fix: SynthesizerTrn

This commit is contained in:
CyberWon 2024-08-09 10:01:58 +08:00
parent bd53aa8200
commit 902e0121ac

View File

@ -1,6 +1,11 @@
import warnings
warnings.filterwarnings("ignore")
import copy
import math
from typing import List
import os
import pdb
import torch
from torch import nn
from torch.nn import functional as F
@ -14,20 +19,22 @@ from torch.nn.utils import weight_norm, remove_weight_norm, spectral_norm
from module.commons import init_weights, get_padding
from module.mrte_model import MRTE
from module.quantize import ResidualVectorQuantizer
from text import symbols
# from text import symbols
from text import symbols as symbols_v1
from text import symbols2 as symbols_v2
from torch.cuda.amp import autocast
import contextlib
class StochasticDurationPredictor(nn.Module):
def __init__(
self,
in_channels,
filter_channels,
kernel_size,
p_dropout,
n_flows=4,
gin_channels=0,
self,
in_channels,
filter_channels,
kernel_size,
p_dropout,
n_flows=4,
gin_channels=0,
):
super().__init__()
filter_channels = in_channels # it needs to be removed from future version.
@ -86,8 +93,8 @@ class StochasticDurationPredictor(nn.Module):
h_w = self.post_convs(h_w, x_mask)
h_w = self.post_proj(h_w) * x_mask
e_q = (
torch.randn(w.size(0), 2, w.size(2)).to(device=x.device, dtype=x.dtype)
* x_mask
torch.randn(w.size(0), 2, w.size(2)).to(device=x.device, dtype=x.dtype)
* x_mask
)
z_q = e_q
for flow in self.post_flows:
@ -100,8 +107,8 @@ class StochasticDurationPredictor(nn.Module):
(F.logsigmoid(z_u) + F.logsigmoid(-z_u)) * x_mask, [1, 2]
)
logq = (
torch.sum(-0.5 * (math.log(2 * math.pi) + (e_q**2)) * x_mask, [1, 2])
- logdet_tot_q
torch.sum(-0.5 * (math.log(2 * math.pi) + (e_q ** 2)) * x_mask, [1, 2])
- logdet_tot_q
)
logdet_tot = 0
@ -112,16 +119,16 @@ class StochasticDurationPredictor(nn.Module):
z, logdet = flow(z, x_mask, g=x, reverse=reverse)
logdet_tot = logdet_tot + logdet
nll = (
torch.sum(0.5 * (math.log(2 * math.pi) + (z**2)) * x_mask, [1, 2])
- logdet_tot
torch.sum(0.5 * (math.log(2 * math.pi) + (z ** 2)) * x_mask, [1, 2])
- logdet_tot
)
return nll + logq # [b]
else:
flows = list(reversed(self.flows))
flows = flows[:-2] + [flows[-1]] # remove a useless vflow
z = (
torch.randn(x.size(0), 2, x.size(2)).to(device=x.device, dtype=x.dtype)
* noise_scale
torch.randn(x.size(0), 2, x.size(2)).to(device=x.device, dtype=x.dtype)
* noise_scale
)
for flow in flows:
z = flow(z, x_mask, g=x, reverse=reverse)
@ -132,7 +139,7 @@ class StochasticDurationPredictor(nn.Module):
class DurationPredictor(nn.Module):
def __init__(
self, in_channels, filter_channels, kernel_size, p_dropout, gin_channels=0
self, in_channels, filter_channels, kernel_size, p_dropout, gin_channels=0
):
super().__init__()
@ -175,15 +182,16 @@ class DurationPredictor(nn.Module):
class TextEncoder(nn.Module):
def __init__(
self,
out_channels,
hidden_channels,
filter_channels,
n_heads,
n_layers,
kernel_size,
p_dropout,
latent_channels=192,
self,
out_channels,
hidden_channels,
filter_channels,
n_heads,
n_layers,
kernel_size,
p_dropout,
latent_channels=192,
version="v1",
):
super().__init__()
self.out_channels = out_channels
@ -194,6 +202,7 @@ class TextEncoder(nn.Module):
self.kernel_size = kernel_size
self.p_dropout = p_dropout
self.latent_channels = latent_channels
self.version = version
self.ssl_proj = nn.Conv1d(768, hidden_channels, 1)
@ -209,6 +218,11 @@ class TextEncoder(nn.Module):
self.encoder_text = attentions.Encoder(
