refactor: load base model once for api v2 % v3

This commit is contained in:
kevin.zhang 2024-05-16 15:11:25 +08:00
parent b8b273ad0c
commit 95c761f492
7 changed files with 298 additions and 285 deletions

View File

@ -5,6 +5,7 @@ import random
import traceback import traceback
from tqdm import tqdm from tqdm import tqdm
now_dir = os.getcwd() now_dir = os.getcwd()
sys.path.append(now_dir) sys.path.append(now_dir)
import ffmpeg import ffmpeg
@ -26,6 +27,7 @@ from my_utils import load_audio
from module.mel_processing import spectrogram_torch from module.mel_processing import spectrogram_torch
from TTS_infer_pack.text_segmentation_method import splits from TTS_infer_pack.text_segmentation_method import splits
from TTS_infer_pack.TextPreprocessor import TextPreprocessor from TTS_infer_pack.TextPreprocessor import TextPreprocessor
i18n = I18nAuto() i18n = I18nAuto()
# configs/tts_infer.yaml # configs/tts_infer.yaml
@ -49,7 +51,8 @@ custom:
""" """
def set_seed(seed:int):
def set_seed(seed: int):
seed = int(seed) seed = int(seed)
seed = seed if seed != -1 else random.randrange(1 << 32) seed = seed if seed != -1 else random.randrange(1 << 32)
print(f"Set seed to {seed}") print(f"Set seed to {seed}")
@ -70,50 +73,52 @@ def set_seed(seed:int):
except: except:
pass pass
return seed return seed
class TTS_Config: class TTS_Config:
default_configs={ default_configs = {
"device": "cpu", "device": "cpu",
"is_half": False, "is_half": False,
"t2s_weights_path": "GPT_SoVITS/pretrained_models/s1bert25hz-2kh-longer-epoch=68e-step=50232.ckpt", "t2s_weights_path": "GPT_SoVITS/pretrained_models/s1bert25hz-2kh-longer-epoch=68e-step=50232.ckpt",
"vits_weights_path": "GPT_SoVITS/pretrained_models/s2G488k.pth", "vits_weights_path": "GPT_SoVITS/pretrained_models/s2G488k.pth",
"cnhuhbert_base_path": "GPT_SoVITS/pretrained_models/chinese-hubert-base", "cnhuhbert_base_path": "GPT_SoVITS/pretrained_models/chinese-hubert-base",
"bert_base_path": "GPT_SoVITS/pretrained_models/chinese-roberta-wwm-ext-large", "bert_base_path": "GPT_SoVITS/pretrained_models/chinese-roberta-wwm-ext-large",
} "load_base": True,
configs:dict = None }
def __init__(self, configs: Union[dict, str]=None): configs: dict = None
def __init__(self, configs: Union[dict, str] = None):
# 设置默认配置文件路径 # 设置默认配置文件路径
configs_base_path:str = "GPT_SoVITS/configs/" configs_base_path: str = "GPT_SoVITS/configs/"
os.makedirs(configs_base_path, exist_ok=True) os.makedirs(configs_base_path, exist_ok=True)
self.configs_path:str = os.path.join(configs_base_path, "tts_infer.yaml") self.configs_path: str = os.path.join(configs_base_path, "tts_infer.yaml")
if configs in ["", None]: if configs in ["", None]:
if not os.path.exists(self.configs_path): if not os.path.exists(self.configs_path):
self.save_configs() self.save_configs()
print(f"Create default config file at {self.configs_path}") print(f"Create default config file at {self.configs_path}")
configs:dict = {"default": deepcopy(self.default_configs)} configs: dict = {"default": deepcopy(self.default_configs)}
if isinstance(configs, str): if isinstance(configs, str):
self.configs_path = configs self.configs_path = configs
configs:dict = self._load_configs(self.configs_path) configs: dict = self._load_configs(self.configs_path)
assert isinstance(configs, dict) assert isinstance(configs, dict)
default_configs:dict = configs.get("default", None) default_configs: dict = configs.get("default", None)
if default_configs is not None: if default_configs is not None:
self.default_configs = default_configs self.default_configs = default_configs
self.configs:dict = configs.get("custom", deepcopy(self.default_configs)) self.configs: dict = configs.get("custom", deepcopy(self.default_configs))
self.device = self.configs.get("device", torch.device("cpu")) self.device = self.configs.get("device", torch.device("cpu"))
self.is_half = self.configs.get("is_half", False) self.is_half = self.configs.get("is_half", False)
self.t2s_weights_path = self.configs.get("t2s_weights_path", None) self.t2s_weights_path = self.configs.get("t2s_weights_path", None)
self.vits_weights_path = self.configs.get("vits_weights_path", None) self.vits_weights_path = self.configs.get("vits_weights_path", None)
self.bert_base_path = self.configs.get("bert_base_path", None) self.bert_base_path = self.configs.get("bert_base_path", None)
self.cnhuhbert_base_path = self.configs.get("cnhuhbert_base_path", None) self.cnhuhbert_base_path = self.configs.get("cnhuhbert_base_path", None)
self.load_base = self.configs.get("load_base", True)
if (self.t2s_weights_path in [None, ""]) or (not os.path.exists(self.t2s_weights_path)): if (self.t2s_weights_path in [None, ""]) or (not os.path.exists(self.t2s_weights_path)):
self.t2s_weights_path = self.default_configs['t2s_weights_path'] self.t2s_weights_path = self.default_configs['t2s_weights_path']
print(f"fall back to default t2s_weights_path: {self.t2s_weights_path}") print(f"fall back to default t2s_weights_path: {self.t2s_weights_path}")
@ -127,34 +132,32 @@ class TTS_Config:
self.cnhuhbert_base_path = self.default_configs['cnhuhbert_base_path'] self.cnhuhbert_base_path = self.default_configs['cnhuhbert_base_path']
print(f"fall back to default cnhuhbert_base_path: {self.cnhuhbert_base_path}") print(f"fall back to default cnhuhbert_base_path: {self.cnhuhbert_base_path}")
self.update_configs() self.update_configs()
self.max_sec = None
self.hz:int = 50
self.semantic_frame_rate:str = "25hz"
self.segment_size:int = 20480
self.filter_length:int = 2048
self.sampling_rate:int = 32000
self.hop_length:int = 640
self.win_length:int = 2048
self.n_speakers:int = 300
self.languages:list = ["auto", "en", "zh", "ja", "all_zh", "all_ja"]
self.max_sec = None
def _load_configs(self, configs_path: str)->dict: self.hz: int = 50
self.semantic_frame_rate: str = "25hz"
self.segment_size: int = 20480
self.filter_length: int = 2048
self.sampling_rate: int = 32000
self.hop_length: int = 640
self.win_length: int = 2048
self.n_speakers: int = 300
self.languages: list = ["auto", "en", "zh", "ja", "all_zh", "all_ja"]
def _load_configs(self, configs_path: str) -> dict:
with open(configs_path, 'r') as f: with open(configs_path, 'r') as f:
configs = yaml.load(f, Loader=yaml.FullLoader) configs = yaml.load(f, Loader=yaml.FullLoader)
