diff --git a/GPT_SoVITS/export_torch_script.py b/GPT_SoVITS/export_torch_script.py
index 69817a3..b68dd38 100644
--- a/GPT_SoVITS/export_torch_script.py
+++ b/GPT_SoVITS/export_torch_script.py
@@ -331,7 +331,7 @@ class VitsModel(nn.Module):
def __init__(self, vits_path):
super().__init__()
# dict_s2 = torch.load(vits_path,map_location="cpu")
- dict_s2 = torch.load(vits_path)
+ dict_s2 = torch.load(vits_path, weights_only=False)
self.hps = dict_s2["config"]
if dict_s2["weight"]["enc_p.text_embedding.weight"].shape[0] == 322:
self.hps["model"]["version"] = "v1"
@@ -645,7 +645,7 @@ def export(gpt_path, vits_path, ref_audio_path, ref_text, output_path, export_be
# gpt_path = "GPT_weights_v2/xw-e15.ckpt"
# dict_s1 = torch.load(gpt_path, map_location=device)
- dict_s1 = torch.load(gpt_path)
+ dict_s1 = torch.load(gpt_path, weights_only=False)
raw_t2s = get_raw_t2s_model(dict_s1).to(device)
print("#### get_raw_t2s_model ####")
print(raw_t2s.config)
diff --git a/GPT_SoVITS/inference_webui.py b/GPT_SoVITS/inference_webui.py
index c507b09..21f5f34 100644
--- a/GPT_SoVITS/inference_webui.py
+++ b/GPT_SoVITS/inference_webui.py
@@ -30,32 +30,14 @@ logging.getLogger("multipart.multipart").setLevel(logging.ERROR)
warnings.simplefilter(action="ignore", category=FutureWarning)
version = model_version = os.environ.get("version", "v2")
-path_sovits_v3 = "GPT_SoVITS/pretrained_models/s2Gv3.pth"
-path_sovits_v4 = "GPT_SoVITS/pretrained_models/gsv-v4-pretrained/s2Gv4.pth"
+
+from config import name2sovits_path,name2gpt_path,change_choices,get_weights_names
+SoVITS_names, GPT_names = get_weights_names()
+from config import pretrained_sovits_name
+path_sovits_v3 = pretrained_sovits_name["v3"]
+path_sovits_v4 = pretrained_sovits_name["v4"]
is_exist_s2gv3 = os.path.exists(path_sovits_v3)
is_exist_s2gv4 = os.path.exists(path_sovits_v4)
-pretrained_sovits_name = [
- "GPT_SoVITS/pretrained_models/s2G488k.pth",
- "GPT_SoVITS/pretrained_models/gsv-v2final-pretrained/s2G2333k.pth",
- "GPT_SoVITS/pretrained_models/s2Gv3.pth",
- "GPT_SoVITS/pretrained_models/gsv-v4-pretrained/s2Gv4.pth",
-]
-pretrained_gpt_name = [
- "GPT_SoVITS/pretrained_models/s1bert25hz-2kh-longer-epoch=68e-step=50232.ckpt",
- "GPT_SoVITS/pretrained_models/gsv-v2final-pretrained/s1bert25hz-5kh-longer-epoch=12-step=369668.ckpt",
- "GPT_SoVITS/pretrained_models/s1v3.ckpt",
- "GPT_SoVITS/pretrained_models/s1v3.ckpt",
-]
-
-
-_ = [[], []]
-for i in range(4):
- if os.path.exists(pretrained_gpt_name[i]):
- _[0].append(pretrained_gpt_name[i])
- if os.path.exists(pretrained_sovits_name[i]):
- _[-1].append(pretrained_sovits_name[i])
-pretrained_gpt_name, pretrained_sovits_name = _
-
if os.path.exists("./weight.json"):
pass
@@ -66,28 +48,24 @@ else:
with open("./weight.json", "r", encoding="utf-8") as file:
weight_data = file.read()
weight_data = json.loads(weight_data)
- gpt_path = os.environ.get(
- "gpt_path", weight_data.get("GPT", {}).get(version, pretrained_gpt_name)
- )
- sovits_path = os.environ.get(
- "sovits_path",
- weight_data.get("SoVITS", {}).get(version, pretrained_sovits_name),
- )
+ gpt_path = os.environ.get("gpt_path", weight_data.get("GPT", {}).get(version, GPT_names[-1]))
+ sovits_path = os.environ.get("sovits_path", weight_data.get("SoVITS", {}).get(version, SoVITS_names[0]))
if isinstance(gpt_path, list):
gpt_path = gpt_path[0]
if isinstance(sovits_path, list):
sovits_path = sovits_path[0]
-# gpt_path = os.environ.get(
-# "gpt_path", pretrained_gpt_name
-# )
-# sovits_path = os.environ.get("sovits_path", pretrained_sovits_name)
-cnhubert_base_path = os.environ.get(
- "cnhubert_base_path", "GPT_SoVITS/pretrained_models/chinese-hubert-base"
-)
-bert_path = os.environ.get(
- "bert_path", "GPT_SoVITS/pretrained_models/chinese-roberta-wwm-ext-large"
-)
+# print(2333333)
+# print(os.environ["gpt_path"])
+# print(gpt_path)
+# print(GPT_names)
+# print(weight_data)
+# print(weight_data.get("GPT", {}))
+# print(version)###GPT version里没有s2的v2pro
+# print(weight_data.get("GPT", {}).get(version, GPT_names[-1]))
+
+cnhubert_base_path = os.environ.get("cnhubert_base_path", "GPT_SoVITS/pretrained_models/chinese-hubert-base")
+bert_path = os.environ.get("bert_path", "GPT_SoVITS/pretrained_models/chinese-roberta-wwm-ext-large")
infer_ttswebui = os.environ.get("infer_ttswebui", 9872)
infer_ttswebui = int(infer_ttswebui)
is_share = os.environ.get("is_share", "False")
@@ -231,9 +209,7 @@ def resample(audio_tensor, sr0, sr1):
global resample_transform_dict
key = "%s-%s" % (sr0, sr1)
if key not in resample_transform_dict:
- resample_transform_dict[key] = torchaudio.transforms.Resample(sr0, sr1).to(
- device
- )
+ resample_transform_dict[key] = torchaudio.transforms.Resample(sr0, sr1).to(device)
return resample_transform_dict[key](audio_tensor)
@@ -242,20 +218,15 @@ def resample(audio_tensor, sr0, sr1):
from process_ckpt import get_sovits_version_from_path_fast, load_sovits_new
v3v4set = {"v3", "v4"}
-
-
def change_sovits_weights(sovits_path, prompt_language=None, text_language=None):
+ if "!"in sovits_path:sovits_path=name2sovits_path[sovits_path]
global vq_model, hps, version, model_version, dict_language, if_lora_v3
version, model_version, if_lora_v3 = get_sovits_version_from_path_fast(sovits_path)
print(sovits_path, version, model_version, if_lora_v3)
is_exist = is_exist_s2gv3 if model_version == "v3" else is_exist_s2gv4
+ path_sovits = path_sovits_v3 if model_version == "v3" else path_sovits_v4
if if_lora_v3 == True and is_exist == False:
- info = (
- "GPT_SoVITS/pretrained_models/s2Gv3.pth"
- + f"SoVITS {model_version}"
- + " : "
- + i18n("底模缺失,无法加载相应 LoRA 权重")
- )
+ info = path_sovits + i18n("SoVITS %s 底模缺失,无法加载相应 LoRA 权重" % model_version)
gr.Warning(info)
raise FileExistsError(info)
dict_language = dict_language_v1 if version == "v1" else dict_language_v2
@@ -269,10 +240,7 @@ def change_sovits_weights(sovits_path, prompt_language=None, text_language=None)
prompt_text_update = {"__type__": "update", "value": ""}
prompt_language_update = {"__type__": "update", "value": i18n("中文")}
if text_language in list(dict_language.keys()):
- text_update, text_language_update = {"__type__": "update"}, {
- "__type__": "update",
- "value": text_language,
- }
+ text_update, text_language_update = {"__type__": "update"}, {"__type__": "update", "value": text_language}
else:
text_update = {"__type__": "update", "value": ""}
text_language_update = {"__type__": "update", "value": i18n("中文")}
@@ -293,22 +261,12 @@ def change_sovits_weights(sovits_path, prompt_language=None, text_language=None)
"__type__": "update",
"visible": visible_sample_steps,
"value": 32 if model_version == "v3" else 8,