hidden_channels, filter_channels, n_heads, n_layers, kernel_size, p_dropout
)
if self.version == "v1":
symbols = symbols_v1.symbols
else:
symbols = symbols_v2.symbols
self.text_embedding = nn.Embedding(len(symbols), hidden_channels)
self.mrte = MRTE()
@ -224,13 +238,13 @@ class TextEncoder(nn.Module):
self.proj = nn.Conv1d(hidden_channels, out_channels * 2, 1)
def forward(self, y, y_lengths, text, text_lengths, ge, test=None):
def forward(self, y, y_lengths, text, text_lengths, ge, speed=1, test=None):
y_mask = torch.unsqueeze(commons.sequence_mask(y_lengths, y.size(2)), 1).to(
y.dtype
)
y = self.ssl_proj(y * y_mask) * y_mask
y = self.encoder_ssl(y * y_mask, y_mask)
text_mask = torch.unsqueeze(
@ -241,9 +255,10 @@ class TextEncoder(nn.Module):
text = self.text_embedding(text).transpose(1, 2)
text = self.encoder_text(text * text_mask, text_mask)
y = self.mrte(y, y_mask, text, text_mask, ge)
y = self.encoder2(y * y_mask, y_mask)
if (speed != 1):
y = F.interpolate(y, size=int(y.shape[-1] / speed) + 1, mode="linear")
y_mask = F.interpolate(y_mask, size=y.shape[-1], mode="nearest")
stats = self.proj(y) * y_mask
m, logs = torch.split(stats, self.out_channels, dim=1)
return y, m, logs, y_mask
@ -270,14 +285,14 @@ class TextEncoder(nn.Module):
class ResidualCouplingBlock(nn.Module):
def __init__(
self,
channels,
hidden_channels,
kernel_size,
dilation_rate,
n_layers,
n_flows=4,
gin_channels=0,
self,
channels,
hidden_channels,
kernel_size,
dilation_rate,
n_layers,
n_flows=4,
gin_channels=0,
):
super().__init__()
self.channels = channels
@ -315,14 +330,14 @@ class ResidualCouplingBlock(nn.Module):
class PosteriorEncoder(nn.Module):
def __init__(
self,
in_channels,
out_channels,
hidden_channels,
kernel_size,
dilation_rate,
n_layers,
gin_channels=0,
self,
in_channels,
out_channels,
hidden_channels,
kernel_size,
dilation_rate,
n_layers,
gin_channels=0,
):
super().__init__()
self.in_channels = in_channels
@ -359,14 +374,14 @@ class PosteriorEncoder(nn.Module):
class WNEncoder(nn.Module):
def __init__(
self,
in_channels,
out_channels,
hidden_channels,
kernel_size,
dilation_rate,
n_layers,
gin_channels=0,
self,
in_channels,
out_channels,
hidden_channels,
kernel_size,
dilation_rate,
n_layers,
gin_channels=0,
):
super().__init__()
self.in_channels = in_channels
@ -401,15 +416,15 @@ class WNEncoder(nn.Module):
class Generator(torch.nn.Module):
def __init__(
self,
initial_channel,
resblock,
resblock_kernel_sizes,
resblock_dilation_sizes,
upsample_rates,
upsample_initial_channel,
upsample_kernel_sizes,
gin_channels=0,
self,
initial_channel,
resblock,
resblock_kernel_sizes,
resblock_dilation_sizes,
upsample_rates,
upsample_initial_channel,
upsample_kernel_sizes,
gin_channels=0,
):
super(Generator, self).__init__()
self.num_kernels = len(resblock_kernel_sizes)
@ -424,7 +439,7 @@ class Generator(torch.nn.Module):
self.ups.append(
weight_norm(
ConvTranspose1d(
upsample_initial_channel // (2**i),
upsample_initial_channel // (2 ** i),
upsample_initial_channel // (2 ** (i + 1)),
k,
u,
@ -437,7 +452,7 @@ class Generator(torch.nn.Module):
for i in range(len(self.ups)):
ch = upsample_initial_channel // (2 ** (i + 1))
for j, (k, d) in enumerate(
zip(resblock_kernel_sizes, resblock_dilation_sizes)
zip(resblock_kernel_sizes, resblock_dilation_sizes)
):
self.resblocks.append(resblock(ch, k, d))
@ -679,9 +694,9 @@ class Quantizer_module(torch.nn.Module):
def forward(self, x):
d = (
torch.sum(x**2, 1, keepdim=True)
+ torch.sum(self.embedding.weight**2, 1)
