mirror of
https://github.com/RVC-Boss/GPT-SoVITS.git
synced 2025-10-07 15:19:59 +08:00
fix: SynthesizerTrn
This commit is contained in:
parent
bd53aa8200
commit
902e0121ac
@ -1,6 +1,11 @@
|
||||
import warnings
|
||||
|
||||
warnings.filterwarnings("ignore")
|
||||
import copy
|
||||
import math
|
||||
from typing import List
|
||||
import os
|
||||
import pdb
|
||||
|
||||
import torch
|
||||
from torch import nn
|
||||
from torch.nn import functional as F
|
||||
@ -14,20 +19,22 @@ from torch.nn.utils import weight_norm, remove_weight_norm, spectral_norm
|
||||
from module.commons import init_weights, get_padding
|
||||
from module.mrte_model import MRTE
|
||||
from module.quantize import ResidualVectorQuantizer
|
||||
from text import symbols
|
||||
# from text import symbols
|
||||
from text import symbols as symbols_v1
|
||||
from text import symbols2 as symbols_v2
|
||||
from torch.cuda.amp import autocast
|
||||
import contextlib
|
||||
|
||||
|
||||
class StochasticDurationPredictor(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
in_channels,
|
||||
filter_channels,
|
||||
kernel_size,
|
||||
p_dropout,
|
||||
n_flows=4,
|
||||
gin_channels=0,
|
||||
self,
|
||||
in_channels,
|
||||
filter_channels,
|
||||
kernel_size,
|
||||
p_dropout,
|
||||
n_flows=4,
|
||||
gin_channels=0,
|
||||
):
|
||||
super().__init__()
|
||||
filter_channels = in_channels # it needs to be removed from future version.
|
||||
@ -86,8 +93,8 @@ class StochasticDurationPredictor(nn.Module):
|
||||
h_w = self.post_convs(h_w, x_mask)
|
||||
h_w = self.post_proj(h_w) * x_mask
|
||||
e_q = (
|
||||
torch.randn(w.size(0), 2, w.size(2)).to(device=x.device, dtype=x.dtype)
|
||||
* x_mask
|
||||
torch.randn(w.size(0), 2, w.size(2)).to(device=x.device, dtype=x.dtype)
|
||||
* x_mask
|
||||
)
|
||||
z_q = e_q
|
||||
for flow in self.post_flows:
|
||||
@ -100,8 +107,8 @@ class StochasticDurationPredictor(nn.Module):
|
||||
(F.logsigmoid(z_u) + F.logsigmoid(-z_u)) * x_mask, [1, 2]
|
||||
)
|
||||
logq = (
|
||||
torch.sum(-0.5 * (math.log(2 * math.pi) + (e_q**2)) * x_mask, [1, 2])
|
||||
- logdet_tot_q
|
||||
torch.sum(-0.5 * (math.log(2 * math.pi) + (e_q ** 2)) * x_mask, [1, 2])
|
||||
- logdet_tot_q
|
||||
)
|
||||
|
||||
logdet_tot = 0
|
||||
@ -112,16 +119,16 @@ class StochasticDurationPredictor(nn.Module):
|
||||
z, logdet = flow(z, x_mask, g=x, reverse=reverse)
|
||||
logdet_tot = logdet_tot + logdet
|
||||
nll = (
|
||||
torch.sum(0.5 * (math.log(2 * math.pi) + (z**2)) * x_mask, [1, 2])
|
||||
- logdet_tot
|
||||
torch.sum(0.5 * (math.log(2 * math.pi) + (z ** 2)) * x_mask, [1, 2])
|
||||
- logdet_tot
|
||||
)
|
||||
return nll + logq # [b]
|
||||
else:
|
||||
flows = list(reversed(self.flows))
|
||||
flows = flows[:-2] + [flows[-1]] # remove a useless vflow
|
||||
z = (
|
||||
torch.randn(x.size(0), 2, x.size(2)).to(device=x.device, dtype=x.dtype)
|
||||
* noise_scale
|
||||
torch.randn(x.size(0), 2, x.size(2)).to(device=x.device, dtype=x.dtype)