- "choices": (
- [4, 8, 16, 32, 64, 128] if model_version == "v3" else [4, 8, 16, 32]
- ),
+ "choices": [4, 8, 16, 32, 64, 128] if model_version == "v3" else [4, 8, 16, 32],
},
{"__type__": "update", "visible": visible_inp_refs},
- {
- "__type__": "update",
- "value": False,
- "interactive": True if model_version not in v3v4set else False,
- },
+ {"__type__": "update", "value": False, "interactive": True if model_version not in v3v4set else False},
{"__type__": "update", "visible": True if model_version == "v3" else False},
- {
- "__type__": "update",
- "value": i18n("模型加载中,请等待"),
- "interactive": False,
- },
+ {"__type__": "update", "value": i18n("模型加载中,请等待"), "interactive": False},
)
dict_s2 = load_sovits_new(sovits_path)
@@ -324,13 +282,16 @@ def change_sovits_weights(sovits_path, prompt_language=None, text_language=None)
version = hps.model.version
# print("sovits版本:",hps.model.version)
if model_version not in v3v4set:
+ if "Pro"not in model_version:
+ model_version = version
+ else:
+ hps.model.version = model_version
vq_model = SynthesizerTrn(
hps.data.filter_length // 2 + 1,
hps.train.segment_size // hps.data.hop_length,
n_speakers=hps.data.n_speakers,
**hps.model,
)
- model_version = version
else:
hps.model.version = model_version
vq_model = SynthesizerTrnV3(
@@ -350,17 +311,12 @@ def change_sovits_weights(sovits_path, prompt_language=None, text_language=None)
vq_model = vq_model.to(device)
vq_model.eval()
if if_lora_v3 == False:
- print(
- "loading sovits_%s" % model_version,
- vq_model.load_state_dict(dict_s2["weight"], strict=False),
- )
+ print("loading sovits_%s" % model_version, vq_model.load_state_dict(dict_s2["weight"], strict=False))
else:
path_sovits = path_sovits_v3 if model_version == "v3" else path_sovits_v4
print(
"loading sovits_%spretrained_G" % model_version,
- vq_model.load_state_dict(
- load_sovits_new(path_sovits)["weight"], strict=False
- ),
+ vq_model.load_state_dict(load_sovits_new(path_sovits)["weight"], strict=False),
)
lora_rank = dict_s2["lora_rank"]
lora_config = LoraConfig(
@@ -387,16 +343,10 @@ def change_sovits_weights(sovits_path, prompt_language=None, text_language=None)
"__type__": "update",
"visible": visible_sample_steps,
"value": 32 if model_version == "v3" else 8,
- "choices": (
- [4, 8, 16, 32, 64, 128] if model_version == "v3" else [4, 8, 16, 32]
- ),
+ "choices": [4, 8, 16, 32, 64, 128] if model_version == "v3" else [4, 8, 16, 32],
},
{"__type__": "update", "visible": visible_inp_refs},
- {
- "__type__": "update",
- "value": False,
- "interactive": True if model_version not in v3v4set else False,
- },
+ {"__type__": "update", "value": False, "interactive": True if model_version not in v3v4set else False},
{"__type__": "update", "visible": True if model_version == "v3" else False},
{"__type__": "update", "value": i18n("合成语音"), "interactive": True},
)
@@ -415,9 +365,10 @@ except:
def change_gpt_weights(gpt_path):
+ if "!"in gpt_path:gpt_path=name2gpt_path[gpt_path]
global hz, max_sec, t2s_model, config
hz = 50
- dict_s1 = torch.load(gpt_path, map_location="cpu")
+ dict_s1 = torch.load(gpt_path, map_location="cpu", weights_only=False)
config = dict_s1["config"]
max_sec = config["data"]["max_sec"]
t2s_model = Text2SemanticLightningModule(config, "****", is_train=False)
@@ -442,19 +393,8 @@ import torch
now_dir = os.getcwd()
-
-def init_bigvgan():
- global bigvgan_model, hifigan_model
- from BigVGAN import bigvgan
-
- bigvgan_model = bigvgan.BigVGAN.from_pretrained(
- "%s/GPT_SoVITS/pretrained_models/models--nvidia--bigvgan_v2_24khz_100band_256x"
- % (now_dir,),
- use_cuda_kernel=False,
- ) # if True, RuntimeError: Ninja is required to load C++ extensions
- # remove weight norm in the model and set to eval mode
- bigvgan_model.remove_weight_norm()
- bigvgan_model = bigvgan_model.eval()
+def clean_hifigan_model():
+ global hifigan_model
if hifigan_model:
hifigan_model = hifigan_model.cpu()
hifigan_model = None
@@ -462,14 +402,45 @@ def init_bigvgan():
torch.cuda.empty_cache()
except:
pass
+def clean_bigvgan_model():
+ global bigvgan_model
+ if bigvgan_model:
+ bigvgan_model = bigvgan_model.cpu()
+ bigvgan_model = None
+ try:
+ torch.cuda.empty_cache()
+ except:
+ pass
+def clean_sv_cn_model():
+ global sv_cn_model
+ if sv_cn_model:
+ sv_cn_model.embedding_model = sv_cn_model.embedding_model.cpu()
+ sv_cn_model = None
+ try:
+ torch.cuda.empty_cache()
+ except:
+ pass
+
+def init_bigvgan():
+ global bigvgan_model, hifigan_model,sv_cn_model
+ from BigVGAN import bigvgan
+
+ bigvgan_model = bigvgan.BigVGAN.from_pretrained(
+ "%s/GPT_SoVITS/pretrained_models/models--nvidia--bigvgan_v2_24khz_100band_256x" % (now_dir,),
+ use_cuda_kernel=False,
+ ) # if True, RuntimeError: Ninja is required to load C++ extensions
+ # remove weight norm in the model and set to eval mode
+ bigvgan_model.remove_weight_norm()
+ bigvgan_model = bigvgan_model.eval()
+ clean_hifigan_model()
+ clean_sv_cn_model()
if is_half == True:
bigvgan_model = bigvgan_model.half().to(device)
else:
bigvgan_model = bigvgan_model.to(device)
-
def init_hifigan():
- global hifigan_model, bigvgan_model
+ global hifigan_model, bigvgan_model,sv_cn_model
hifigan_model = Generator(
initial_channel=100,
resblock="1",
@@ -484,48 +455,73 @@ def init_hifigan():
hifigan_model.eval()
hifigan_model.remove_weight_norm()
state_dict_g = torch.load(
- "%s/GPT_SoVITS/pretrained_models/gsv-v4-pretrained/vocoder.pth" % (now_dir,),
- map_location="cpu",
+ "%s/GPT_SoVITS/pretrained_models/gsv-v4-pretrained/vocoder.pth" % (now_dir,), map_location="cpu", weights_only=False
)
print("loading vocoder", hifigan_model.load_state_dict(state_dict_g))
- if bigvgan_model:
- bigvgan_model = bigvgan_model.cpu()
- bigvgan_model = None
- try:
- torch.cuda.empty_cache()
- except:
- pass
+ clean_bigvgan_model()
+ clean_sv_cn_model()
if is_half == True:
hifigan_model = hifigan_model.half().to(device)
else:
hifigan_model = hifigan_model.to(device)
+from sv import SV
+def init_sv_cn():
+ global hifigan_model, bigvgan_model,sv_cn_model
+ sv_cn_model = SV(device, is_half)
+ clean_bigvgan_model()
+ clean_hifigan_model()
-bigvgan_model = hifigan_model = None
+
+bigvgan_model = hifigan_model = sv_cn_model = None
if model_version == "v3":
init_bigvgan()
if model_version == "v4":
init_hifigan()
+if model_version in {"v2Pro","v2ProPlus"}:
+ init_sv_cn()
+resample_transform_dict={}
+def resample(audio_tensor, sr0,sr1,device):
+ global resample_transform_dict
+ key="%s-%s-%s"%(sr0,sr1,str(device))
+ if key not in resample_transform_dict:
+ resample_transform_dict[key] = torchaudio.transforms.Resample(
+ sr0, sr1
+ ).to(device)