return configs return configs
def save_configs(self, configs_path:str=None)->None: def save_configs(self, configs_path: str = None) -> None:
configs={ configs = {
"default":self.default_configs, "default": self.default_configs,
} }
if self.configs is not None: if self.configs is not None:
configs["custom"] = self.update_configs() configs["custom"] = self.update_configs()
if configs_path is None: if configs_path is None:
configs_path = self.configs_path configs_path = self.configs_path
with open(configs_path, 'w') as f: with open(configs_path, 'w') as f:
@ -162,15 +165,16 @@ class TTS_Config:
def update_configs(self): def update_configs(self):
self.config = { self.config = {
"device" : str(self.device), "device": str(self.device),
"is_half" : self.is_half, "is_half": self.is_half,
"t2s_weights_path" : self.t2s_weights_path, "t2s_weights_path": self.t2s_weights_path,
"vits_weights_path" : self.vits_weights_path, "vits_weights_path": self.vits_weights_path,
"bert_base_path" : self.bert_base_path, "bert_base_path": self.bert_base_path,
"cnhuhbert_base_path": self.cnhuhbert_base_path, "cnhuhbert_base_path": self.cnhuhbert_base_path,
"load_base": self.load_base,
} }
return self.config return self.config
def __str__(self): def __str__(self):
self.configs = self.update_configs() self.configs = self.update_configs()
string = "TTS Config".center(100, '-') + '\n' string = "TTS Config".center(100, '-') + '\n'
@ -178,7 +182,7 @@ class TTS_Config:
string += f"{str(k).ljust(20)}: {str(v)}\n" string += f"{str(k).ljust(20)}: {str(v)}\n"
string += "-" * 100 + '\n' string += "-" * 100 + '\n'
return string return string
def __repr__(self): def __repr__(self):
return self.__str__() return self.__str__()
@ -190,69 +194,75 @@ class TTS_Config:
class TTS: class TTS:
bert_tokenizer: AutoTokenizer = None
bert_model: AutoModelForMaskedLM = None
cnhuhbert_model: CNHubert = None
def __init__(self, configs: Union[dict, str, TTS_Config]): def __init__(self, configs: Union[dict, str, TTS_Config]):
if isinstance(configs, TTS_Config): if isinstance(configs, TTS_Config):
self.configs = configs self.configs = configs
else: else:
self.configs:TTS_Config = TTS_Config(configs) self.configs: TTS_Config = TTS_Config(configs)
self.t2s_model:Text2SemanticLightningModule = None
self.vits_model:SynthesizerTrn = None
self.bert_tokenizer:AutoTokenizer = None
self.bert_model:AutoModelForMaskedLM = None
self.cnhuhbert_model:CNHubert = None
self._init_models()
self.text_preprocessor:TextPreprocessor = \
TextPreprocessor(self.bert_model,
self.bert_tokenizer,
self.configs.device)
self.prompt_cache:dict = {
"ref_audio_path" : None,
"prompt_semantic": None,
"refer_spec" : None,
"prompt_text" : None,
"prompt_lang" : None,
"phones" : None,
"bert_features" : None,
"norm_text" : None,
}
self.stop_flag:bool = False
self.precision:torch.dtype = torch.float16 if self.configs.is_half else torch.float32
def _init_models(self,): self.t2s_model: Text2SemanticLightningModule = None
self.vits_model: SynthesizerTrn = None
# self.bert_tokenizer:AutoTokenizer = None
# self.bert_model:AutoModelForMaskedLM = None
# self.cnhuhbert_model:CNHubert = None
self._init_models()
self.text_preprocessor: TextPreprocessor = \
TextPreprocessor(TTS.bert_model,
TTS.bert_tokenizer,
self.configs.device)
self.prompt_cache: dict = {
"ref_audio_path": None,
"prompt_semantic": None,
"refer_spec": None,
"prompt_text": None,
"prompt_lang": None,
"phones": None,
"bert_features": None,
"norm_text": None,
}
self.stop_flag: bool = False
self.precision: torch.dtype = torch.float16 if self.configs.is_half else torch.float32
def _init_models(self):
self.init_t2s_weights(self.configs.t2s_weights_path) self.init_t2s_weights(self.configs.t2s_weights_path)
self.init_vits_weights(self.configs.vits_weights_path) self.init_vits_weights(self.configs.vits_weights_path)
self.init_bert_weights(self.configs.bert_base_path) if self.configs.load_base:
self.init_cnhuhbert_weights(self.configs.cnhuhbert_base_path) TTS.init_bert_weights(self.configs)
TTS.init_cnhuhbert_weights(self.configs)
# self.enable_half_precision(self.configs.is_half) # self.enable_half_precision(self.configs.is_half)
@staticmethod
def init_base_models(configs: TTS_Config):
def init_cnhuhbert_weights(self, base_path: str): TTS.init_bert_weights(configs)
print(f"Loading CNHuBERT weights from {base_path}") TTS.init_cnhuhbert_weights(configs)
self.cnhuhbert_model = CNHubert(base_path)
self.cnhuhbert_model=self.cnhuhbert_model.eval() @staticmethod
self.cnhuhbert_model = self.cnhuhbert_model.to(self.configs.device) def init_cnhuhbert_weights(configs: TTS_Config):
if self.configs.is_half and str(self.configs.device)!="cpu": print(f"Loading CNHuBERT weights from {configs.cnhuhbert_base_path}")
self.cnhuhbert_model = self.cnhuhbert_model.half() TTS.cnhuhbert_model = CNHubert(configs.cnhuhbert_base_path)
TTS.cnhuhbert_model = TTS.cnhuhbert_model.eval()
TTS.cnhuhbert_model = TTS.cnhuhbert_model.to(configs.device)
if configs.is_half and str(configs.device) != "cpu":
def init_bert_weights(self, base_path: str): TTS.cnhuhbert_model = TTS.cnhuhbert_model.half()
print(f"Loading BERT weights from {base_path}")
self.bert_tokenizer = AutoTokenizer.from_pretrained(base_path) @staticmethod
self.bert_model = AutoModelForMaskedLM.from_pretrained(base_path) def init_bert_weights(configs: TTS_Config):
self.bert_model=self.bert_model.eval() print(f"Loading BERT weights from {configs.bert_base_path}")
self.bert_model = self.bert_model.to(self.configs.device) TTS.bert_tokenizer = AutoTokenizer.from_pretrained(configs.bert_base_path)
if self.configs.is_half and str(self.configs.device)!="cpu": TTS.bert_model = AutoModelForMaskedLM.from_pretrained(configs.bert_base_path)
self.bert_model = self.bert_model.half() TTS.bert_model = TTS.bert_model.eval()
TTS.bert_model = TTS.bert_model.to(configs.device)
if configs.is_half and str(configs.device) != "cpu":
TTS.bert_model = TTS.bert_model.half()
def init_vits_weights(self, weights_path: str): def init_vits_weights(self, weights_path: str):
print(f"Loading VITS weights from {weights_path}") print(f"Loading VITS weights from {weights_path}")
self.configs.vits_weights_path = weights_path self.configs.vits_weights_path = weights_path