|
||||
* noise_scale
|
||||
)
|
||||
for flow in flows:
|
||||
z = flow(z, x_mask, g=x, reverse=reverse)
|
||||
@ -132,7 +139,7 @@ class StochasticDurationPredictor(nn.Module):
|
||||
|
||||
class DurationPredictor(nn.Module):
|
||||
def __init__(
|
||||
self, in_channels, filter_channels, kernel_size, p_dropout, gin_channels=0
|
||||
self, in_channels, filter_channels, kernel_size, p_dropout, gin_channels=0
|
||||
):
|
||||
super().__init__()
|
||||
|
||||
@ -175,15 +182,16 @@ class DurationPredictor(nn.Module):
|
||||
|
||||
class TextEncoder(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
out_channels,
|
||||
hidden_channels,
|
||||
filter_channels,
|
||||
n_heads,
|
||||
n_layers,
|
||||
kernel_size,
|
||||
p_dropout,
|
||||
latent_channels=192,
|
||||
self,
|
||||
out_channels,
|
||||
hidden_channels,
|
||||
filter_channels,
|
||||
n_heads,
|
||||
n_layers,
|
||||
kernel_size,
|
||||
p_dropout,
|
||||
latent_channels=192,
|
||||
version="v1",
|
||||
):
|
||||
super().__init__()
|
||||
self.out_channels = out_channels
|
||||
@ -194,6 +202,7 @@ class TextEncoder(nn.Module):
|
||||
self.kernel_size = kernel_size
|
||||
self.p_dropout = p_dropout
|
||||
self.latent_channels = latent_channels
|
||||
self.version = version
|
||||
|
||||
self.ssl_proj = nn.Conv1d(768, hidden_channels, 1)
|
||||
|
||||
@ -209,6 +218,11 @@ class TextEncoder(nn.Module):
|
||||
self.encoder_text = attentions.Encoder(
|
||||
hidden_channels, filter_channels, n_heads, n_layers, kernel_size, p_dropout
|
||||
)
|
||||
|
||||
if self.version == "v1":
|
||||
symbols = symbols_v1.symbols
|
||||
else:
|
||||
symbols = symbols_v2.symbols
|
||||
self.text_embedding = nn.Embedding(len(symbols), hidden_channels)
|
||||
|
||||
self.mrte = MRTE()
|
||||
@ -224,13 +238,13 @@ class TextEncoder(nn.Module):
|
||||
|
||||
self.proj = nn.Conv1d(hidden_channels, out_channels * 2, 1)
|
||||
|
||||
def forward(self, y, y_lengths, text, text_lengths, ge, test=None):
|
||||
def forward(self, y, y_lengths, text, text_lengths, ge, speed=1, test=None):
|
||||
y_mask = torch.unsqueeze(commons.sequence_mask(y_lengths, y.size(2)), 1).to(
|
||||
y.dtype
|
||||
)
|
||||
|
||||
y = self.ssl_proj(y * y_mask) * y_mask
|
||||
|
||||
|
||||
y = self.encoder_ssl(y * y_mask, y_mask)
|
||||
|
||||
text_mask = torch.unsqueeze(
|
||||
@ -241,9 +255,10 @@ class TextEncoder(nn.Module):
|
||||
text = self.text_embedding(text).transpose(1, 2)
|
||||
text = self.encoder_text(text * text_mask, text_mask)
|
||||
y = self.mrte(y, y_mask, text, text_mask, ge)
|
||||
|
||||
y = self.encoder2(y * y_mask, y_mask)
|
||||
|
||||
if (speed != 1):
|
||||
y = F.interpolate(y, size=int(y.shape[-1] / speed) + 1, mode="linear")
|
||||
y_mask = F.interpolate(y_mask, size=y.shape[-1], mode="nearest")
|
||||
stats = self.proj(y) * y_mask
|
||||
m, logs = torch.split(stats, self.out_channels, dim=1)
|
||||
return y, m, logs, y_mask
|
||||
@ -270,14 +285,14 @@ class TextEncoder(nn.Module):
|