+ return resample_transform_dict[key](audio_tensor)
-def get_spepc(hps, filename):
+def get_spepc(hps, filename,dtype,device,is_v2pro=False):
# audio = load_audio(filename, int(hps.data.sampling_rate))
- audio, sampling_rate = librosa.load(filename, sr=int(hps.data.sampling_rate))
- audio = torch.FloatTensor(audio)
+
+ # audio, sampling_rate = librosa.load(filename, sr=int(hps.data.sampling_rate))
+ # audio = torch.FloatTensor(audio)
+
+ sr1=int(hps.data.sampling_rate)
+ audio, sr0=torchaudio.load(filename)
+ if sr0!=sr1:
+ audio=audio.to(device)
+ if(audio.shape[0]==2):audio=audio.mean(0).unsqueeze(0)
+ audio=resample(audio,sr0,sr1,device)
+ else:
+ audio=audio.to(device)
+ if(audio.shape[0]==2):audio=audio.mean(0).unsqueeze(0)
+
maxx = audio.abs().max()
if maxx > 1:
audio /= min(2, maxx)
- audio_norm = audio
- audio_norm = audio_norm.unsqueeze(0)
spec = spectrogram_torch(
- audio_norm,
+ audio,
hps.data.filter_length,
hps.data.sampling_rate,
hps.data.hop_length,
hps.data.win_length,
center=False,
)
- return spec
+ spec=spec.to(dtype)
+ if is_v2pro==True:
+ audio=resample(audio,sr1,16000,device).to(dtype)
+ return spec,audio
def clean_text_inf(text, language, version):
@@ -588,9 +584,7 @@ def get_phones_and_bert(text, language, version, final=False):
formattext = chinese.mix_text_normalize(formattext)
return get_phones_and_bert(formattext, "zh", version)
else:
- phones, word2ph, norm_text = clean_text_inf(
- formattext, language, version
- )
+ phones, word2ph, norm_text = clean_text_inf(formattext, language, version)
bert = get_bert_feature(norm_text, word2ph).to(device)
elif language == "all_yue" and re.search(r"[A-Za-z]", formattext):
formattext = re.sub(r"[a-z]", lambda x: x.group(0).upper(), formattext)
@@ -716,11 +710,7 @@ def audio_sr(audio, sr):
try:
sr_model = AP_BWE(device, DictToAttrRecursive)
except FileNotFoundError:
- gr.Warning(
- i18n(
- "你没有下载超分模型的参数,因此不进行超分。如想超分请先参照教程把文件下载好"
- )
- )
+ gr.Warning(i18n("你没有下载超分模型的参数,因此不进行超分。如想超分请先参照教程把文件下载好"))
return audio.cpu().detach().numpy(), sr
return sr_model(audio, sr)
@@ -764,6 +754,10 @@ def get_tts_wav(
ref_free = False # s2v3暂不支持ref_free
else:
if_sr = False
+ if model_version not in {"v3","v4","v2Pro","v2ProPlus"}:
+ clean_bigvgan_model()
+ clean_hifigan_model()
+ clean_sv_cn_model()
t0 = ttime()
prompt_language = dict_language[prompt_language]
text_language = dict_language[text_language]
@@ -798,11 +792,7 @@ def get_tts_wav(
else:
wav16k = wav16k.to(device)
wav16k = torch.cat([wav16k, zero_wav_torch])
- ssl_content = ssl_model.model(wav16k.unsqueeze(0))[
- "last_hidden_state"
- ].transpose(
- 1, 2
- ) # .float()
+ ssl_content = ssl_model.model(wav16k.unsqueeze(0))["last_hidden_state"].transpose(1, 2) # .float()
codes = vq_model.extract_latent(ssl_content)
prompt_semantic = codes[0, 0]
prompt = prompt_semantic.unsqueeze(0).to(device)
@@ -829,9 +819,7 @@ def get_tts_wav(
audio_opt = []
###s2v3暂不支持ref_free
if not ref_free:
- phones1, bert1, norm_text1 = get_phones_and_bert(
- prompt_text, prompt_language, version
- )
+ phones1, bert1, norm_text1 = get_phones_and_bert(prompt_text, prompt_language, version)
for i_text, text in enumerate(texts):
# 解决输入目标文本的空行导致报错的问题
@@ -844,9 +832,7 @@ def get_tts_wav(
print(i18n("前端处理后的文本(每句):"), norm_text2)
if not ref_free:
bert = torch.cat([bert1, bert2], 1)
- all_phoneme_ids = (
- torch.LongTensor(phones1 + phones2).to(device).unsqueeze(0)
- )
+ all_phoneme_ids = torch.LongTensor(phones1 + phones2).to(device).unsqueeze(0)
else:
bert = bert2
all_phoneme_ids = torch.LongTensor(phones2).to(device).unsqueeze(0)
@@ -875,31 +861,37 @@ def get_tts_wav(
pred_semantic = pred_semantic[:, -idx:].unsqueeze(0)
cache[i_text] = pred_semantic
t3 = ttime()
+ is_v2pro=model_version in {"v2Pro","v2ProPlus"}
+ # print(23333,is_v2pro,model_version)
###v3不存在以下逻辑和inp_refs
if model_version not in v3v4set:
refers = []
+ if is_v2pro:
+ sv_emb=[]
+ if sv_cn_model == None:
+ init_sv_cn()
if inp_refs:
for path in inp_refs:
- try:
- refer = get_spepc(hps, path.name).to(dtype).to(device)
+ try:#####这里加上提取sv的逻辑,要么一堆sv一堆refer,要么单个sv单个refer
+ refer,audio_tensor = get_spepc(hps, path.name,dtype,device,is_v2pro)
refers.append(refer)
+ if is_v2pro:
+ sv_emb.append(sv_cn_model.compute_embedding3(audio_tensor))
except:
traceback.print_exc()
if len(refers) == 0:
- refers = [get_spepc(hps, ref_wav_path).to(dtype).to(device)]
- audio = vq_model.decode(
- pred_semantic,
- torch.LongTensor(phones2).to(device).unsqueeze(0),
- refers,
- speed=speed,
- )[0][
- 0
- ] # .cpu().detach().numpy()
+ refers,audio_tensor = get_spepc(hps, ref_wav_path,dtype,device,is_v2pro)
+ refers=[refers]
+ if is_v2pro:
+ sv_emb=[sv_cn_model.compute_embedding3(audio_tensor)]
+ if is_v2pro:
+ audio = vq_model.decode(pred_semantic, torch.LongTensor(phones2).to(device).unsqueeze(0), refers, speed=speed,sv_emb=sv_emb)[0][0]
+ else:
+ audio = vq_model.decode(pred_semantic, torch.LongTensor(phones2).to(device).unsqueeze(0), refers, speed=speed)[0][0]
else:
- refer = get_spepc(hps, ref_wav_path).to(device).to(dtype)
+ refer,audio_tensor = get_spepc(hps, ref_wav_path,dtype,device)
phoneme_ids0 = torch.LongTensor(phones1).to(device).unsqueeze(0)
phoneme_ids1 = torch.LongTensor(phones2).to(device).unsqueeze(0)
- # print(11111111, phoneme_ids0, phoneme_ids1)
fea_ref, ge = vq_model.decode_encp(prompt.unsqueeze(0), phoneme_ids0, refer)
ref_audio, sr = torchaudio.load(ref_wav_path)
ref_audio = ref_audio.to(device).float()
@@ -922,9 +914,7 @@ def get_tts_wav(
T_min = Tref
chunk_len = Tchunk - T_min
mel2 = mel2.to(dtype)
- fea_todo, ge = vq_model.decode_encp(
- pred_semantic, phoneme_ids1, refer, ge, speed
- )
+ fea_todo, ge = vq_model.decode_encp(pred_semantic, phoneme_ids1, refer, ge, speed)
cfm_resss = []
idx = 0
while 1:
@@ -934,11 +924,7 @@ def get_tts_wav(
idx += chunk_len
fea = torch.cat([fea_ref, fea_todo_chunk], 2).transpose(2, 1)
cfm_res = vq_model.cfm.inference(
- fea,
- torch.LongTensor([fea.size(1)]).to(fea.device),
- mel2,
- sample_steps,
- inference_cfg_rate=0,
+ fea, torch.LongTensor([fea.size(1)]).to(fea.device), mel2, sample_steps, inference_cfg_rate=0
)
cfm_res = cfm_res[:, :, mel2.shape[2] :]
mel2 = cfm_res[:, :, -T_min:]
@@ -966,7 +952,7 @@ def get_tts_wav(
t1 = ttime()
print("%.3f\t%.3f\t%.3f\t%.3f" % (t[0], sum(t[1::3]), sum(t[2::3]), sum(t[3::3])))
audio_opt = torch.cat(audio_opt, 0) # np.concatenate
- if model_version in {"v1", "v2"}:
+ if model_version in {"v1", "v2", "v2Pro", "v2ProPlus"}:
opt_sr = 32000
elif model_version == "v3":
opt_sr = 24000
@@ -1065,13 +1051,7 @@ def cut5(inp):
for i, char in enumerate(inp):
if char in punds:
- if (
- char == "."