@ -261,7 +271,7 @@ class TTS:
hps = dict_s2["config"] hps = dict_s2["config"]
self.configs.filter_length = hps["data"]["filter_length"] self.configs.filter_length = hps["data"]["filter_length"]
self.configs.segment_size = hps["train"]["segment_size"] self.configs.segment_size = hps["train"]["segment_size"]
self.configs.sampling_rate = hps["data"]["sampling_rate"] self.configs.sampling_rate = hps["data"]["sampling_rate"]
self.configs.hop_length = hps["data"]["hop_length"] self.configs.hop_length = hps["data"]["hop_length"]
self.configs.win_length = hps["data"]["win_length"] self.configs.win_length = hps["data"]["win_length"]
self.configs.n_speakers = hps["data"]["n_speakers"] self.configs.n_speakers = hps["data"]["n_speakers"]
@ -276,15 +286,14 @@ class TTS:
# if ("pretrained" not in weights_path): # if ("pretrained" not in weights_path):
if hasattr(vits_model, "enc_q"): if hasattr(vits_model, "enc_q"):
del vits_model.enc_q del vits_model.enc_q
vits_model = vits_model.to(self.configs.device) vits_model = vits_model.to(self.configs.device)
vits_model = vits_model.eval() vits_model = vits_model.eval()
vits_model.load_state_dict(dict_s2["weight"], strict=False) vits_model.load_state_dict(dict_s2["weight"], strict=False)
self.vits_model = vits_model self.vits_model = vits_model
if self.configs.is_half and str(self.configs.device)!="cpu": if self.configs.is_half and str(self.configs.device) != "cpu":
self.vits_model = self.vits_model.half() self.vits_model = self.vits_model.half()
def init_t2s_weights(self, weights_path: str): def init_t2s_weights(self, weights_path: str):
print(f"Loading Text2Semantic weights from {weights_path}") print(f"Loading Text2Semantic weights from {weights_path}")
self.configs.t2s_weights_path = weights_path self.configs.t2s_weights_path = weights_path
@ -298,9 +307,9 @@ class TTS:
t2s_model = t2s_model.to(self.configs.device) t2s_model = t2s_model.to(self.configs.device)
t2s_model = t2s_model.eval() t2s_model = t2s_model.eval()
self.t2s_model = t2s_model self.t2s_model = t2s_model
if self.configs.is_half and str(self.configs.device)!="cpu": if self.configs.is_half and str(self.configs.device) != "cpu":
self.t2s_model = self.t2s_model.half() self.t2s_model = self.t2s_model.half()
def enable_half_precision(self, enable: bool = True): def enable_half_precision(self, enable: bool = True):
''' '''
To enable half precision for the TTS model. To enable half precision for the TTS model.
@ -311,29 +320,29 @@ class TTS:
if str(self.configs.device) == "cpu" and enable: if str(self.configs.device) == "cpu" and enable:
print("Half precision is not supported on CPU.") print("Half precision is not supported on CPU.")
return return
self.configs.is_half = enable self.configs.is_half = enable
self.precision = torch.float16 if enable else torch.float32 self.precision = torch.float16 if enable else torch.float32
self.configs.save_configs() self.configs.save_configs()
if enable: if enable:
if self.t2s_model is not None: if self.t2s_model is not None:
self.t2s_model =self.t2s_model.half() self.t2s_model = self.t2s_model.half()
if self.vits_model is not None: if self.vits_model is not None:
self.vits_model = self.vits_model.half() self.vits_model = self.vits_model.half()
if self.bert_model is not None: if TTS.bert_model is not None:
self.bert_model =self.bert_model.half() TTS.bert_model = TTS.bert_model.half()
if self.cnhuhbert_model is not None: if TTS.cnhuhbert_model is not None:
self.cnhuhbert_model = self.cnhuhbert_model.half() TTS.cnhuhbert_model = TTS.cnhuhbert_model.half()
else: else:
if self.t2s_model is not None: if self.t2s_model is not None:
self.t2s_model = self.t2s_model.float() self.t2s_model = self.t2s_model.float()
if self.vits_model is not None: if self.vits_model is not None:
self.vits_model = self.vits_model.float() self.vits_model = self.vits_model.float()
if self.bert_model is not None: if TTS.bert_model is not None:
self.bert_model = self.bert_model.float() TTS.bert_model = TTS.bert_model.float()
if self.cnhuhbert_model is not None: if TTS.cnhuhbert_model is not None:
self.cnhuhbert_model = self.cnhuhbert_model.float() TTS.cnhuhbert_model = TTS.cnhuhbert_model.float()
def set_device(self, device: torch.device): def set_device(self, device: torch.device):
''' '''
To set the device for all models. To set the device for all models.
@ -346,12 +355,12 @@ class TTS:
self.t2s_model = self.t2s_model.to(device) self.t2s_model = self.t2s_model.to(device)
if self.vits_model is not None: if self.vits_model is not None:
self.vits_model = self.vits_model.to(device) self.vits_model = self.vits_model.to(device)
if self.bert_model is not None: if TTS.bert_model is not None:
self.bert_model = self.bert_model.to(device) TTS.bert_model = TTS.bert_model.to(device)
if self.cnhuhbert_model is not None: if TTS.cnhuhbert_model is not None:
self.cnhuhbert_model = self.cnhuhbert_model.to(device) TTS.cnhuhbert_model = TTS.cnhuhbert_model.to(device)
def set_ref_audio(self, ref_audio_path:str): def set_ref_audio(self, ref_audio_path: str):
''' '''
To set the reference audio for the TTS model, To set the reference audio for the TTS model,
including the prompt_semantic and refer_spepc. including the prompt_semantic and refer_spepc.
@ -360,7 +369,7 @@ class TTS:
''' '''
self._set_prompt_semantic(ref_audio_path) self._set_prompt_semantic(ref_audio_path)
self._set_ref_spec(ref_audio_path) self._set_ref_spec(ref_audio_path)
def _set_ref_spec(self, ref_audio_path): def _set_ref_spec(self, ref_audio_path):
audio = load_audio(ref_audio_path, int(self.configs.sampling_rate)) audio = load_audio(ref_audio_path, int(self.configs.sampling_rate))
audio = torch.FloatTensor(audio) audio = torch.FloatTensor(audio)
@ -379,9 +388,8 @@ class TTS:
spec = spec.half() spec = spec.half()
# self.refer_spec = spec # self.refer_spec = spec
self.prompt_cache["refer_spec"] = spec self.prompt_cache["refer_spec"] = spec
def _set_prompt_semantic(self, ref_wav_path: str):
def _set_prompt_semantic(self, ref_wav_path:str):
zero_wav = np.zeros( zero_wav = np.zeros(
int(self.configs.sampling_rate * 0.3), int(self.configs.sampling_rate * 0.3),
dtype=np.float16 if self.configs.is_half else np.float32, dtype=np.float16 if self.configs.is_half else np.float32,