||||
|
||||
class ResidualCouplingBlock(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
channels,
|
||||
hidden_channels,
|
||||
kernel_size,
|
||||
dilation_rate,
|
||||
n_layers,
|
||||
n_flows=4,
|
||||
gin_channels=0,
|
||||
self,
|
||||
channels,
|
||||
hidden_channels,
|
||||
kernel_size,
|
||||
dilation_rate,
|
||||
n_layers,
|
||||
n_flows=4,
|
||||
gin_channels=0,
|
||||
):
|
||||
super().__init__()
|
||||
self.channels = channels
|
||||
@ -315,14 +330,14 @@ class ResidualCouplingBlock(nn.Module):
|
||||
|
||||
class PosteriorEncoder(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
in_channels,
|
||||
out_channels,
|
||||
hidden_channels,
|
||||
kernel_size,
|
||||
dilation_rate,
|
||||
n_layers,
|
||||
gin_channels=0,
|
||||
self,
|
||||
in_channels,
|
||||
out_channels,
|
||||
hidden_channels,
|
||||
kernel_size,
|
||||
dilation_rate,
|
||||
n_layers,
|
||||
gin_channels=0,
|
||||
):
|
||||
super().__init__()
|
||||
self.in_channels = in_channels
|
||||
@ -359,14 +374,14 @@ class PosteriorEncoder(nn.Module):
|
||||
|
||||
class WNEncoder(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
in_channels,
|
||||
out_channels,
|
||||
hidden_channels,
|
||||
kernel_size,
|
||||
dilation_rate,
|
||||
n_layers,
|
||||
gin_channels=0,
|
||||
self,
|
||||
in_channels,
|
||||
out_channels,
|
||||
hidden_channels,
|
||||
kernel_size,
|
||||
dilation_rate,
|
||||
n_layers,
|
||||
gin_channels=0,
|
||||
):
|
||||
super().__init__()
|
||||
self.in_channels = in_channels
|
||||
@ -401,15 +416,15 @@ class WNEncoder(nn.Module):
|
||||
|
||||
class Generator(torch.nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
initial_channel,
|
||||
resblock,
|
||||
resblock_kernel_sizes,
|
||||
resblock_dilation_sizes,
|
||||
upsample_rates,
|
||||
upsample_initial_channel,
|
||||
upsample_kernel_sizes,
|
||||
gin_channels=0,
|
||||
self,
|
||||
initial_channel,
|
||||
resblock,
|
||||
resblock_kernel_sizes,
|
||||
resblock_dilation_sizes,
|
||||
upsample_rates,
|
||||
upsample_initial_channel,
|
||||
upsample_kernel_sizes,
|
||||
gin_channels=0,
|
||||
):
|
||||
super(Generator, self).__init__()
|
||||
self.num_kernels = len(resblock_kernel_sizes)
|
||||
@ -424,7 +439,7 @@ class Generator(torch.nn.Module):
|
||||
self.ups.append(
|
||||
weight_norm(
|
||||
ConvTranspose1d(
|
||||
upsample_initial_channel // (2**i),
|
||||
upsample_initial_channel // (2 ** i),
|
||||
upsample_initial_channel // (2 ** (i + 1)),
|
||||
k,
|
||||
u,
|
||||
@ -437,7 +452,7 @@ class Generator(torch.nn.Module):
|
||||
for i in range(len(self.ups)):
|
||||
ch = upsample_initial_channel // (2 ** (i + 1))
|
||||
for j, (k, d) in enumerate(
|
||||
zip(resblock_kernel_sizes, resblock_dilation_sizes)
|
||||
zip(resblock_kernel_sizes, resblock_dilation_sizes)
|
||||
):
|
||||
self.resblocks.append(resblock(ch, k, d))
|
||||
|
||||
@ -679,9 +694,9 @@ class Quantizer_module(torch.nn.Module):
|
||||
|
||||
def forward(self, x):
|
||||
d = (
|
||||
