diff --git a/api.py b/api.py index 8a476cd6..96e22f1e 100644 --- a/api.py +++ b/api.py @@ -19,12 +19,13 @@ from text import cleaned_text_to_sequence from text.cleaner import clean_text from module.mel_processing import spectrogram_torch from my_utils import load_audio -from config import python_exec, infer_device, is_half, api_port +from config import python_exec, infer_device, api_port +from config import is_half as config_is_half DEFAULT_PORT = api_port DEFAULT_CNHUBERT = "GPT_SoVITS/pretrained_models/chinese-hubert-base" DEFAULT_BERT = "GPT_SoVITS/pretrained_models/chinese-roberta-wwm-ext-large" -DEFAULT_HALF = is_half +DEFAULT_HALF = config_is_half DEFAULT_GPT = "GPT_SoVITS/pretrained_models/s1bert25hz-2kh-longer-epoch=68e-step=50232.ckpt" DEFAULT_SOVITS = "GPT_SoVITS/pretrained_models/s2G488k.pth" @@ -44,7 +45,8 @@ parser.add_argument("-dl", "--default_refer_language", type=str, default="", hel parser.add_argument("-d", "--device", type=str, default=infer_device, help="cuda / cpu") parser.add_argument("-p", "--port", type=int, default=DEFAULT_PORT, help="default: 9880") parser.add_argument("-a", "--bind_addr", type=str, default="127.0.0.1", help="default: 127.0.0.1") -parser.add_argument("-hp", "--half_precision", action='store_true', default=False) +parser.add_argument("-fp", "--full_precision", action='store_true', default=False, help="覆盖config.py使用全精度") +parser.add_argument("-hp", "--half_precision", action='store_true', default=False, help="覆盖config.py使用半精度") parser.add_argument("-hb", "--hubert_path", type=str, default=DEFAULT_CNHUBERT) parser.add_argument("-b", "--bert_path", type=str, default=DEFAULT_BERT) @@ -62,7 +64,6 @@ has_preset = False device = args.device port = args.port host = args.bind_addr -is_half = args.half_precision cnhubert_base_path = args.hubert_path bert_path = args.bert_path @@ -84,17 +85,25 @@ else: print(f"[INFO] 默认参考音频语种: {default_refer_language}") has_preset = True +is_half = DEFAULT_HALF +if args.full_precision: + is_half = False +if args.half_precision: + is_half = True +if args.full_precision and args.half_precision: + is_half = DEFAULT_HALF # 炒饭fallback + +print(f"[INFO] 半精: {is_half}") + cnhubert.cnhubert_base_path = cnhubert_base_path tokenizer = AutoTokenizer.from_pretrained(bert_path) bert_model = AutoModelForMaskedLM.from_pretrained(bert_path) -# bert_model = AutoModelForSequenceClassification.from_pretrained(bert_path, config=bert_path+"/config.json") if (is_half == True): bert_model = bert_model.half().to(device) else: bert_model = bert_model.to(device) -# bert_model=bert_model.to(device) def get_bert_feature(text, word2ph): with torch.no_grad(): inputs = tokenizer(text, return_tensors="pt")