@ -405,16 +413,16 @@ class TTS:
1, 2 1, 2
) # .float() ) # .float()
codes = self.vits_model.extract_latent(hubert_feature) codes = self.vits_model.extract_latent(hubert_feature)
prompt_semantic = codes[0, 0].to(self.configs.device) prompt_semantic = codes[0, 0].to(self.configs.device)
self.prompt_cache["prompt_semantic"] = prompt_semantic self.prompt_cache["prompt_semantic"] = prompt_semantic
def batch_sequences(self, sequences: List[torch.Tensor], axis: int = 0, pad_value: int = 0, max_length:int=None): def batch_sequences(self, sequences: List[torch.Tensor], axis: int = 0, pad_value: int = 0, max_length: int = None):
seq = sequences[0] seq = sequences[0]
ndim = seq.dim() ndim = seq.dim()
if axis < 0: if axis < 0:
axis += ndim axis += ndim
dtype:torch.dtype = seq.dtype dtype: torch.dtype = seq.dtype
pad_value = torch.tensor(pad_value, dtype=dtype) pad_value = torch.tensor(pad_value, dtype=dtype)
seq_lengths = [seq.shape[axis] for seq in sequences] seq_lengths = [seq.shape[axis] for seq in sequences]
if max_length is None: if max_length is None:
@ -429,16 +437,16 @@ class TTS:
padded_sequences.append(padded_seq) padded_sequences.append(padded_seq)
batch = torch.stack(padded_sequences) batch = torch.stack(padded_sequences)
return batch return batch
def to_batch(self, data:list, def to_batch(self, data: list,
prompt_data:dict=None, prompt_data: dict = None,
batch_size:int=5, batch_size: int = 5,
threshold:float=0.75, threshold: float = 0.75,
split_bucket:bool=True, split_bucket: bool = True,
device:torch.device=torch.device("cpu"), device: torch.device = torch.device("cpu"),
precision:torch.dtype=torch.float32, precision: torch.dtype = torch.float32,
): ):
_data:list = [] _data: list = []
index_and_len_list = [] index_and_len_list = []
for idx, item in enumerate(data): for idx, item in enumerate(data):
norm_text_len = len(item["norm_text"]) norm_text_len = len(item["norm_text"])
@ -447,33 +455,32 @@ class TTS:
batch_index_list = [] batch_index_list = []
if split_bucket: if split_bucket:
index_and_len_list.sort(key=lambda x: x[1]) index_and_len_list.sort(key=lambda x: x[1])
index_and_len_list = np.array(index_and_len_list, dtype=np.int64) index_and_len_list = np.array(index_and_len_list, dtype=np.int64)
batch_index_list_len = 0 batch_index_list_len = 0
pos = 0 pos = 0
while pos <index_and_len_list.shape[0]: while pos < index_and_len_list.shape[0]:
# batch_index_list.append(index_and_len_list[pos:min(pos+batch_size,len(index_and_len_list))]) # batch_index_list.append(index_and_len_list[pos:min(pos+batch_size,len(index_and_len_list))])
pos_end = min(pos+batch_size,index_and_len_list.shape[0]) pos_end = min(pos + batch_size, index_and_len_list.shape[0])
while pos < pos_end: while pos < pos_end:
batch=index_and_len_list[pos:pos_end, 1].astype(np.float32) batch = index_and_len_list[pos:pos_end, 1].astype(np.float32)
score=batch[(pos_end-pos)//2]/(batch.mean()+1e-8) score = batch[(pos_end - pos) // 2] / (batch.mean() + 1e-8)
if (score>=threshold) or (pos_end-pos==1): if (score >= threshold) or (pos_end - pos == 1):
batch_index=index_and_len_list[pos:pos_end, 0].tolist() batch_index = index_and_len_list[pos:pos_end, 0].tolist()
batch_index_list_len += len(batch_index) batch_index_list_len += len(batch_index)
batch_index_list.append(batch_index) batch_index_list.append(batch_index)
pos = pos_end pos = pos_end
break break
pos_end=pos_end-1 pos_end = pos_end - 1
assert batch_index_list_len == len(data) assert batch_index_list_len == len(data)
else: else:
for i in range(len(data)): for i in range(len(data)):
if i%batch_size == 0: if i % batch_size == 0:
batch_index_list.append([]) batch_index_list.append([])
batch_index_list[-1].append(i) batch_index_list[-1].append(i)
for batch_idx, index_list in enumerate(batch_index_list): for batch_idx, index_list in enumerate(batch_index_list):
item_list = [data[idx] for idx in index_list] item_list = [data[idx] for idx in index_list]
phones_list = [] phones_list = []
@ -487,33 +494,32 @@ class TTS:
phones_max_len = 0 phones_max_len = 0
for item in item_list: for item in item_list:
if prompt_data is not None: if prompt_data is not None:
all_bert_features = torch.cat([prompt_data["bert_features"], item["bert_features"]], 1)\ all_bert_features = torch.cat([prompt_data["bert_features"], item["bert_features"]], 1) \
.to(dtype=precision, device=device) .to(dtype=precision, device=device)
all_phones = torch.LongTensor(prompt_data["phones"]+item["phones"]).to(device) all_phones = torch.LongTensor(prompt_data["phones"] + item["phones"]).to(device)
phones = torch.LongTensor(item["phones"]).to(device) phones = torch.LongTensor(item["phones"]).to(device)
# norm_text = prompt_data["norm_text"]+item["norm_text"] # norm_text = prompt_data["norm_text"]+item["norm_text"]
else: else:
all_bert_features = item["bert_features"]\ all_bert_features = item["bert_features"] \
.to(dtype=precision, device=device) .to(dtype=precision, device=device)
phones = torch.LongTensor(item["phones"]).to(device) phones = torch.LongTensor(item["phones"]).to(device)
all_phones = phones all_phones = phones
# norm_text = item["norm_text"] # norm_text = item["norm_text"]
bert_max_len = max(bert_max_len, all_bert_features.shape[-1]) bert_max_len = max(bert_max_len, all_bert_features.shape[-1])
phones_max_len = max(phones_max_len, phones.shape[-1]) phones_max_len = max(phones_max_len, phones.shape[-1])
phones_list.append(phones) phones_list.append(phones)
phones_len_list.append(phones.shape[-1]) phones_len_list.append(phones.shape[-1])
all_phones_list.append(all_phones) all_phones_list.append(all_phones)
all_phones_len_list.append(all_phones.shape[-1]) all_phones_len_list.append(all_phones.shape[-1])
all_bert_features_list.append(all_bert_features) all_bert_features_list.append(all_bert_features)
norm_text_batch.append(item["norm_text"]) norm_text_batch.append(item["norm_text"])
phones_batch = phones_list phones_batch = phones_list
all_phones_batch = all_phones_list all_phones_batch = all_phones_list
all_bert_features_batch = all_bert_features_list all_bert_features_batch = all_bert_features_list
max_len = max(bert_max_len, phones_max_len) max_len = max(bert_max_len, phones_max_len)