torch.sum(x**2, 1, keepdim=True)
|
||||
+ torch.sum(self.embedding.weight**2, 1)
|
||||
- 2 * torch.matmul(x, self.embedding.weight.T)
|
||||
torch.sum(x ** 2, 1, keepdim=True)
|
||||
+ torch.sum(self.embedding.weight ** 2, 1)
|
||||
- 2 * torch.matmul(x, self.embedding.weight.T)
|
||||
)
|
||||
min_indicies = torch.argmin(d, 1)
|
||||
z_q = self.embedding(min_indicies)
|
||||
@ -736,16 +751,16 @@ class Quantizer(torch.nn.Module):
|
||||
|
||||
class CodePredictor(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
hidden_channels,
|
||||
filter_channels,
|
||||
n_heads,
|
||||
n_layers,
|
||||
kernel_size,
|
||||
p_dropout,
|
||||
n_q=8,
|
||||
dims=1024,
|
||||
ssl_dim=768,
|
||||
self,
|
||||
hidden_channels,
|
||||
filter_channels,
|
||||
n_heads,
|
||||
n_layers,
|
||||
kernel_size,
|
||||
p_dropout,
|
||||
n_q=8,
|
||||
dims=1024,
|
||||
ssl_dim=768,
|
||||
):
|
||||
super().__init__()
|
||||
self.hidden_channels = hidden_channels
|
||||
@ -804,28 +819,29 @@ class SynthesizerTrn(nn.Module):
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
spec_channels,
|
||||
segment_size,
|
||||
inter_channels,
|
||||
hidden_channels,
|
||||
filter_channels,
|
||||
n_heads,
|
||||
n_layers,
|
||||
kernel_size,
|
||||
p_dropout,
|
||||
resblock,
|
||||
resblock_kernel_sizes,
|
||||
resblock_dilation_sizes,
|
||||
upsample_rates,
|
||||
upsample_initial_channel,
|
||||
upsample_kernel_sizes,
|
||||
n_speakers=0,
|
||||
gin_channels=0,
|
||||
use_sdp=True,
|
||||
semantic_frame_rate=None,
|
||||
freeze_quantizer=None,
|
||||
**kwargs
|
||||
self,
|
||||
spec_channels,
|
||||
segment_size,
|
||||
inter_channels,
|
||||
hidden_channels,
|
||||
filter_channels,
|
||||
n_heads,
|
||||
n_layers,
|
||||
kernel_size,
|
||||
p_dropout,
|
||||
resblock,
|
||||
resblock_kernel_sizes,
|
||||
resblock_dilation_sizes,
|
||||
upsample_rates,
|
||||
upsample_initial_channel,
|
||||
upsample_kernel_sizes,
|
||||
n_speakers=0,
|
||||
gin_channels=0,
|
||||
use_sdp=True,
|
||||
semantic_frame_rate=None,
|
||||
freeze_quantizer=None,
|
||||
version="v1",
|
||||
**kwargs
|
||||
):
|
||||
super().__init__()
|
||||
self.spec_channels = spec_channels
|
||||
@ -845,6 +861,7 @@ class SynthesizerTrn(nn.Module):
|
||||
self.segment_size = segment_size
|
||||
self.n_speakers = n_speakers
|
||||
self.gin_channels = gin_channels
|
||||
self.version = version
|
||||
|
||||
self.use_sdp = use_sdp
|
||||
self.enc_p = TextEncoder(
|
||||
@ -855,6 +872,7 @@ class SynthesizerTrn(nn.Module):
|
||||
n_layers,
|
||||
kernel_size,
|
||||
p_dropout,
|
||||
version=version,
|
||||
)
|
||||
self.dec = Generator(
|
||||
inter_channels,
|
||||
@ -879,9 +897,11 @@ class SynthesizerTrn(nn.Module):
|
||||
inter_channels, hidden_channels, 5, 1, 4, gin_channels=gin_channels
|
||||
)
|
||||
|
||||
self.ref_enc = modules.MelStyleEncoder(
|
||||
spec_channels, style_vector_dim=gin_channels
|
||||
)
|
||||
# self.version=os.environ.get("version","v1")
|
||||
if (self.version == "v1"):