- 2 * torch.matmul(x, self.embedding.weight.T)
torch.sum(x ** 2, 1, keepdim=True)
+ torch.sum(self.embedding.weight ** 2, 1)
- 2 * torch.matmul(x, self.embedding.weight.T)
)
min_indicies = torch.argmin(d, 1)
z_q = self.embedding(min_indicies)
@ -736,16 +751,16 @@ class Quantizer(torch.nn.Module):
class CodePredictor(nn.Module):
def __init__(
self,
hidden_channels,
filter_channels,
n_heads,
n_layers,
kernel_size,
p_dropout,
n_q=8,
dims=1024,
ssl_dim=768,
self,
hidden_channels,
filter_channels,
n_heads,
n_layers,
kernel_size,
p_dropout,
n_q=8,
dims=1024,
ssl_dim=768,
):
super().__init__()
self.hidden_channels = hidden_channels
@ -804,28 +819,29 @@ class SynthesizerTrn(nn.Module):
"""
def __init__(
self,
spec_channels,
segment_size,
inter_channels,
hidden_channels,
filter_channels,
n_heads,
n_layers,
kernel_size,
p_dropout,
resblock,
resblock_kernel_sizes,
resblock_dilation_sizes,
upsample_rates,
upsample_initial_channel,
upsample_kernel_sizes,
n_speakers=0,
gin_channels=0,
use_sdp=True,
semantic_frame_rate=None,
freeze_quantizer=None,
**kwargs
self,
spec_channels,
segment_size,
inter_channels,
hidden_channels,
filter_channels,
n_heads,
n_layers,
kernel_size,
p_dropout,
resblock,
resblock_kernel_sizes,
resblock_dilation_sizes,
upsample_rates,
upsample_initial_channel,
upsample_kernel_sizes,
n_speakers=0,
gin_channels=0,
use_sdp=True,
semantic_frame_rate=None,
freeze_quantizer=None,
version="v1",
**kwargs
):
super().__init__()
self.spec_channels = spec_channels
@ -845,6 +861,7 @@ class SynthesizerTrn(nn.Module):
self.segment_size = segment_size
self.n_speakers = n_speakers
self.gin_channels = gin_channels
self.version = version
self.use_sdp = use_sdp
self.enc_p = TextEncoder(
@ -855,6 +872,7 @@ class SynthesizerTrn(nn.Module):
n_layers,
kernel_size,
p_dropout,
version=version,
)
self.dec = Generator(
inter_channels,
@ -879,9 +897,11 @@ class SynthesizerTrn(nn.Module):
inter_channels, hidden_channels, 5, 1, 4, gin_channels=gin_channels
)
self.ref_enc = modules.MelStyleEncoder(
spec_channels, style_vector_dim=gin_channels
)
# self.version=os.environ.get("version","v1")
if (self.version == "v1"):
self.ref_enc = modules.MelStyleEncoder(spec_channels, style_vector_dim=gin_channels)
else:
self.ref_enc = modules.MelStyleEncoder(704, style_vector_dim=gin_channels)
ssl_dim = 768
assert semantic_frame_rate in ["25hz", "50hz"]
@ -893,20 +913,15 @@ class SynthesizerTrn(nn.Module):
self.quantizer = ResidualVectorQuantizer(dimension=ssl_dim, n_q=1, bins=1024)
self.freeze_quantizer = freeze_quantizer
# if freeze_quantizer:
# self.ssl_proj.requires_grad_(False)
# self.quantizer.requires_grad_(False)
#self.quantizer.eval()
# self.enc_p.text_embedding.requires_grad_(False)
# self.enc_p.encoder_text.requires_grad_(False)
# self.enc_p.mrte.requires_grad_(False)
def forward(self, ssl, y, y_lengths, text, text_lengths):
y_mask = torch.unsqueeze(commons.sequence_mask(y_lengths, y.size(2)), 1).to(
y.dtype
)
ge = self.ref_enc(y * y_mask, y_mask)
if (self.version == "v1"):
ge = self.ref_enc(y * y_mask, y_mask)
else:
ge = self.ref_enc(y[:, :704] * y_mask, y_mask)
with autocast(enabled=False):
maybe_no_grad = torch.no_grad() if self.freeze_quantizer else contextlib.nullcontext()
with maybe_no_grad:
@ -947,7 +962,10 @@ class SynthesizerTrn(nn.Module):
y_mask = torch.unsqueeze(commons.sequence_mask(y_lengths, y.size(2)), 1).to(
y.dtype
)
ge = self.ref_enc(y * y_mask, y_mask)
if (self.version == "v1"):
ge = self.ref_enc(y * y_mask, y_mask)
else:
ge = self.ref_enc(y[:, :704] * y_mask, y_mask)
ssl = self.ssl_proj(ssl)
quantized, codes, commit_loss, _ = self.quantizer(ssl, layers=[0])
@ -967,14 +985,28 @@ class SynthesizerTrn(nn.Module):
return o, y_mask, (z, z_p, m_p, logs_p)
@torch.no_grad()
def decode(self, codes, text, refer, noise_scale=0.5):
ge = None
if refer is not None:
refer_lengths = torch.LongTensor([refer.size(2)]).to(refer.device)
refer_mask = torch.unsqueeze(
commons.sequence_mask(refer_lengths, refer.size(2)), 1
).to(refer.dtype)
ge = self.ref_enc(refer * refer_mask, refer_mask)
def decode(self, codes, text, refer, noise_scale=0.5, speed=1):
def get_ge(refer):
ge = None
if refer is not None:
refer_lengths = torch.LongTensor([refer.size(2)]).to(refer.device)
refer_mask = torch.unsqueeze(
commons.sequence_mask(refer_lengths, refer.size(2)), 1
).to(refer.dtype)
if (self.version == "v1"):
ge = self.ref_enc(refer * refer_mask, refer_mask)
else:
ge = self.ref_enc(refer[:, :704] * refer_mask, refer_mask)
return ge
if (type(refer) == list):
ges = []
for _refer in refer:
ge = get_ge(_refer)
ges.append(ge)
ge = torch.stack(ges, 0).mean(0)
else:
ge = get_ge(refer)
y_lengths = torch.LongTensor([codes.size(2) * 2]).to(codes.device)
text_lengths = torch.LongTensor([text.size(-1)]).to(text.device)
@ -984,9 +1016,8 @@ class SynthesizerTrn(nn.Module):
quantized = F.interpolate(
quantized, size=int(quantized.shape[-1] * 2), mode="nearest"
)
x, m_p, logs_p, y_mask = self.enc_p(
quantized, y_lengths, text, text_lengths, ge
quantized, y_lengths, text, text_lengths, ge, speed
)
z_p = m_p + torch.randn_like(m_p) * torch.exp(logs_p) * noise_scale
@ -994,57 +1025,8 @@ class SynthesizerTrn(nn.Module):
o = self.dec((z * y_mask)[:, :, :], g=ge)
return o
@torch.no_grad()
def batched_decode(self, codes, y_lengths, text, text_lengths, refer, noise_scale=0.5):
ge = None
if refer is not None:
refer_lengths = torch.LongTensor([refer.size(2)]).to(refer.device)
refer_mask = torch.unsqueeze(
commons.sequence_mask(refer_lengths, refer.size(2)), 1
).to(refer.dtype)
ge = self.ref_enc(refer * refer_mask, refer_mask)
# y_mask = torch.unsqueeze(commons.sequence_mask(y_lengths, codes.size(2)), 1).to(
# codes.dtype
# )
y_lengths = (y_lengths * 2).long().to(codes.device)
text_lengths = text_lengths.long().to(text.device)
# y_lengths = torch.LongTensor([codes.size(2) * 2]).to(codes.device)
# text_lengths = torch.LongTensor([text.size(-1)]).to(text.device)
# 假设padding之后再decode没有问题, 影响未知,但听起来好像没问题?
quantized = self.quantizer.decode(codes)
if self.semantic_frame_rate == "25hz":
quantized = F.interpolate(
quantized, size=int(quantized.shape[-1] * 2), mode="nearest"
)
x, m_p, logs_p, y_mask = self.enc_p(
quantized, y_lengths, text, text_lengths, ge
)
z_p = m_p + torch.randn_like(m_p) * torch.exp(logs_p) * noise_scale
z = self.flow(z_p, y_mask, g=ge, reverse=True)
z_masked = (z * y_mask)[:, :, :]
# 串行。把padding部分去掉再decode
o_list:List[torch.Tensor] = []
for i in range(z_masked.shape[0]):
z_slice = z_masked[i, :, :y_lengths[i]].unsqueeze(0)
o = self.dec(z_slice, g=ge)[0, 0, :].detach()
o_list.append(o)
# 并行会有问题。先decode再把padding的部分去掉
# o = self.dec(z_masked, g=ge)
# upsample_rate = int(math.prod(self.upsample_rates))
# o_lengths = y_lengths*upsample_rate
# o_list = [o[i, 0, :idx].detach() for i, idx in enumerate(o_lengths)]
return o_list
def extract_latent(self, x):
ssl = self.ssl_proj(x)
quantized, codes, commit_loss, quantized_list = self.quantizer(ssl)
return codes.transpose(0, 1)
return codes.transpose(0, 1)