- and i > 0
- and i < len(inp) - 1
- and inp[i - 1].isdigit()
- and inp[i + 1].isdigit()
- ):
+ if char == "." and i > 0 and i < len(inp) - 1 and inp[i - 1].isdigit() and inp[i + 1].isdigit():
items.append(char)
else:
items.append(char)
@@ -1106,46 +1086,6 @@ def process_text(texts):
_text.append(text)
return _text
-
-def change_choices():
- SoVITS_names, GPT_names = get_weights_names(GPT_weight_root, SoVITS_weight_root)
- return {
- "choices": sorted(SoVITS_names, key=custom_sort_key),
- "__type__": "update",
- }, {
- "choices": sorted(GPT_names, key=custom_sort_key),
- "__type__": "update",
- }
-
-
-SoVITS_weight_root = [
- "SoVITS_weights",
- "SoVITS_weights_v2",
- "SoVITS_weights_v3",
- "SoVITS_weights_v4",
-]
-GPT_weight_root = ["GPT_weights", "GPT_weights_v2", "GPT_weights_v3", "GPT_weights_v4"]
-for path in SoVITS_weight_root + GPT_weight_root:
- os.makedirs(path, exist_ok=True)
-
-
-def get_weights_names(GPT_weight_root, SoVITS_weight_root):
- SoVITS_names = [i for i in pretrained_sovits_name]
- for path in SoVITS_weight_root:
- for name in os.listdir(path):
- if name.endswith(".pth"):
- SoVITS_names.append("%s/%s" % (path, name))
- GPT_names = [i for i in pretrained_gpt_name]
- for path in GPT_weight_root:
- for name in os.listdir(path):
- if name.endswith(".ckpt"):
- GPT_names.append("%s/%s" % (path, name))
- return SoVITS_names, GPT_names
-
-
-SoVITS_names, GPT_names = get_weights_names(GPT_weight_root, SoVITS_weight_root)
-
-
def html_center(text, label="p"):
return f"""
<{label} style="margin: 0; padding: 0;">{text}{label}>
@@ -1160,13 +1100,9 @@ def html_left(text, label="p"):
with gr.Blocks(title="GPT-SoVITS WebUI", analytics_enabled=False) as app:
gr.Markdown(
- value=i18n(
- "本软件以MIT协议开源, 作者不对软件具备任何控制力, 使用软件者、传播软件导出的声音者自负全责."
- )
+ value=i18n("本软件以MIT协议开源, 作者不对软件具备任何控制力, 使用软件者、传播软件导出的声音者自负全责.")
+ "
"
- + i18n(
- "如不认可该条款, 则不能使用或引用软件包内任何代码和文件. 详见根目录LICENSE."
- )
+ + i18n("如不认可该条款, 则不能使用或引用软件包内任何代码和文件. 详见根目录LICENSE.")
)
with gr.Group():
gr.Markdown(html_center(i18n("模型切换"), "h3"))
@@ -1185,19 +1121,11 @@ with gr.Blocks(title="GPT-SoVITS WebUI", analytics_enabled=False) as app:
interactive=True,
scale=14,
)
- refresh_button = gr.Button(
- i18n("刷新模型路径"), variant="primary", scale=14
- )
- refresh_button.click(
- fn=change_choices, inputs=[], outputs=[SoVITS_dropdown, GPT_dropdown]
- )
+ refresh_button = gr.Button(i18n("刷新模型路径"), variant="primary", scale=14)
+ refresh_button.click(fn=change_choices, inputs=[], outputs=[SoVITS_dropdown, GPT_dropdown])
gr.Markdown(html_center(i18n("*请上传并填写参考信息"), "h3"))
with gr.Row():
- inp_ref = gr.Audio(
- label=i18n("请上传3~10秒内参考音频,超过会报错!"),
- type="filepath",
- scale=13,
- )
+ inp_ref = gr.Audio(label=i18n("请上传3~10秒内参考音频,超过会报错!"), type="filepath", scale=13)
with gr.Column(scale=13):
ref_text_free = gr.Checkbox(
label=i18n("开启无参考文本模式。不填参考文本亦相当于开启。")
@@ -1211,18 +1139,10 @@ with gr.Blocks(title="GPT-SoVITS WebUI", analytics_enabled=False) as app:
html_left(
i18n("使用无参考文本模式时建议使用微调的GPT")
+ "
"
- + i18n(
- "听不清参考音频说的啥(不晓得写啥)可以开。开启后无视填写的参考文本。"
- )
+ + i18n("听不清参考音频说的啥(不晓得写啥)可以开。开启后无视填写的参考文本。")
)
)
- prompt_text = gr.Textbox(
- label=i18n("参考音频的文本"),
- value="",
- lines=5,
- max_lines=5,
- scale=1,
- )
+ prompt_text = gr.Textbox(label=i18n("参考音频的文本"), value="", lines=5, max_lines=5, scale=1)
with gr.Column(scale=14):
prompt_language = gr.Dropdown(
label=i18n("参考音频的语种"),
@@ -1249,21 +1169,13 @@ with gr.Blocks(title="GPT-SoVITS WebUI", analytics_enabled=False) as app:
gr.Radio(
label=i18n("采样步数,如果觉得电,提高试试,如果觉得慢,降低试试"),
value=32 if model_version == "v3" else 8,
- choices=(
- [4, 8, 16, 32, 64, 128]
- if model_version == "v3"
- else [4, 8, 16, 32]
- ),
+ choices=[4, 8, 16, 32, 64, 128] if model_version == "v3" else [4, 8, 16, 32],
visible=True,
)
if model_version in v3v4set
else gr.Radio(
label=i18n("采样步数,如果觉得电,提高试试,如果觉得慢,降低试试"),
- choices=(
- [4, 8, 16, 32, 64, 128]
- if model_version == "v3"
- else [4, 8, 16, 32]
- ),
+ choices=[4, 8, 16, 32, 64, 128] if model_version == "v3" else [4, 8, 16, 32],
visible=False,
value=32 if model_version == "v3" else 8,
)
@@ -1278,9 +1190,7 @@ with gr.Blocks(title="GPT-SoVITS WebUI", analytics_enabled=False) as app:
gr.Markdown(html_center(i18n("*请填写需要合成的目标文本和语种模式"), "h3"))
with gr.Row():
with gr.Column(scale=13):
- text = gr.Textbox(
- label=i18n("需要合成的文本"), value="", lines=26, max_lines=26
- )
+ text = gr.Textbox(label=i18n("需要合成的文本"), value="", lines=26, max_lines=26)
with gr.Column(scale=7):
text_language = gr.Dropdown(
label=i18n("需要合成的语种") + i18n(".限制范围越小判别效果越好。"),
@@ -1312,13 +1222,7 @@ with gr.Blocks(title="GPT-SoVITS WebUI", analytics_enabled=False) as app:
)
with gr.Row():
speed = gr.Slider(
- minimum=0.6,
- maximum=1.65,
- step=0.05,
- label=i18n("语速"),
- value=1,
- interactive=True,
- scale=1,
+ minimum=0.6, maximum=1.65, step=0.05, label=i18n("语速"), value=1, interactive=True, scale=1
)
pause_second_slider = gr.Slider(
minimum=0.1,
@@ -1329,46 +1233,22 @@ with gr.Blocks(title="GPT-SoVITS WebUI", analytics_enabled=False) as app:
interactive=True,
scale=1,
)
- gr.Markdown(
- html_center(
- i18n("GPT采样参数(无参考文本时不要太低。不懂就用默认):")
- )
- )
+ gr.Markdown(html_center(i18n("GPT采样参数(无参考文本时不要太低。不懂就用默认):")))
top_k = gr.Slider(
- minimum=1,
- maximum=100,
- step=1,
- label=i18n("top_k"),
- value=15,
- interactive=True,
- scale=1,
+ minimum=1, maximum=100, step=1, label=i18n("top_k"), value=15, interactive=True, scale=1
)
top_p = gr.Slider(
- minimum=0,
- maximum=1,
- step=0.05,
- label=i18n("top_p"),
- value=1,
- interactive=True,
- scale=1,
+ minimum=0, maximum=1, step=0.05, label=i18n("top_p"), value=1, interactive=True, scale=1
)
temperature = gr.Slider(
- minimum=0,
- maximum=1,
- step=0.05,
- label=i18n("temperature"),
- value=1,
- interactive=True,
- scale=1,
+ minimum=0, maximum=1, step=0.05, label=i18n("temperature"), value=1, interactive=True, scale=1
)
# with gr.Column():
# gr.Markdown(value=i18n("手工调整音素。当音素框不为空时使用手工音素输入推理,无视目标文本框。"))
# phoneme=gr.Textbox(label=i18n("音素框"), value="")
# get_phoneme_button = gr.Button(i18n("目标文本转音素"), variant="primary")
with gr.Row():
- inference_button = gr.Button(
- value=i18n("合成语音"), variant="primary", size="lg", scale=25
- )
+ inference_button = gr.Button(value=i18n("合成语音"), variant="primary", size="lg", scale=25)
output = gr.Audio(label=i18n("输出的语音"), scale=14)
inference_button.click(
diff --git a/GPT_SoVITS/inference_webui_fast.py b/GPT_SoVITS/inference_webui_fast.py
index 6bc4be8..342e7ee 100644
--- a/GPT_SoVITS/inference_webui_fast.py
+++ b/GPT_SoVITS/inference_webui_fast.py
@@ -98,13 +98,23 @@ cut_method = {
i18n("按标点符号切"): "cut5",
}
+from config import name2sovits_path,name2gpt_path,change_choices,get_weights_names
+SoVITS_names, GPT_names = get_weights_names()
+from config import pretrained_sovits_name
+path_sovits_v3 = pretrained_sovits_name["v3"]
+path_sovits_v4 = pretrained_sovits_name["v4"]
+is_exist_s2gv3 = os.path.exists(path_sovits_v3)
+is_exist_s2gv4 = os.path.exists(path_sovits_v4)
+
tts_config = TTS_Config("GPT_SoVITS/configs/tts_infer.yaml")