|
||||
self.ref_enc = modules.MelStyleEncoder(spec_channels, style_vector_dim=gin_channels)
|
||||
else:
|
||||
self.ref_enc = modules.MelStyleEncoder(704, style_vector_dim=gin_channels)
|
||||
|
||||
ssl_dim = 768
|
||||
assert semantic_frame_rate in ["25hz", "50hz"]
|
||||
@ -893,20 +913,15 @@ class SynthesizerTrn(nn.Module):
|
||||
|
||||
self.quantizer = ResidualVectorQuantizer(dimension=ssl_dim, n_q=1, bins=1024)
|
||||
self.freeze_quantizer = freeze_quantizer
|
||||
# if freeze_quantizer:
|
||||
# self.ssl_proj.requires_grad_(False)
|
||||
# self.quantizer.requires_grad_(False)
|
||||
#self.quantizer.eval()
|
||||
# self.enc_p.text_embedding.requires_grad_(False)
|
||||
# self.enc_p.encoder_text.requires_grad_(False)
|
||||
# self.enc_p.mrte.requires_grad_(False)
|
||||
|
||||
def forward(self, ssl, y, y_lengths, text, text_lengths):
|
||||
y_mask = torch.unsqueeze(commons.sequence_mask(y_lengths, y.size(2)), 1).to(
|
||||
y.dtype
|
||||
)
|
||||
ge = self.ref_enc(y * y_mask, y_mask)
|
||||
|
||||
if (self.version == "v1"):
|
||||
ge = self.ref_enc(y * y_mask, y_mask)
|
||||
else:
|
||||
ge = self.ref_enc(y[:, :704] * y_mask, y_mask)
|
||||
with autocast(enabled=False):
|
||||
maybe_no_grad = torch.no_grad() if self.freeze_quantizer else contextlib.nullcontext()
|
||||
with maybe_no_grad:
|
||||
@ -947,7 +962,10 @@ class SynthesizerTrn(nn.Module):
|
||||
y_mask = torch.unsqueeze(commons.sequence_mask(y_lengths, y.size(2)), 1).to(
|
||||
y.dtype
|
||||
)
|
||||
ge = self.ref_enc(y * y_mask, y_mask)
|
||||
if (self.version == "v1"):
|
||||
ge = self.ref_enc(y * y_mask, y_mask)
|
||||
else:
|
||||
ge = self.ref_enc(y[:, :704] * y_mask, y_mask)
|
||||
|
||||
ssl = self.ssl_proj(ssl)
|
||||
quantized, codes, commit_loss, _ = self.quantizer(ssl, layers=[0])
|
||||
@ -967,14 +985,28 @@ class SynthesizerTrn(nn.Module):
|
||||
return o, y_mask, (z, z_p, m_p, logs_p)
|
||||
|
||||
@torch.no_grad()
|
||||
def decode(self, codes, text, refer, noise_scale=0.5):
|
||||
ge = None
|
||||
if refer is not None:
|
||||
refer_lengths = torch.LongTensor([refer.size(2)]).to(refer.device)
|
||||
refer_mask = torch.unsqueeze(
|
||||
commons.sequence_mask(refer_lengths, refer.size(2)), 1
|
||||
).to(refer.dtype)
|
||||
ge = self.ref_enc(refer * refer_mask, refer_mask)
|
||||
def decode(self, codes, text, refer, noise_scale=0.5, speed=1):
|
||||
def get_ge(refer):
|
||||
ge = None
|
||||
if refer is not None:
|
||||
refer_lengths = torch.LongTensor([refer.size(2)]).to(refer.device)
|
||||
refer_mask = torch.unsqueeze(
|
||||
commons.sequence_mask(refer_lengths, refer.size(2)), 1
|
||||
).to(refer.dtype)
|
||||
if (self.version == "v1"):
|
||||
ge = self.ref_enc(refer * refer_mask, refer_mask)
|
||||
else:
|
||||
ge = self.ref_enc(refer[:, :704] * refer_mask, refer_mask)
|
||||
return ge
|
||||
|
||||
if (type(refer) == list):
|
||||
ges = []
|
||||
for _refer in refer:
|
||||
ge = get_ge(_refer)
|
||||
ges.append(ge)
|
||||
