=torch.abs(audio_fragment).max()#简单防止16bit爆音
if max_audio>1: audio_fragment/=max_audio
audio_fragment:torch.Tensor = torch.cat([audio_fragment, zero_wav], dim=0)
max_audio = torch.abs(audio_fragment).max() # 简单防止16bit爆音
if max_audio > 1: audio_fragment /= max_audio
audio_fragment: torch.Tensor = torch.cat([audio_fragment, zero_wav], dim=0)
audio[i][j] = audio_fragment.cpu().numpy()
if split_bucket:
audio = self.recovery_order(audio, batch_index_list)
else:
# audio = [item for batch in audio for item in batch]
audio = sum(audio, [])
audio = np.concatenate(audio, 0)
audio = (audio * 32768).astype(np.int16)
@ -914,9 +921,7 @@ class TTS:
return sr, audio
def speed_change(input_audio:np.ndarray, speed:float, sr:int):
def speed_change(input_audio: np.ndarray, speed: float, sr: int):
# 将 NumPy 数组转换为原始 PCM 流
raw_audio = input_audio.astype(np.int16).tobytes()

View File

@ -1,6 +1,7 @@
custom:
bert_base_path: GPT_SoVITS/pretrained_models/chinese-roberta-wwm-ext-large
cnhuhbert_base_path: GPT_SoVITS/pretrained_models/chinese-hubert-base
load_base: true
device: cuda
is_half: true
t2s_weights_path: GPT_SoVITS/pretrained_models/s1bert25hz-2kh-longer-epoch=68e-step=50232.ckpt

View File

@ -3,6 +3,7 @@ custom:
cnhuhbert_base_path: GPT_SoVITS/pretrained_models/chinese-hubert-base
device: cpu
is_half: false
load_base: false
t2s_weights_path: GPT_weights/jackma-e10.ckpt
vits_weights_path: SoVITS_weights/jackma_e8_s192.pth
default:

View File

@ -3,6 +3,7 @@ custom:
cnhuhbert_base_path: GPT_SoVITS/pretrained_models/chinese-hubert-base
device: cpu
is_half: false
load_base: false
t2s_weights_path: GPT_weights/liyunlong-e15.ckpt
vits_weights_path: SoVITS_weights/liyunlong_e8_s176.pth
default:

View File

@ -3,6 +3,7 @@ custom:
cnhuhbert_base_path: GPT_SoVITS/pretrained_models/chinese-hubert-base
device: cpu
is_half: false
load_base: false
t2s_weights_path: GPT_weights/morgan-e15.ckpt
vits_weights_path: SoVITS_weights/morgan_e8_s120.pth
default:

View File

@ -3,6 +3,7 @@ custom:
cnhuhbert_base_path: GPT_SoVITS/pretrained_models/chinese-hubert-base
device: cpu
is_half: false
load_base: false
t2s_weights_path: GPT_weights/stephenchow-e15.ckpt
vits_weights_path: SoVITS_weights/stephenchow_e8_s112.pth
default:

View File

@ -135,6 +135,9 @@ port = args.port
host = args.bind_addr
argv = sys.argv
default_tts_config = TTS_Config()
TTS.init_base_models(default_tts_config)
APP = FastAPI()