tts_config.device = device
tts_config.is_half = is_half
tts_config.version = version
if gpt_path is not None:
+ if "!"in gpt_path:gpt_path=name2gpt_path[gpt_path]
tts_config.t2s_weights_path = gpt_path
if sovits_path is not None:
+ if "!"in sovits_path:sovits_path=name2sovits_path[sovits_path]
tts_config.vits_weights_path = sovits_path
if cnhubert_base_path is not None:
tts_config.cnhuhbert_base_path = cnhubert_base_path
@@ -147,11 +157,7 @@ def inference(
"text": text,
"text_lang": dict_language[text_lang],
"ref_audio_path": ref_audio_path,
- "aux_ref_audio_paths": (
- [item.name for item in aux_ref_audio_paths]
- if aux_ref_audio_paths is not None
- else []
- ),
+ "aux_ref_audio_paths": [item.name for item in aux_ref_audio_paths] if aux_ref_audio_paths is not None else [],
"prompt_text": prompt_text if not ref_text_free else "",
"prompt_lang": dict_language[prompt_lang],
"top_k": top_k,
@@ -183,44 +189,6 @@ def custom_sort_key(s):
parts = [int(part) if part.isdigit() else part for part in parts]
return parts
-
-def change_choices():
- SoVITS_names, GPT_names = get_weights_names(GPT_weight_root, SoVITS_weight_root)
- return {
- "choices": sorted(SoVITS_names, key=custom_sort_key),
- "__type__": "update",
- }, {
- "choices": sorted(GPT_names, key=custom_sort_key),
- "__type__": "update",
- }
-
-
-path_sovits_v3 = "GPT_SoVITS/pretrained_models/s2Gv3.pth"
-path_sovits_v4 = "GPT_SoVITS/pretrained_models/gsv-v4-pretrained/s2Gv4.pth"
-is_exist_s2gv3 = os.path.exists(path_sovits_v3)
-is_exist_s2gv4 = os.path.exists(path_sovits_v4)
-pretrained_sovits_name = [
- "GPT_SoVITS/pretrained_models/s2G488k.pth",
- "GPT_SoVITS/pretrained_models/gsv-v2final-pretrained/s2G2333k.pth",
- "GPT_SoVITS/pretrained_models/s2Gv3.pth",
- "GPT_SoVITS/pretrained_models/gsv-v4-pretrained/s2Gv4.pth",
-]
-pretrained_gpt_name = [
- "GPT_SoVITS/pretrained_models/s1bert25hz-2kh-longer-epoch=68e-step=50232.ckpt",
- "GPT_SoVITS/pretrained_models/gsv-v2final-pretrained/s1bert25hz-5kh-longer-epoch=12-step=369668.ckpt",
- "GPT_SoVITS/pretrained_models/s1v3.ckpt",
- "GPT_SoVITS/pretrained_models/s1v3.ckpt",
-]
-
-
-_ = [[], []]
-for i in range(4):
- if os.path.exists(pretrained_gpt_name[i]):
- _[0].append(pretrained_gpt_name[i])
- if os.path.exists(pretrained_sovits_name[i]):
- _[-1].append(pretrained_sovits_name[i])
-pretrained_gpt_name, pretrained_sovits_name = _
-
if os.path.exists("./weight.json"):
pass
else:
@@ -230,65 +198,24 @@ else:
with open("./weight.json", "r", encoding="utf-8") as file:
weight_data = file.read()
weight_data = json.loads(weight_data)
- gpt_path = os.environ.get(
- "gpt_path", weight_data.get("GPT", {}).get(version, pretrained_gpt_name)
- )
- sovits_path = os.environ.get(
- "sovits_path",
- weight_data.get("SoVITS", {}).get(version, pretrained_sovits_name),
- )
+ gpt_path = os.environ.get("gpt_path", weight_data.get("GPT", {}).get(version, GPT_names[-1]))
+ sovits_path = os.environ.get("sovits_path", weight_data.get("SoVITS", {}).get(version, SoVITS_names[0]))
if isinstance(gpt_path, list):
gpt_path = gpt_path[0]
if isinstance(sovits_path, list):
sovits_path = sovits_path[0]
-
-SoVITS_weight_root = [
- "SoVITS_weights",
- "SoVITS_weights_v2",
- "SoVITS_weights_v3",
- "SoVITS_weights_v4",
-]
-GPT_weight_root = ["GPT_weights", "GPT_weights_v2", "GPT_weights_v3", "GPT_weights_v4"]
-for path in SoVITS_weight_root + GPT_weight_root:
- os.makedirs(path, exist_ok=True)
-
-
-def get_weights_names(GPT_weight_root, SoVITS_weight_root):
- SoVITS_names = [i for i in pretrained_sovits_name]
- for path in SoVITS_weight_root:
- for name in os.listdir(path):
- if name.endswith(".pth"):
- SoVITS_names.append("%s/%s" % (path, name))
- GPT_names = [i for i in pretrained_gpt_name]
- for path in GPT_weight_root:
- for name in os.listdir(path):
- if name.endswith(".ckpt"):
- GPT_names.append("%s/%s" % (path, name))
- return SoVITS_names, GPT_names
-
-
-SoVITS_names, GPT_names = get_weights_names(GPT_weight_root, SoVITS_weight_root)
-
-
from process_ckpt import get_sovits_version_from_path_fast
-
v3v4set = {"v3", "v4"}
-
-
def change_sovits_weights(sovits_path, prompt_language=None, text_language=None):
+ if "!"in sovits_path:sovits_path=name2sovits_path[sovits_path]
global version, model_version, dict_language, if_lora_v3
version, model_version, if_lora_v3 = get_sovits_version_from_path_fast(sovits_path)
# print(sovits_path,version, model_version, if_lora_v3)
is_exist = is_exist_s2gv3 if model_version == "v3" else is_exist_s2gv4
path_sovits = path_sovits_v3 if model_version == "v3" else path_sovits_v4
if if_lora_v3 == True and is_exist == False:
- info = (
- path_sovits
- + f"SoVITS {model_version}"
- + " : "
- + i18n("底模缺失,无法加载相应 LoRA 权重")
- )
+ info = path_sovits + i18n("SoVITS %s 底模缺失,无法加载相应 LoRA 权重" % model_version)
gr.Warning(info)
raise FileExistsError(info)
dict_language = dict_language_v1 if version == "v1" else dict_language_v2
@@ -302,10 +229,7 @@ def change_sovits_weights(sovits_path, prompt_language=None, text_language=None)
prompt_text_update = {"__type__": "update", "value": ""}
prompt_language_update = {"__type__": "update", "value": i18n("中文")}
if text_language in list(dict_language.keys()):
- text_update, text_language_update = {"__type__": "update"}, {
- "__type__": "update",
- "value": text_language,
- }
+ text_update, text_language_update = {"__type__": "update"}, {"__type__": "update", "value": text_language}
else:
text_update = {"__type__": "update", "value": ""}
text_language_update = {"__type__": "update", "value": i18n("中文")}
@@ -324,15 +248,8 @@ def change_sovits_weights(sovits_path, prompt_language=None, text_language=None)
text_language_update,
{"__type__": "update", "interactive": visible_sample_steps, "value": 32},
{"__type__": "update", "visible": visible_inp_refs},
- {
- "__type__": "update",
- "interactive": True if model_version not in v3v4set else False,
- },
- {
- "__type__": "update",
- "value": i18n("模型加载中,请等待"),
- "interactive": False,
- },
+ {"__type__": "update", "interactive": True if model_version not in v3v4set else False},
+ {"__type__": "update", "value": i18n("模型加载中,请等待"), "interactive": False},
)
tts_pipeline.init_vits_weights(sovits_path)
@@ -345,10 +262,7 @@ def change_sovits_weights(sovits_path, prompt_language=None, text_language=None)
text_language_update,
{"__type__": "update", "interactive": visible_sample_steps, "value": 32},
{"__type__": "update", "visible": visible_inp_refs},
- {
- "__type__": "update",
- "interactive": True if model_version not in v3v4set else False,
- },
+ {"__type__": "update", "interactive": True if model_version not in v3v4set else False},
{"__type__": "update", "value": i18n("合成语音"), "interactive": True},
)
with open("./weight.json") as f:
@@ -361,13 +275,9 @@ def change_sovits_weights(sovits_path, prompt_language=None, text_language=None)
with gr.Blocks(title="GPT-SoVITS WebUI", analytics_enabled=False) as app:
gr.Markdown(
- value=i18n(
- "本软件以MIT协议开源, 作者不对软件具备任何控制力, 使用软件者、传播软件导出的声音者自负全责."