ge = torch.stack(ges, 0).mean(0)
|
||||
else:
|
||||
ge = get_ge(refer)
|
||||
|
||||
y_lengths = torch.LongTensor([codes.size(2) * 2]).to(codes.device)
|
||||
text_lengths = torch.LongTensor([text.size(-1)]).to(text.device)
|
||||
@ -984,9 +1016,8 @@ class SynthesizerTrn(nn.Module):
|
||||
quantized = F.interpolate(
|
||||
quantized, size=int(quantized.shape[-1] * 2), mode="nearest"
|
||||
)
|
||||
|
||||
x, m_p, logs_p, y_mask = self.enc_p(
|
||||
quantized, y_lengths, text, text_lengths, ge
|
||||
quantized, y_lengths, text, text_lengths, ge, speed
|
||||
)
|
||||
z_p = m_p + torch.randn_like(m_p) * torch.exp(logs_p) * noise_scale
|
||||
|
||||
@ -994,57 +1025,8 @@ class SynthesizerTrn(nn.Module):
|
||||
|
||||
o = self.dec((z * y_mask)[:, :, :], g=ge)
|
||||
return o
|
||||
|
||||
|
||||
@torch.no_grad()
|
||||
def batched_decode(self, codes, y_lengths, text, text_lengths, refer, noise_scale=0.5):
|
||||
ge = None
|
||||
if refer is not None:
|
||||
refer_lengths = torch.LongTensor([refer.size(2)]).to(refer.device)
|
||||
refer_mask = torch.unsqueeze(
|
||||
commons.sequence_mask(refer_lengths, refer.size(2)), 1
|
||||
).to(refer.dtype)
|
||||
ge = self.ref_enc(refer * refer_mask, refer_mask)
|
||||
|
||||
# y_mask = torch.unsqueeze(commons.sequence_mask(y_lengths, codes.size(2)), 1).to(
|
||||
# codes.dtype
|
||||
# )
|
||||
y_lengths = (y_lengths * 2).long().to(codes.device)
|
||||
text_lengths = text_lengths.long().to(text.device)
|
||||
# y_lengths = torch.LongTensor([codes.size(2) * 2]).to(codes.device)
|
||||
# text_lengths = torch.LongTensor([text.size(-1)]).to(text.device)
|
||||
|
||||
# 假设padding之后再decode没有问题, 影响未知,但听起来好像没问题?
|
||||
quantized = self.quantizer.decode(codes)
|
||||
if self.semantic_frame_rate == "25hz":
|
||||
quantized = F.interpolate(
|
||||
quantized, size=int(quantized.shape[-1] * 2), mode="nearest"
|
||||
)
|
||||
|
||||
x, m_p, logs_p, y_mask = self.enc_p(
|
||||
quantized, y_lengths, text, text_lengths, ge
|
||||
)
|
||||
z_p = m_p + torch.randn_like(m_p) * torch.exp(logs_p) * noise_scale
|
||||
|
||||
z = self.flow(z_p, y_mask, g=ge, reverse=True)
|
||||
z_masked = (z * y_mask)[:, :, :]
|
||||
|
||||
# 串行。把padding部分去掉再decode
|
||||
o_list:List[torch.Tensor] = []
|
||||
for i in range(z_masked.shape[0]):
|
||||
z_slice = z_masked[i, :, :y_lengths[i]].unsqueeze(0)
|
||||
o = self.dec(z_slice, g=ge)[0, 0, :].detach()
|
||||
o_list.append(o)
|
||||
|
||||
# 并行(会有问题)。先decode,再把padding的部分去掉
|
||||
# o = self.dec(z_masked, g=ge)
|
||||
# upsample_rate = int(math.prod(self.upsample_rates))
|
||||
# o_lengths = y_lengths*upsample_rate
|
||||
# o_list = [o[i, 0, :idx].detach() for i, idx in enumerate(o_lengths)]
|
||||
|
||||
return o_list
|
||||
|
||||
def extract_latent(self, x):
|
||||
ssl = self.ssl_proj(x)
|
||||
quantized, codes, commit_loss, quantized_list = self.quantizer(ssl)
|
||||
return codes.transpose(0, 1)
|
||||
return codes.transpose(0, 1)
|
Loading…
x
Reference in New Issue
Block a user