# phones_batch = self.batch_sequences(phones_list, axis=0, pad_value=0, max_length=max_len) # phones_batch = self.batch_sequences(phones_list, axis=0, pad_value=0, max_length=max_len)
#### 直接对phones和bert_features进行pad。padding策略会影响T2S模型生成的结果但不直接影响复读概率。影响复读概率的主要因素是mask的策略 #### 直接对phones和bert_features进行pad。padding策略会影响T2S模型生成的结果但不直接影响复读概率。影响复读概率的主要因素是mask的策略
@ -522,16 +528,16 @@ class TTS:
# all_bert_features_batch = torch.zeros((len(all_bert_features_list), 1024, max_len), dtype=precision, device=device) # all_bert_features_batch = torch.zeros((len(all_bert_features_list), 1024, max_len), dtype=precision, device=device)
# for idx, item in enumerate(all_bert_features_list): # for idx, item in enumerate(all_bert_features_list):
# all_bert_features_batch[idx, :, : item.shape[-1]] = item # all_bert_features_batch[idx, :, : item.shape[-1]] = item
# #### 先对phones进行embedding、对bert_features进行project再pad到相同长度padding策略会影响T2S模型生成的结果但不直接影响复读概率。影响复读概率的主要因素是mask的策略 # #### 先对phones进行embedding、对bert_features进行project再pad到相同长度padding策略会影响T2S模型生成的结果但不直接影响复读概率。影响复读概率的主要因素是mask的策略
# all_phones_list = [self.t2s_model.model.ar_text_embedding(item.to(self.t2s_model.device)) for item in all_phones_list] # all_phones_list = [self.t2s_model.model.ar_text_embedding(item.to(self.t2s_model.device)) for item in all_phones_list]
# all_phones_list = [F.pad(item,(0,0,0,max_len-item.shape[0]),value=0) for item in all_phones_list] # all_phones_list = [F.pad(item,(0,0,0,max_len-item.shape[0]),value=0) for item in all_phones_list]
# all_phones_batch = torch.stack(all_phones_list, dim=0) # all_phones_batch = torch.stack(all_phones_list, dim=0)
# all_bert_features_list = [self.t2s_model.model.bert_proj(item.to(self.t2s_model.device).transpose(0, 1)) for item in all_bert_features_list] # all_bert_features_list = [self.t2s_model.model.bert_proj(item.to(self.t2s_model.device).transpose(0, 1)) for item in all_bert_features_list]
# all_bert_features_list = [F.pad(item,(0,0,0,max_len-item.shape[0]), value=0) for item in all_bert_features_list] # all_bert_features_list = [F.pad(item,(0,0,0,max_len-item.shape[0]), value=0) for item in all_bert_features_list]
# all_bert_features_batch = torch.stack(all_bert_features_list, dim=0) # all_bert_features_batch = torch.stack(all_bert_features_list, dim=0)
batch = { batch = {
"phones": phones_batch, "phones": phones_batch,
"phones_len": torch.LongTensor(phones_len_list).to(device), "phones_len": torch.LongTensor(phones_len_list).to(device),
@ -542,10 +548,10 @@ class TTS:
"max_len": max_len, "max_len": max_len,
} }
_data.append(batch) _data.append(batch)
return _data, batch_index_list return _data, batch_index_list
def recovery_order(self, data:list, batch_index_list:list)->list: def recovery_order(self, data: list, batch_index_list: list) -> list:
''' '''
Recovery the order of the audio according to the batch_index_list. Recovery the order of the audio according to the batch_index_list.
@ -557,20 +563,20 @@ class TTS:
list (List[np.ndarray]): the data in the original order. list (List[np.ndarray]): the data in the original order.
''' '''
length = len(sum(batch_index_list, [])) length = len(sum(batch_index_list, []))
_data = [None]*length _data = [None] * length
for i, index_list in enumerate(batch_index_list): for i, index_list in enumerate(batch_index_list):
for j, index in enumerate(index_list): for j, index in enumerate(index_list):
_data[index] = data[i][j] _data[index] = data[i][j]
return _data return _data
def stop(self,): def stop(self, ):
''' '''
Stop the inference process. Stop the inference process.
''' '''
self.stop_flag = True self.stop_flag = True
@torch.no_grad() @torch.no_grad()
def run(self, inputs:dict): def run(self, inputs: dict):
""" """
Text to speech inference. Text to speech inference.
@ -600,16 +606,16 @@ class TTS:
tuple[int, np.ndarray]: sampling rate and audio data. tuple[int, np.ndarray]: sampling rate and audio data.
""" """
########## variables initialization ########### ########## variables initialization ###########
self.stop_flag:bool = False self.stop_flag: bool = False
text:str = inputs.get("text", "") text: str = inputs.get("text", "")
text_lang:str = inputs.get("text_lang", "") text_lang: str = inputs.get("text_lang", "")
ref_audio_path:str = inputs.get("ref_audio_path", "") ref_audio_path: str = inputs.get("ref_audio_path", "")
prompt_text:str = inputs.get("prompt_text", "") prompt_text: str = inputs.get("prompt_text", "")
prompt_lang:str = inputs.get("prompt_lang", "") prompt_lang: str = inputs.get("prompt_lang", "")
top_k:int = inputs.get("top_k", 5) top_k: int = inputs.get("top_k", 5)
top_p:float = inputs.get("top_p", 1) top_p: float = inputs.get("top_p", 1)
temperature:float = inputs.get("temperature", 1) temperature: float = inputs.get("temperature", 1)
text_split_method:str = inputs.get("text_split_method", "cut0") text_split_method: str = inputs.get("text_split_method", "cut0")
batch_size = inputs.get("batch_size", 1) batch_size = inputs.get("batch_size", 1)
batch_threshold = inputs.get("batch_threshold", 0.75) batch_threshold = inputs.get("batch_threshold", 0.75)
speed_factor = inputs.get("speed_factor", 1.0) speed_factor = inputs.get("speed_factor", 1.0)
@ -638,7 +644,7 @@ class TTS:
if split_bucket: if split_bucket:
print(i18n("分桶处理模式已开启")) print(i18n("分桶处理模式已开启"))
if fragment_interval<0.01: if fragment_interval < 0.01:
fragment_interval = 0.01 fragment_interval = 0.01
print(i18n("分段间隔过小已自动设置为0.01")) print(i18n("分段间隔过小已自动设置为0.01"))
@ -651,8 +657,9 @@ class TTS:
assert prompt_lang in self.configs.languages assert prompt_lang in self.configs.languages
if ref_audio_path in [None, ""] and \ if ref_audio_path in [None, ""] and \
((self.prompt_cache["prompt_semantic"] is None) or (self.prompt_cache["refer_spec"] is None)): ((self.prompt_cache["prompt_semantic"] is None) or (self.prompt_cache["refer_spec"] is None)):
raise ValueError("ref_audio_path cannot be empty, when the reference audio is not set using set_ref_audio()") raise ValueError(
"ref_audio_path cannot be empty, when the reference audio is not set using set_ref_audio()")
###### setting reference audio and prompt text preprocessing ######## ###### setting reference audio and prompt text preprocessing ########
t0 = ttime() t0 = ttime()
@ -668,48 +675,49 @@ class TTS:
self.prompt_cache["prompt_lang"] = prompt_lang self.prompt_cache["prompt_lang"] = prompt_lang
phones, bert_features, norm_text = \ phones, bert_features, norm_text = \
self.text_preprocessor.segment_and_extract_feature_for_text( self.text_preprocessor.segment_and_extract_feature_for_text(
prompt_text, prompt_text,
prompt_lang) prompt_lang)
self.prompt_cache["phones"] = phones self.prompt_cache["phones"] = phones
self.prompt_cache["bert_features"] = bert_features self.prompt_cache["bert_features"] = bert_features
self.prompt_cache["norm_text"] = norm_text self.prompt_cache["norm_text"] = norm_text
###### text preprocessing ######## ###### text preprocessing ########
t1 = ttime() t1 = ttime()
data:list = None data: list = None
if not return_fragment: if not return_fragment:
data = self.text_preprocessor.preprocess(text, text_lang, text_split_method) data = self.text_preprocessor.preprocess(text, text_lang, text_split_method)
if len(data) == 0: if len(data) == 0:
yield self.configs.sampling_rate, np.zeros(int(self.configs.sampling_rate), yield self.configs.sampling_rate, np.zeros(int(self.configs.sampling_rate),
dtype=np.int16) dtype=np.int16)
return return
batch_index_list:list = None batch_index_list: list = None
data, batch_index_list = self.to_batch(data, data, batch_index_list = self.to_batch(data,
prompt_data=self.prompt_cache if not no_prompt_text else None, prompt_data=self.prompt_cache if not no_prompt_text else None,
batch_size=batch_size, batch_size=batch_size,
threshold=batch_threshold, threshold=batch_threshold,
split_bucket=split_bucket, split_bucket=split_bucket,
device=self.configs.device, device=self.configs.device,
precision=self.precision precision=self.precision
) )
else: else:
print(i18n("############ 切分文本 ############")) print(i18n("############ 切分文本 ############"))
texts = self.text_preprocessor.pre_seg_text(text, text_lang, text_split_method) texts = self.text_preprocessor.pre_seg_text(text, text_lang, text_split_method)
data = [] data = []
for i in range(len(texts)): for i in range(len(texts)):
if i%batch_size == 0: if i % batch_size == 0:
data.append([]) data.append([])
data[-1].append(texts[i]) data[-1].append(texts[i])
def make_batch(batch_texts): def make_batch(batch_texts):
batch_data = [] batch_data = []
print(i18n("############ 提取文本Bert特征 ############")) print(i18n("############ 提取文本Bert特征 ############"))
for text in tqdm(batch_texts): for text in tqdm(batch_texts):
phones, bert_features, norm_text = self.text_preprocessor.segment_and_extract_feature_for_text(text, text_lang) phones, bert_features, norm_text = self.text_preprocessor.segment_and_extract_feature_for_text(text,
text_lang)
if phones is None: if phones is None:
continue continue
res={ res = {
"phones": phones, "phones": phones,
"bert_features": bert_features, "bert_features": bert_features,
"norm_text": norm_text, "norm_text": norm_text,
@ -717,17 +725,16 @@ class TTS:
batch_data.append(res) batch_data.append(res)
if len(batch_data) == 0: if len(batch_data) == 0:
return None return None
batch, _ = self.to_batch(batch_data, batch, _ = self.to_batch(batch_data,
prompt_data=self.prompt_cache if not no_prompt_text else None, prompt_data=self.prompt_cache if not no_prompt_text else None,
batch_size=batch_size, batch_size=batch_size,
threshold=batch_threshold, threshold=batch_threshold,
split_bucket=False, split_bucket=False,
device=self.configs.device, device=self.configs.device,
precision=self.precision precision=self.precision
) )
return batch[0] return batch[0]
t2 = ttime() t2 = ttime()
try: try:
print("############ 推理 ############") print("############ 推理 ############")
@ -742,21 +749,21 @@ class TTS:
if item is None: if item is None:
continue continue
batch_phones:List[torch.LongTensor] = item["phones"] batch_phones: List[torch.LongTensor] = item["phones"]
# batch_phones:torch.LongTensor = item["phones"] # batch_phones:torch.LongTensor = item["phones"]
batch_phones_len:torch.LongTensor = item["phones_len"] batch_phones_len: torch.LongTensor = item["phones_len"]
all_phoneme_ids:torch.LongTensor = item["all_phones"] all_phoneme_ids: torch.LongTensor = item["all_phones"]
all_phoneme_lens:torch.LongTensor = item["all_phones_len"] all_phoneme_lens: torch.LongTensor = item["all_phones_len"]
all_bert_features:torch.LongTensor = item["all_bert_features"] all_bert_features: torch.LongTensor = item["all_bert_features"]
norm_text:str = item["norm_text"] norm_text: str = item["norm_text"]
max_len = item["max_len"] max_len = item["max_len"]
print(i18n("前端处理后的文本(每句):"), norm_text) print(i18n("前端处理后的文本(每句):"), norm_text)
if no_prompt_text : if no_prompt_text:
prompt = None prompt = None
else: else:
prompt = self.prompt_cache["prompt_semantic"].expand(len(all_phoneme_ids), -1).to(self.configs.device) prompt = self.prompt_cache["prompt_semantic"].expand(len(all_phoneme_ids), -1).to(
self.configs.device)
pred_semantic_list, idx_list = self.t2s_model.model.infer_panel( pred_semantic_list, idx_list = self.t2s_model.model.infer_panel(
all_phoneme_ids, all_phoneme_ids,
@ -774,14 +781,14 @@ class TTS:
t4 = ttime() t4 = ttime()
t_34 += t4 - t3 t_34 += t4 - t3
refer_audio_spec:torch.Tensor = self.prompt_cache["refer_spec"]\ refer_audio_spec: torch.Tensor = self.prompt_cache["refer_spec"] \
.to(dtype=self.precision, device=self.configs.device) .to(dtype=self.precision, device=self.configs.device)
batch_audio_fragment = [] batch_audio_fragment = []
# 这里要记得加 torch.no_grad() 不然速度慢一大截 # 这里要记得加 torch.no_grad() 不然速度慢一大截
# with torch.no_grad(): # with torch.no_grad():
# ## vits并行推理 method 1 # ## vits并行推理 method 1
# pred_semantic_list = [item[-idx:] for item, idx in zip(pred_semantic_list, idx_list)] # pred_semantic_list = [item[-idx:] for item, idx in zip(pred_semantic_list, idx_list)]
# pred_semantic_len = torch.LongTensor([item.shape[0] for item in pred_semantic_list]).to(self.configs.device) # pred_semantic_len = torch.LongTensor([item.shape[0] for item in pred_semantic_list]).to(self.configs.device)
@ -798,15 +805,17 @@ class TTS:
# ## vits并行推理 method 2 # ## vits并行推理 method 2
pred_semantic_list = [item[-idx:] for item, idx in zip(pred_semantic_list, idx_list)] pred_semantic_list = [item[-idx:] for item, idx in zip(pred_semantic_list, idx_list)]