- )
+ value=i18n("本软件以MIT协议开源, 作者不对软件具备任何控制力, 使用软件者、传播软件导出的声音者自负全责.")
+ "
"
- + i18n(
- "如不认可该条款, 则不能使用或引用软件包内任何代码和文件. 详见根目录LICENSE."
- )
+ + i18n("如不认可该条款, 则不能使用或引用软件包内任何代码和文件. 详见根目录LICENSE.")
)
with gr.Column():
@@ -387,18 +297,13 @@ with gr.Blocks(title="GPT-SoVITS WebUI", analytics_enabled=False) as app:
interactive=True,
)
refresh_button = gr.Button(i18n("刷新模型路径"), variant="primary")
- refresh_button.click(
- fn=change_choices, inputs=[], outputs=[SoVITS_dropdown, GPT_dropdown]
- )
+ refresh_button.click(fn=change_choices, inputs=[], outputs=[SoVITS_dropdown, GPT_dropdown])
with gr.Row():
with gr.Column():
gr.Markdown(value=i18n("*请上传并填写参考信息"))
with gr.Row():
- inp_ref = gr.Audio(
- label=i18n("主参考音频(请上传3~10秒内参考音频,超过会报错!)"),
- type="filepath",
- )
+ inp_ref = gr.Audio(label=i18n("主参考音频(请上传3~10秒内参考音频,超过会报错!)"), type="filepath")
inp_refs = gr.File(
label=i18n("辅参考音频(可选多个,或不选)"),
file_count="multiple",
@@ -407,9 +312,7 @@ with gr.Blocks(title="GPT-SoVITS WebUI", analytics_enabled=False) as app:
prompt_text = gr.Textbox(label=i18n("主参考音频的文本"), value="", lines=2)
with gr.Row():
prompt_language = gr.Dropdown(
- label=i18n("主参考音频的语种"),
- choices=list(dict_language.keys()),
- value=i18n("中文"),
+ label=i18n("主参考音频的语种"), choices=list(dict_language.keys()), value=i18n("中文")
)
with gr.Column():
ref_text_free = gr.Checkbox(
@@ -421,20 +324,14 @@ with gr.Blocks(title="GPT-SoVITS WebUI", analytics_enabled=False) as app:
gr.Markdown(
i18n("使用无参考文本模式时建议使用微调的GPT")
+ "
"
- + i18n(
- "听不清参考音频说的啥(不晓得写啥)可以开。开启后无视填写的参考文本。"
- )
+ + i18n("听不清参考音频说的啥(不晓得写啥)可以开。开启后无视填写的参考文本。")
)
with gr.Column():
gr.Markdown(value=i18n("*请填写需要合成的目标文本和语种模式"))
- text = gr.Textbox(
- label=i18n("需要合成的文本"), value="", lines=20, max_lines=20
- )
+ text = gr.Textbox(label=i18n("需要合成的文本"), value="", lines=20, max_lines=20)
text_language = gr.Dropdown(
- label=i18n("需要合成的文本的语种"),
- choices=list(dict_language.keys()),
- value=i18n("中文"),
+ label=i18n("需要合成的文本的语种"), choices=list(dict_language.keys()), value=i18n("中文")
)
with gr.Group():
@@ -443,69 +340,27 @@ with gr.Blocks(title="GPT-SoVITS WebUI", analytics_enabled=False) as app:
with gr.Column():
with gr.Row():
batch_size = gr.Slider(
- minimum=1,
- maximum=200,
- step=1,
- label=i18n("batch_size"),
- value=20,
- interactive=True,
+ minimum=1, maximum=200, step=1, label=i18n("batch_size"), value=20, interactive=True
)
sample_steps = gr.Radio(
- label=i18n("采样步数(仅对V3/4生效)"),
- value=32,
- choices=[4, 8, 16, 32, 64, 128],
- visible=True,
+ label=i18n("采样步数(仅对V3/4生效)"), value=32, choices=[4, 8, 16, 32, 64, 128], visible=True
)
with gr.Row():
fragment_interval = gr.Slider(
- minimum=0.01,
- maximum=1,
- step=0.01,
- label=i18n("分段间隔(秒)"),
- value=0.3,
- interactive=True,
+ minimum=0.01, maximum=1, step=0.01, label=i18n("分段间隔(秒)"), value=0.3, interactive=True
)
speed_factor = gr.Slider(
- minimum=0.6,
- maximum=1.65,
- step=0.05,
- label="语速",
- value=1.0,
- interactive=True,
+ minimum=0.6, maximum=1.65, step=0.05, label="语速", value=1.0, interactive=True
)
with gr.Row():
- top_k = gr.Slider(
- minimum=1,
- maximum=100,
- step=1,
- label=i18n("top_k"),
- value=5,
- interactive=True,
- )
- top_p = gr.Slider(
- minimum=0,
- maximum=1,
- step=0.05,
- label=i18n("top_p"),
- value=1,
- interactive=True,
- )
+ top_k = gr.Slider(minimum=1, maximum=100, step=1, label=i18n("top_k"), value=5, interactive=True)
+ top_p = gr.Slider(minimum=0, maximum=1, step=0.05, label=i18n("top_p"), value=1, interactive=True)
with gr.Row():
temperature = gr.Slider(
- minimum=0,
- maximum=1,
- step=0.05,
- label=i18n("temperature"),
- value=1,
- interactive=True,
+ minimum=0, maximum=1, step=0.05, label=i18n("temperature"), value=1, interactive=True
)
repetition_penalty = gr.Slider(
- minimum=0,
- maximum=2,
- step=0.05,
- label=i18n("重复惩罚"),
- value=1.35,
- interactive=True,
+ minimum=0, maximum=2, step=0.05, label=i18n("重复惩罚"), value=1.35, interactive=True
)
with gr.Column():
@@ -525,19 +380,11 @@ with gr.Blocks(title="GPT-SoVITS WebUI", analytics_enabled=False) as app:
scale=1,
)
super_sampling = gr.Checkbox(
- label=i18n("音频超采样(仅对V3生效))"),
- value=False,
- interactive=True,
- show_label=True,
+ label=i18n("音频超采样(仅对V3生效))"), value=False, interactive=True, show_label=True
)
with gr.Row():
- parallel_infer = gr.Checkbox(
- label=i18n("并行推理"),
- value=True,
- interactive=True,
- show_label=True,
- )
+ parallel_infer = gr.Checkbox(label=i18n("并行推理"), value=True, interactive=True, show_label=True)
split_bucket = gr.Checkbox(
label=i18n("数据分桶(并行推理时会降低一点计算量)"),
value=True,
@@ -547,12 +394,7 @@ with gr.Blocks(title="GPT-SoVITS WebUI", analytics_enabled=False) as app:
with gr.Row():
seed = gr.Number(label=i18n("随机种子"), value=-1)
- keep_random = gr.Checkbox(
- label=i18n("保持随机"),
- value=True,
- interactive=True,
- show_label=True,
- )
+ keep_random = gr.Checkbox(label=i18n("保持随机"), value=True, interactive=True, show_label=True)
output = gr.Audio(label=i18n("输出的语音"))
with gr.Row():
diff --git a/GPT_SoVITS/process_ckpt.py b/GPT_SoVITS/process_ckpt.py
index 1c458a4..1e5471b 100644
--- a/GPT_SoVITS/process_ckpt.py
+++ b/GPT_SoVITS/process_ckpt.py
@@ -17,29 +17,27 @@ def my_save(fea, path): #####fix issue: torch.save doesn't support chinese path
shutil.move(tmp_path, "%s/%s" % (dir, name))
-"""
-00:v1
-01:v2
-02:v3
-03:v3lora
-04:v4lora
-"""
from io import BytesIO
-
-def my_save2(fea, path, cfm_version):
+model_version2byte={
+ "v3":b"03",
+ "v4":b"04",
+ "v2Pro":b"05",
+ "v2ProPlus":b"06",
+}
