抽卡功能

抽卡功能,支持使用colorsplitter生成的CSV分类文件

https://github.com/KakaruHayate/ColorSplitter
This commit is contained in:
KakaruHayate 2024-01-24 19:09:41 +08:00
parent e55e6911cd
commit 900ed8aad4
2 changed files with 36 additions and 0 deletions

View File

@ -33,6 +33,8 @@ from time import time as ttime
from module.mel_processing import spectrogram_torch
from my_utils import load_audio
from tools.i18n.i18n import I18nAuto
import random
import pandas as pd
i18n = I18nAuto()
device = "cuda"
@ -418,6 +420,7 @@ def change_choices():
SoVITS_names, GPT_names = get_weights_names()
return {"choices": sorted(SoVITS_names,key=custom_sort_key), "__type__": "update"}, {"choices": sorted(GPT_names,key=custom_sort_key), "__type__": "update"}
pretrained_sovits_name="GPT_SoVITS/pretrained_models/s2G488k.pth"
pretrained_gpt_name="GPT_SoVITS/pretrained_models/s1bert25hz-2kh-longer-epoch=68e-step=50232.ckpt"
SoVITS_weight_root="SoVITS_weights"
@ -434,6 +437,29 @@ def get_weights_names():
return SoVITS_names,GPT_names
SoVITS_names,GPT_names = get_weights_names()
def select_random_file(folder_path):
files = [f for f in os.listdir(folder_path) if os.path.isfile(os.path.join(folder_path, f))]
return os.path.join(folder_path, random.choice(files))
def get_labels(csv_path):
if csv_path:
df = pd.read_csv(csv_path)
return {"choices": df['clust'].unique().tolist(), "__type__": "update"}
else:
return {"choices": [], "__type__": "update"}
def select_random_file_from_csv(csv_path, label, folder_path):
if csv_path:
df = pd.read_csv(csv_path)
files = df[df['clust'] == label]['filename'].apply(os.path.basename).tolist()
return os.path.join(folder_path, random.choice(files))
else:
return select_random_file(folder_path)
with gr.Blocks(title="GPT-SoVITS WebUI") as app:
gr.Markdown(
value=i18n("本软件以MIT协议开源, 作者不对软件具备任何控制力, 使用软件者、传播软件导出的声音者自负全责. <br>如不认可该条款, 则不能使用或引用软件包内任何代码和文件. 详见根目录<b>LICENSE</b>.")
@ -447,9 +473,18 @@ with gr.Blocks(title="GPT-SoVITS WebUI") as app:
refresh_button.click(fn=change_choices, inputs=[], outputs=[SoVITS_dropdown, GPT_dropdown])
SoVITS_dropdown.change(change_sovits_weights,[SoVITS_dropdown],[])
GPT_dropdown.change(change_gpt_weights,[GPT_dropdown],[])
gr.Markdown(value="随机抽取参考音频可以导入csv文件限定抽取范围csv第一列为filename第二列为clust类别标签")
with gr.Row():
folder_path = gr.Textbox(label="请输入音频文件夹路径", value="")
csv_path = gr.Textbox(label="请输入CSV文件路径可选", value="")
label = gr.Dropdown(label="请选择一个标签(可选)", choices=[], value="")
update_labels_button = gr.Button("更新标签", variant="primary")
update_labels_button.click(get_labels, [csv_path], [label])
random_file_button = gr.Button("随机选择音频文件", variant="primary")
gr.Markdown(value=i18n("*请上传并填写参考信息"))
with gr.Row():
inp_ref = gr.Audio(label=i18n("请上传参考音频"), type="filepath")
random_file_button.click(select_random_file_from_csv, [csv_path, label, folder_path], [inp_ref])
prompt_text = gr.Textbox(label=i18n("参考音频的文本"), value="")
prompt_language = gr.Dropdown(
label=i18n("参考音频的语种"),choices=[i18n("中文"),i18n("英文"),i18n("日文")],value=i18n("中文")

View File

@ -21,3 +21,4 @@ chardet
PyYAML
psutil
jieba_fast
pandas