upsample_rate = math.prod(self.vits_model.upsample_rates) upsample_rate = math.prod(self.vits_model.upsample_rates)
audio_frag_idx = [pred_semantic_list[i].shape[0]*2*upsample_rate for i in range(0, len(pred_semantic_list))] audio_frag_idx = [pred_semantic_list[i].shape[0] * 2 * upsample_rate for i in
audio_frag_end_idx = [ sum(audio_frag_idx[:i+1]) for i in range(0, len(audio_frag_idx))] range(0, len(pred_semantic_list))]
audio_frag_end_idx = [sum(audio_frag_idx[:i + 1]) for i in range(0, len(audio_frag_idx))]
all_pred_semantic = torch.cat(pred_semantic_list).unsqueeze(0).unsqueeze(0).to(self.configs.device) all_pred_semantic = torch.cat(pred_semantic_list).unsqueeze(0).unsqueeze(0).to(self.configs.device)
_batch_phones = torch.cat(batch_phones).unsqueeze(0).to(self.configs.device) _batch_phones = torch.cat(batch_phones).unsqueeze(0).to(self.configs.device)
_batch_audio_fragment = (self.vits_model.decode( _batch_audio_fragment = (self.vits_model.decode(
all_pred_semantic, _batch_phones, refer_audio_spec all_pred_semantic, _batch_phones, refer_audio_spec
).detach()[0, 0, :]) ).detach()[0, 0, :])
audio_frag_end_idx.insert(0, 0) audio_frag_end_idx.insert(0, 0)
batch_audio_fragment= [_batch_audio_fragment[audio_frag_end_idx[i-1]:audio_frag_end_idx[i]] for i in range(1, len(audio_frag_end_idx))] batch_audio_fragment = [_batch_audio_fragment[audio_frag_end_idx[i - 1]:audio_frag_end_idx[i]] for i in
range(1, len(audio_frag_end_idx))]
# ## vits串行推理 # ## vits串行推理
# for i, idx in enumerate(idx_list): # for i, idx in enumerate(idx_list):
@ -823,36 +832,36 @@ class TTS:
t_45 += t5 - t4 t_45 += t5 - t4
if return_fragment: if return_fragment:
print("%.3f\t%.3f\t%.3f\t%.3f" % (t1 - t0, t2 - t1, t4 - t3, t5 - t4)) print("%.3f\t%.3f\t%.3f\t%.3f" % (t1 - t0, t2 - t1, t4 - t3, t5 - t4))
yield self.audio_postprocess([batch_audio_fragment], yield self.audio_postprocess([batch_audio_fragment],
self.configs.sampling_rate, self.configs.sampling_rate,
None, None,
speed_factor, speed_factor,
False, False,
fragment_interval fragment_interval
) )
else: else:
audio.append(batch_audio_fragment) audio.append(batch_audio_fragment)
if self.stop_flag: if self.stop_flag:
yield self.configs.sampling_rate, np.zeros(int(self.configs.sampling_rate), yield self.configs.sampling_rate, np.zeros(int(self.configs.sampling_rate),
dtype=np.int16) dtype=np.int16)
return return
if not return_fragment: if not return_fragment:
print("%.3f\t%.3f\t%.3f\t%.3f" % (t1 - t0, t2 - t1, t_34, t_45)) print("%.3f\t%.3f\t%.3f\t%.3f" % (t1 - t0, t2 - t1, t_34, t_45))
yield self.audio_postprocess(audio, yield self.audio_postprocess(audio,
self.configs.sampling_rate, self.configs.sampling_rate,
batch_index_list, batch_index_list,
speed_factor, speed_factor,
split_bucket, split_bucket,
fragment_interval fragment_interval
) )
except Exception as e: except Exception as e:
traceback.print_exc() traceback.print_exc()
# 必须返回一个空音频, 否则会导致显存不释放。 # 必须返回一个空音频, 否则会导致显存不释放。
yield self.configs.sampling_rate, np.zeros(int(self.configs.sampling_rate), yield self.configs.sampling_rate, np.zeros(int(self.configs.sampling_rate),
dtype=np.int16) dtype=np.int16)
# 重置模型, 否则会导致显存释放不完全。 # 重置模型, 否则会导致显存释放不完全。
del self.t2s_model del self.t2s_model
del self.vits_model del self.vits_model
@ -863,60 +872,56 @@ class TTS:
raise e raise e
finally: finally:
self.empty_cache() self.empty_cache()
def empty_cache(self): def empty_cache(self):
try: try:
if "cuda" in str(self.configs.device): if "cuda" in str(self.configs.device):
torch.cuda.empty_cache() torch.cuda.empty_cache()
elif str(self.configs.device) == "mps": elif str(self.configs.device) == "mps":
torch.mps.empty_cache() torch.mps.empty_cache()
except: except:
pass pass
def audio_postprocess(self, def audio_postprocess(self,
audio:List[torch.Tensor], audio: List[torch.Tensor],
sr:int, sr: int,
batch_index_list:list=None, batch_index_list: list = None,
speed_factor:float=1.0, speed_factor: float = 1.0,
split_bucket:bool=True, split_bucket: bool = True,
fragment_interval:float=0.3 fragment_interval: float = 0.3
)->tuple[int, np.ndarray]: ) -> tuple[int, np.ndarray]:
zero_wav = torch.zeros( zero_wav = torch.zeros(
int(self.configs.sampling_rate * fragment_interval), int(self.configs.sampling_rate * fragment_interval),
dtype=self.precision, dtype=self.precision,
device=self.configs.device device=self.configs.device
) )
for i, batch in enumerate(audio): for i, batch in enumerate(audio):
for j, audio_fragment in enumerate(batch): for j, audio_fragment in enumerate(batch):
max_audio=torch.abs(audio_fragment).max()#简单防止16bit爆音 max_audio = torch.abs(audio_fragment).max() # 简单防止16bit爆音
if max_audio>1: audio_fragment/=max_audio if max_audio > 1: audio_fragment /= max_audio
audio_fragment:torch.Tensor = torch.cat([audio_fragment, zero_wav], dim=0) audio_fragment: torch.Tensor = torch.cat([audio_fragment, zero_wav], dim=0)
audio[i][j] = audio_fragment.cpu().numpy() audio[i][j] = audio_fragment.cpu().numpy()
if split_bucket: if split_bucket:
audio = self.recovery_order(audio, batch_index_list) audio = self.recovery_order(audio, batch_index_list)
else: else:
# audio = [item for batch in audio for item in batch] # audio = [item for batch in audio for item in batch]
audio = sum(audio, []) audio = sum(audio, [])
audio = np.concatenate(audio, 0) audio = np.concatenate(audio, 0)
audio = (audio * 32768).astype(np.int16) audio = (audio * 32768).astype(np.int16)
try: try:
if speed_factor != 1.0: if speed_factor != 1.0:
audio = speed_change(audio, speed=speed_factor, sr=int(sr)) audio = speed_change(audio, speed=speed_factor, sr=int(sr))
except Exception as e: except Exception as e:
print(f"Failed to change speed of audio: \n{e}") print(f"Failed to change speed of audio: \n{e}")
return sr, audio return sr, audio
def speed_change(input_audio: np.ndarray, speed: float, sr: int):
def speed_change(input_audio:np.ndarray, speed:float, sr:int):
# 将 NumPy 数组转换为原始 PCM 流 # 将 NumPy 数组转换为原始 PCM 流
raw_audio = input_audio.astype(np.int16).tobytes() raw_audio = input_audio.astype(np.int16).tobytes()
@ -935,4 +940,4 @@ def speed_change(input_audio:np.ndarray, speed:float, sr:int):
# 将管道输出解码为 NumPy 数组 # 将管道输出解码为 NumPy 数组
processed_audio = np.frombuffer(out, np.int16) processed_audio = np.frombuffer(out, np.int16)
return processed_audio return processed_audio