+def my_save2(fea, path, model_version):
bio = BytesIO()
torch.save(fea, bio)
bio.seek(0)
data = bio.getvalue()
- byte = b"03" if cfm_version == "v3" else b"04"
+ byte = model_version2byte[model_version]
data = byte + data[2:]
with open(path, "wb") as f:
f.write(data)
-def savee(ckpt, name, epoch, steps, hps, cfm_version=None, lora_rank=None):
+def savee(ckpt, name, epoch, steps, hps, model_version=None, lora_rank=None):
try:
opt = OrderedDict()
opt["weight"] = {}
@@ -51,26 +49,40 @@ def savee(ckpt, name, epoch, steps, hps, cfm_version=None, lora_rank=None):
opt["info"] = "%sepoch_%siteration" % (epoch, steps)
if lora_rank:
opt["lora_rank"] = lora_rank
- my_save2(opt, "%s/%s.pth" % (hps.save_weight_dir, name), cfm_version)
+ my_save2(opt, "%s/%s.pth" % (hps.save_weight_dir, name), model_version)
+ elif (model_version!=None and "Pro"in model_version):
+ my_save2(opt, "%s/%s.pth" % (hps.save_weight_dir, name), model_version)
else:
my_save(opt, "%s/%s.pth" % (hps.save_weight_dir, name))
return "Success."
except:
return traceback.format_exc()
-
+"""
+00:v1
+01:v2
+02:v3
+03:v3lora
+04:v4lora
+05:v2Pro
+06:v2ProPlus
+"""
head2version = {
b"00": ["v1", "v1", False],
b"01": ["v2", "v2", False],
b"02": ["v2", "v3", False],
b"03": ["v2", "v3", True],
b"04": ["v2", "v4", True],
+ b"05": ["v2", "v2Pro", False],
+ b"06": ["v2", "v2ProPlus", False],
}
hash_pretrained_dict = {
"dc3c97e17592963677a4a1681f30c653": ["v2", "v2", False], # s2G488k.pth#sovits_v1_pretrained
"43797be674a37c1c83ee81081941ed0f": ["v2", "v3", False], # s2Gv3.pth#sovits_v3_pretrained
"6642b37f3dbb1f76882b69937c95a5f3": ["v2", "v2", False], # s2G2333K.pth#sovits_v2_pretrained
"4f26b9476d0c5033e04162c486074374": ["v2", "v4", False], # s2Gv4.pth#sovits_v4_pretrained
+ "1dbcf2d280aff5dc4713c7b56b5c9463": ["v2", "v2Pro", False], # s2Gv2Pro_pre1.pth#sovits_v2Pro_pretrained
+ "2581b83257dbb1c91d1278e40c6b7a2f": ["v2", "v2ProPlus", False], # s2Gv2ProPlus_pre1.pth#sovits_v2ProPlus_pretrained
}
import hashlib
diff --git a/GPT_SoVITS/s2_train.py b/GPT_SoVITS/s2_train.py
index ab46118..0a04604 100644
--- a/GPT_SoVITS/s2_train.py
+++ b/GPT_SoVITS/s2_train.py
@@ -36,7 +36,7 @@ from module.models import (
MultiPeriodDiscriminator,
SynthesizerTrn,
)
-from process_ckpt import savee
+from process_ckpt import savee,my_save2
torch.backends.cudnn.benchmark = False
torch.backends.cudnn.deterministic = False
@@ -87,38 +87,19 @@ def run(rank, n_gpus, hps):
if torch.cuda.is_available():
torch.cuda.set_device(rank)
- train_dataset = TextAudioSpeakerLoader(hps.data) ########
+ train_dataset = TextAudioSpeakerLoader(hps.data,version=hps.model.version)
train_sampler = DistributedBucketSampler(
train_dataset,
hps.train.batch_size,
- [
- 32,
- 300,
- 400,
- 500,
- 600,
- 700,
- 800,
- 900,
- 1000,
- 1100,
- 1200,
- 1300,
- 1400,
- 1500,
- 1600,
- 1700,
- 1800,
- 1900,
- ],
+ [32,300,400,500,600,700,800,900,1000,1100,1200,1300,1400,1500,1600,1700,1800,1900,],
num_replicas=n_gpus,
rank=rank,
shuffle=True,
)
- collate_fn = TextAudioSpeakerCollate()
+ collate_fn = TextAudioSpeakerCollate(version=hps.model.version)
train_loader = DataLoader(
train_dataset,
- num_workers=6,
+ num_workers=5,
shuffle=False,
pin_memory=True,
collate_fn=collate_fn,
@@ -149,9 +130,9 @@ def run(rank, n_gpus, hps):
)
net_d = (
- MultiPeriodDiscriminator(hps.model.use_spectral_norm).cuda(rank)
+ MultiPeriodDiscriminator(hps.model.use_spectral_norm,version=hps.model.version).cuda(rank)
if torch.cuda.is_available()
- else MultiPeriodDiscriminator(hps.model.use_spectral_norm).to(device)
+ else MultiPeriodDiscriminator(hps.model.use_spectral_norm,version=hps.model.version).to(device)
)
for name, param in net_g.named_parameters():
if not param.requires_grad:
@@ -235,12 +216,12 @@ def run(rank, n_gpus, hps):
print(
"loaded pretrained %s" % hps.train.pretrained_s2G,
net_g.module.load_state_dict(
- torch.load(hps.train.pretrained_s2G, map_location="cpu")["weight"],
+ torch.load(hps.train.pretrained_s2G, map_location="cpu", weights_only=False)["weight"],
strict=False,
)
if torch.cuda.is_available()
else net_g.load_state_dict(
- torch.load(hps.train.pretrained_s2G, map_location="cpu")["weight"],
+ torch.load(hps.train.pretrained_s2G, map_location="cpu", weights_only=False)["weight"],
strict=False,
),
) ##测试不加载优化器
@@ -254,11 +235,11 @@ def run(rank, n_gpus, hps):
print(
"loaded pretrained %s" % hps.train.pretrained_s2D,
net_d.module.load_state_dict(
- torch.load(hps.train.pretrained_s2D, map_location="cpu")["weight"],
+ torch.load(hps.train.pretrained_s2D, map_location="cpu", weights_only=False)["weight"],strict=False
)
if torch.cuda.is_available()
else net_d.load_state_dict(
- torch.load(hps.train.pretrained_s2D, map_location="cpu")["weight"],
+ torch.load(hps.train.pretrained_s2D, map_location="cpu", weights_only=False)["weight"],
),
)
@@ -328,50 +309,20 @@ def train_and_evaluate(rank, epoch, hps, nets, optims, schedulers, scaler, loade
net_g.train()
net_d.train()
- for batch_idx, (
- ssl,
- ssl_lengths,
- spec,
- spec_lengths,
- y,
- y_lengths,
- text,
- text_lengths,
- ) in enumerate(tqdm(train_loader)):
+ for batch_idx, data in enumerate(tqdm(train_loader)):
+ if hps.model.version in {"v2Pro","v2ProPlus"}:
+ ssl, ssl_lengths, spec, spec_lengths, y, y_lengths, text, text_lengths,sv_emb=data
+ else:
+ ssl, ssl_lengths, spec, spec_lengths, y, y_lengths, text, text_lengths=data
if torch.cuda.is_available():
- spec, spec_lengths = (
- spec.cuda(
- rank,
- non_blocking=True,
- ),
- spec_lengths.cuda(
