diff --git a/GPT_SoVITS/prepare_datasets/2-get-hubert-wav32k.py b/GPT_SoVITS/prepare_datasets/2-get-hubert-wav32k.py index 9a2f73c..61c933a 100644 --- a/GPT_SoVITS/prepare_datasets/2-get-hubert-wav32k.py +++ b/GPT_SoVITS/prepare_datasets/2-get-hubert-wav32k.py @@ -82,7 +82,7 @@ def name2go(wav_name,wav_path): tensor_wav16 = tensor_wav16.to(device) ssl=model.model(tensor_wav16.unsqueeze(0))["last_hidden_state"].transpose(1,2).cpu()#torch.Size([1, 768, 215]) if np.isnan(ssl.detach().numpy()).sum()!= 0: - nan_fails.append(wav_name) + nan_fails.append((wav_name,wav_path)) print("nan filtered:%s"%wav_name) return wavfile.write( @@ -90,7 +90,7 @@ def name2go(wav_name,wav_path): 32000, tmp_audio32.astype("int16"), ) - my_save(ssl,hubert_path ) + my_save(ssl,hubert_path) with open(inp_text,"r",encoding="utf8")as f: lines=f.read().strip("\n").split("\n") @@ -113,8 +113,8 @@ for line in lines[int(i_part)::int(all_parts)]: if(len(nan_fails)>0 and is_half==True): is_half=False model=model.float() - for wav_name in nan_fails: + for wav in nan_fails: try: - name2go(wav_name) + name2go(wav[0],wav[1]) except: print(wav_name,traceback.format_exc())