View File

@ -1,6 +1,7 @@
custom: custom:
bert_base_path: GPT_SoVITS/pretrained_models/chinese-roberta-wwm-ext-large bert_base_path: GPT_SoVITS/pretrained_models/chinese-roberta-wwm-ext-large
cnhuhbert_base_path: GPT_SoVITS/pretrained_models/chinese-hubert-base cnhuhbert_base_path: GPT_SoVITS/pretrained_models/chinese-hubert-base
load_base: true
device: cuda device: cuda
is_half: true is_half: true
t2s_weights_path: GPT_SoVITS/pretrained_models/s1bert25hz-2kh-longer-epoch=68e-step=50232.ckpt t2s_weights_path: GPT_SoVITS/pretrained_models/s1bert25hz-2kh-longer-epoch=68e-step=50232.ckpt

View File

@ -3,6 +3,7 @@ custom:
cnhuhbert_base_path: GPT_SoVITS/pretrained_models/chinese-hubert-base cnhuhbert_base_path: GPT_SoVITS/pretrained_models/chinese-hubert-base
device: cpu device: cpu
is_half: false is_half: false
load_base: false
t2s_weights_path: GPT_weights/jackma-e10.ckpt t2s_weights_path: GPT_weights/jackma-e10.ckpt
vits_weights_path: SoVITS_weights/jackma_e8_s192.pth vits_weights_path: SoVITS_weights/jackma_e8_s192.pth
default: default:

View File

@ -3,6 +3,7 @@ custom:
cnhuhbert_base_path: GPT_SoVITS/pretrained_models/chinese-hubert-base cnhuhbert_base_path: GPT_SoVITS/pretrained_models/chinese-hubert-base
device: cpu device: cpu
is_half: false is_half: false
load_base: false
t2s_weights_path: GPT_weights/liyunlong-e15.ckpt t2s_weights_path: GPT_weights/liyunlong-e15.ckpt
vits_weights_path: SoVITS_weights/liyunlong_e8_s176.pth vits_weights_path: SoVITS_weights/liyunlong_e8_s176.pth
default: default:

View File

@ -3,6 +3,7 @@ custom:
cnhuhbert_base_path: GPT_SoVITS/pretrained_models/chinese-hubert-base cnhuhbert_base_path: GPT_SoVITS/pretrained_models/chinese-hubert-base
device: cpu device: cpu
is_half: false is_half: false
load_base: false
t2s_weights_path: GPT_weights/morgan-e15.ckpt t2s_weights_path: GPT_weights/morgan-e15.ckpt
vits_weights_path: SoVITS_weights/morgan_e8_s120.pth vits_weights_path: SoVITS_weights/morgan_e8_s120.pth
default: default:

View File

@ -3,6 +3,7 @@ custom:
cnhuhbert_base_path: GPT_SoVITS/pretrained_models/chinese-hubert-base cnhuhbert_base_path: GPT_SoVITS/pretrained_models/chinese-hubert-base
device: cpu device: cpu
is_half: false is_half: false
load_base: false
t2s_weights_path: GPT_weights/stephenchow-e15.ckpt t2s_weights_path: GPT_weights/stephenchow-e15.ckpt
vits_weights_path: SoVITS_weights/stephenchow_e8_s112.pth vits_weights_path: SoVITS_weights/stephenchow_e8_s112.pth
default: default:

View File

@ -135,6 +135,9 @@ port = args.port
host = args.bind_addr host = args.bind_addr
argv = sys.argv argv = sys.argv
default_tts_config = TTS_Config()
TTS.init_base_models(default_tts_config)
APP = FastAPI() APP = FastAPI()