- rank,
- non_blocking=True,
- ),
- )
- y, y_lengths = (
- y.cuda(
- rank,
- non_blocking=True,
- ),
- y_lengths.cuda(
- rank,
- non_blocking=True,
- ),
- )
+ spec, spec_lengths = (spec.cuda(rank,non_blocking=True,),spec_lengths.cuda(rank,non_blocking=True,),)
+ y, y_lengths = (y.cuda(rank,non_blocking=True,),y_lengths.cuda(rank,non_blocking=True,),)
ssl = ssl.cuda(rank, non_blocking=True)
ssl.requires_grad = False
# ssl_lengths = ssl_lengths.cuda(rank, non_blocking=True)
- text, text_lengths = (
- text.cuda(
- rank,
- non_blocking=True,
- ),
- text_lengths.cuda(
- rank,
- non_blocking=True,
- ),
- )
+ text, text_lengths = (text.cuda(rank,non_blocking=True,),text_lengths.cuda(rank,non_blocking=True,),)
+ if hps.model.version in {"v2Pro", "v2ProPlus"}:
+ sv_emb = sv_emb.cuda(rank, non_blocking=True)
else:
spec, spec_lengths = spec.to(device), spec_lengths.to(device)
y, y_lengths = y.to(device), y_lengths.to(device)
@@ -379,17 +330,13 @@ def train_and_evaluate(rank, epoch, hps, nets, optims, schedulers, scaler, loade
ssl.requires_grad = False
# ssl_lengths = ssl_lengths.cuda(rank, non_blocking=True)
text, text_lengths = text.to(device), text_lengths.to(device)
-
+ if hps.model.version in {"v2Pro", "v2ProPlus"}:
+ sv_emb = sv_emb.to(device)
with autocast(enabled=hps.train.fp16_run):
- (
- y_hat,
- kl_ssl,
- ids_slice,
- x_mask,
- z_mask,
- (z, z_p, m_p, logs_p, m_q, logs_q),
- stats_ssl,
- ) = net_g(ssl, spec, spec_lengths, text, text_lengths)
+ if hps.model.version in {"v2Pro", "v2ProPlus"}:
+ (y_hat,kl_ssl,ids_slice,x_mask,z_mask,(z, z_p, m_p, logs_p, m_q, logs_q),stats_ssl) = net_g(ssl, spec, spec_lengths, text, text_lengths,sv_emb)
+ else:
+ (y_hat,kl_ssl,ids_slice,x_mask,z_mask,(z, z_p, m_p, logs_p, m_q, logs_q),stats_ssl,) = net_g(ssl, spec, spec_lengths, text, text_lengths)
mel = spec_to_mel_torch(
spec,
@@ -561,13 +508,7 @@ def train_and_evaluate(rank, epoch, hps, nets, optims, schedulers, scaler, loade
% (
hps.name,
epoch,
- savee(
- ckpt,
- hps.name + "_e%s_s%s" % (epoch, global_step),
- epoch,
- global_step,
- hps,
- ),
+ savee(ckpt,hps.name + "_e%s_s%s" % (epoch, global_step),epoch,global_step,hps,model_version=None if hps.model.version not in {"v2Pro","v2ProPlus"}else hps.model.version),
)
)
diff --git a/GPT_SoVITS/s2_train_v3.py b/GPT_SoVITS/s2_train_v3.py
index 71d2196..aa8dae7 100644
--- a/GPT_SoVITS/s2_train_v3.py
+++ b/GPT_SoVITS/s2_train_v3.py
@@ -204,12 +204,12 @@ def run(rank, n_gpus, hps):
print(
"loaded pretrained %s" % hps.train.pretrained_s2G,
net_g.module.load_state_dict(
- torch.load(hps.train.pretrained_s2G, map_location="cpu")["weight"],
+ torch.load(hps.train.pretrained_s2G, map_location="cpu", weights_only=False)["weight"],
strict=False,
)
if torch.cuda.is_available()
else net_g.load_state_dict(
- torch.load(hps.train.pretrained_s2G, map_location="cpu")["weight"],
+ torch.load(hps.train.pretrained_s2G, map_location="cpu", weights_only=False)["weight"],
strict=False,
),
) ##测试不加载优化器
diff --git a/GPT_SoVITS/s2_train_v3_lora.py b/GPT_SoVITS/s2_train_v3_lora.py
index 4d8d23d..ba9e4ed 100644
--- a/GPT_SoVITS/s2_train_v3_lora.py
+++ b/GPT_SoVITS/s2_train_v3_lora.py
@@ -189,7 +189,7 @@ def run(rank, n_gpus, hps):
print(
"loaded pretrained %s" % hps.train.pretrained_s2G,
net_g.load_state_dict(
- torch.load(hps.train.pretrained_s2G, map_location="cpu")["weight"],
+ torch.load(hps.train.pretrained_s2G, map_location="cpu", weights_only=False)["weight"],
strict=False,
),
)
@@ -365,7 +365,7 @@ def train_and_evaluate(rank, epoch, hps, nets, optims, schedulers, scaler, loade
epoch,
global_step,
hps,
- cfm_version=hps.model.version,
+ model_version=hps.model.version,
lora_rank=lora_rank,
),
)
diff --git a/GPT_SoVITS/sv.py b/GPT_SoVITS/sv.py
new file mode 100644
index 0000000..00f0cff
--- /dev/null
+++ b/GPT_SoVITS/sv.py
@@ -0,0 +1,24 @@
+import sys,os,torch
+sys.path.append(f"{os.getcwd()}/GPT_SoVITS/eres2net")
+sv_path = "GPT_SoVITS\pretrained_models\sv\pretrained_eres2netv2w24s4ep4.ckpt"
+from ERes2NetV2 import ERes2NetV2
+import kaldi as Kaldi
+class SV:
+ def __init__(self,device,is_half):
+ pretrained_state = torch.load(sv_path, map_location='cpu', weights_only=False)
+ embedding_model = ERes2NetV2(baseWidth=24,scale=4,expansion=4)
+ embedding_model.load_state_dict(pretrained_state)
+ embedding_model.eval()
+ self.embedding_model=embedding_model
+ if is_half == False:
+ self.embedding_model=self.embedding_model.to(device)
+ else:
+ self.embedding_model=self.embedding_model.half().to(device)
+ self.is_half=is_half
+
+ def compute_embedding3(self,wav):#(1,x)#-1~1
+ with torch.no_grad():
+ if self.is_half==True:wav=wav.half()
+ feat = torch.stack([Kaldi.fbank(wav0.unsqueeze(0), num_mel_bins=80, sample_frequency=16000, dither=0) for wav0 in wav])
+ sv_emb = self.embedding_model.forward3(feat)
+ return sv_emb
\ No newline at end of file
diff --git a/GPT_SoVITS/utils.py b/GPT_SoVITS/utils.py
index 0ec4251..14955fd 100644
--- a/GPT_SoVITS/utils.py
+++ b/GPT_SoVITS/utils.py
@@ -22,7 +22,7 @@ logger = logging
def load_checkpoint(checkpoint_path, model, optimizer=None, skip_optimizer=False):
assert os.path.isfile(checkpoint_path)
- checkpoint_dict = torch.load(checkpoint_path, map_location="cpu")
+ checkpoint_dict = torch.load(checkpoint_path, map_location="cpu", weights_only=False)
iteration = checkpoint_dict["iteration"]
learning_rate = checkpoint_dict["learning_rate"]
if optimizer is not None and not skip_optimizer and checkpoint_dict["optimizer"] is not None: