mirror of
https://github.com/RVC-Boss/GPT-SoVITS.git
synced 2025-04-06 03:57:44 +08:00
commit
8fe826ed5e
7
Docker/download.py
Normal file
7
Docker/download.py
Normal file
@ -0,0 +1,7 @@
|
||||
# Download moda ASR related models
|
||||
from modelscope import snapshot_download
|
||||
model_dir = snapshot_download('damo/speech_paraformer-large_asr_nat-zh-cn-16k-common-vocab8404-pytorch')
|
||||
model_dir = snapshot_download('damo/speech_fsmn_vad_zh-cn-16k-common-pytorch')
|
||||
model_dir = snapshot_download('damo/punc_ct-transformer_zh-cn-common-vocab272727-pytorch')
|
||||
|
||||
|
26
Dockerfile
26
Dockerfile
@ -2,7 +2,7 @@
|
||||
FROM cnstark/pytorch:2.0.1-py3.9.17-cuda11.8.0-ubuntu20.04
|
||||
|
||||
LABEL maintainer="breakstring@hotmail.com"
|
||||
LABEL version="dev-20240123.03"
|
||||
LABEL version="dev-20240127"
|
||||
LABEL description="Docker image for GPT-SoVITS"
|
||||
|
||||
|
||||
@ -18,27 +18,19 @@ RUN apt-get update && \
|
||||
WORKDIR /workspace
|
||||
COPY . /workspace
|
||||
|
||||
# install python packages
|
||||
RUN pip install -r requirements.txt
|
||||
|
||||
# Download models
|
||||
RUN chmod +x /workspace/Docker/download.sh && /workspace/Docker/download.sh
|
||||
|
||||
# 本应该从 requirements.txt 里面安装package,但是由于funasr和modelscope的问题,暂时先在后面手工安装依赖包吧
|
||||
RUN pip install --no-cache-dir torch numpy scipy tensorboard librosa==0.9.2 numba==0.56.4 pytorch-lightning gradio==3.14.0 ffmpeg-python onnxruntime tqdm cn2an pypinyin pyopenjtalk g2p_en chardet transformers jieba psutil PyYAML
|
||||
# 这里强制指定了modelscope和funasr的版本,后面damo_asr的模型让它们自己下载
|
||||
RUN pip install --no-cache-dir modelscope~=1.10.0 torchaudio sentencepiece funasr~=0.8.7
|
||||
# Download moda ASR related
|
||||
RUN python /workspace/Docker/download.py
|
||||
|
||||
# 先屏蔽掉,让容器里自己下载
|
||||
# Clone damo_asr
|
||||
#WORKDIR /workspace/tools/damo_asr/models
|
||||
#RUN git clone --depth 1 https://www.modelscope.cn/iic/speech_paraformer-large_asr_nat-zh-cn-16k-common-vocab8404-pytorch.git speech_paraformer-large_asr_nat-zh-cn-16k-common-vocab8404-pytorch && \
|
||||
# (cd speech_paraformer-large_asr_nat-zh-cn-16k-common-vocab8404-pytorch && git lfs pull)
|
||||
#RUN git clone --depth 1 https://www.modelscope.cn/iic/speech_fsmn_vad_zh-cn-16k-common-pytorch.git speech_fsmn_vad_zh-cn-16k-common-pytorch && \
|
||||
# (cd speech_fsmn_vad_zh-cn-16k-common-pytorch && git lfs pull)
|
||||
#RUN git clone --depth 1 https://www.modelscope.cn/iic/punc_ct-transformer_zh-cn-common-vocab272727-pytorch.git punc_ct-transformer_zh-cn-common-vocab272727-pytorch && \
|
||||
# (cd punc_ct-transformer_zh-cn-common-vocab272727-pytorch && git lfs pull)
|
||||
# Download nltk realted
|
||||
RUN python -m nltk.downloader averaged_perceptron_tagger
|
||||
RUN python -m nltk.downloader cmudict
|
||||
|
||||
#RUN parallel --will-cite -a /workspace/Docker/damo.sha256 "echo -n {} | sha256sum -c"
|
||||
|
||||
#WORKDIR /workspace
|
||||
|
||||
EXPOSE 9870
|
||||
EXPOSE 9871
|
||||
|
@ -121,8 +121,9 @@ For UVR5 (Vocals/Accompaniment Separation & Reverberation Removal, additionally)
|
||||
|
||||
### Using Docker
|
||||
|
||||
#### docker-compose.yaml configuration
|
||||
#### docker-compose.yaml configuration
|
||||
|
||||
0. Regarding image tags: Due to rapid updates in the codebase and the slow process of packaging and testing images, please check [Docker Hub](https://hub.docker.com/r/breakstring/gpt-sovits) for the currently packaged latest images and select as per your situation, or alternatively, build locally using a Dockerfile according to your own needs.
|
||||
1. Environment Variables:
|
||||
- is_half: Controls half-precision/double-precision. This is typically the cause if the content under the directories 4-cnhubert/5-wav32k is not generated correctly during the "SSL extracting" step. Adjust to True or False based on your actual situation.
|
||||
|
||||
@ -140,7 +141,7 @@ docker compose -f "docker-compose.yaml" up -d
|
||||
|
||||
As above, modify the corresponding parameters based on your actual situation, then run the following command:
|
||||
```
|
||||
docker run --rm -it --gpus=all --env=is_half=False --volume=G:\GPT-SoVITS-DockerTest\output:/workspace/output --volume=G:\GPT-SoVITS-DockerTest\logs:/workspace/logs --volume=G:\GPT-SoVITS-DockerTest\SoVITS_weights:/workspace/SoVITS_weights --workdir=/workspace -p 9870:9870 -p 9871:9871 -p 9872:9872 -p 9873:9873 -p 9874:9874 --shm-size="16G" -d breakstring/gpt-sovits:dev-20240123.03
|
||||
docker run --rm -it --gpus=all --env=is_half=False --volume=G:\GPT-SoVITS-DockerTest\output:/workspace/output --volume=G:\GPT-SoVITS-DockerTest\logs:/workspace/logs --volume=G:\GPT-SoVITS-DockerTest\SoVITS_weights:/workspace/SoVITS_weights --workdir=/workspace -p 9870:9870 -p 9871:9871 -p 9872:9872 -p 9873:9873 -p 9874:9874 --shm-size="16G" -d breakstring/gpt-sovits:xxxxx
|
||||
```
|
||||
|
||||
|
||||
|
@ -2,7 +2,7 @@ version: '3.8'
|
||||
|
||||
services:
|
||||
gpt-sovits:
|
||||
image: breakstring/gpt-sovits:dev-20240123.03
|
||||
image: breakstring/gpt-sovits:xxxxx # please change the image name and tag base your environment
|
||||
container_name: gpt-sovits-container
|
||||
environment:
|
||||
- is_half=False
|
||||
|
@ -110,7 +110,7 @@ brew install ffmpeg
|
||||
### 在 Docker 中使用
|
||||
|
||||
#### docker-compose.yaml 设置
|
||||
|
||||
0. image的标签:由于代码库更新很快,镜像的打包和测试又很慢,所以请自行在 [Docker Hub](https://hub.docker.com/r/breakstring/gpt-sovits) 查看当前打包好的最新的镜像并根据自己的情况选用,或者在本地根据您自己的需求通过Dockerfile进行构建。
|
||||
1. 环境变量:
|
||||
- is_half: 半精度/双精度控制。在进行 "SSL extracting" 步骤时如果无法正确生成 4-cnhubert/5-wav32k 目录下的内容时,一般都是它引起的,可以根据实际情况来调整为True或者False。
|
||||
|
||||
@ -129,7 +129,7 @@ docker compose -f "docker-compose.yaml" up -d
|
||||
|
||||
同上,根据您自己的实际情况修改对应的参数,然后运行如下命令:
|
||||
```
|
||||
docker run --rm -it --gpus=all --env=is_half=False --volume=G:\GPT-SoVITS-DockerTest\output:/workspace/output --volume=G:\GPT-SoVITS-DockerTest\logs:/workspace/logs --volume=G:\GPT-SoVITS-DockerTest\SoVITS_weights:/workspace/SoVITS_weights --workdir=/workspace -p 9870:9870 -p 9871:9871 -p 9872:9872 -p 9873:9873 -p 9874:9874 --shm-size="16G" -d breakstring/gpt-sovits:dev-20240123.03
|
||||
docker run --rm -it --gpus=all --env=is_half=False --volume=G:\GPT-SoVITS-DockerTest\output:/workspace/output --volume=G:\GPT-SoVITS-DockerTest\logs:/workspace/logs --volume=G:\GPT-SoVITS-DockerTest\SoVITS_weights:/workspace/SoVITS_weights --workdir=/workspace -p 9870:9870 -p 9871:9871 -p 9872:9872 -p 9873:9873 -p 9874:9874 --shm-size="16G" -d breakstring/gpt-sovits:xxxxx
|
||||
```
|
||||
|
||||
|
||||
|
@ -106,8 +106,9 @@ brew install ffmpeg
|
||||
|
||||
### Dockerの使用
|
||||
|
||||
#### docker-compose.yamlの設定
|
||||
#### docker-compose.yamlの設定
|
||||
|
||||
0. イメージのタグについて:コードベースの更新が速く、イメージのパッケージングとテストが遅いため、[Docker Hub](https://hub.docker.com/r/breakstring/gpt-sovits) で現在パッケージされている最新のイメージをご覧になり、ご自身の状況に応じて選択するか、またはご自身のニーズに応じてDockerfileを使用してローカルで構築してください。
|
||||
1. 環境変数:
|
||||
- `is_half`:半精度/倍精度の制御。"SSL抽出"ステップ中に`4-cnhubert/5-wav32k`ディレクトリ内の内容が正しく生成されない場合、通常これが原因です。実際の状況に応じてTrueまたはFalseに調整してください。
|
||||
|
||||
@ -124,7 +125,7 @@ docker compose -f "docker-compose.yaml" up -d
|
||||
|
||||
上記と同様に、実際の状況に基づいて対応するパラメータを変更し、次のコマンドを実行します:
|
||||
```markdown
|
||||
docker run --rm -it --gpus=all --env=is_half=False --volume=G:\GPT-SoVITS-DockerTest\output:/workspace/output --volume=G:\GPT-SoVITS-DockerTest\logs:/workspace/logs --volume=G:\GPT-SoVITS-DockerTest\SoVITS_weights:/workspace/SoVITS_weights --workdir=/workspace -p 9870:9870 -p 9871:9871 -p 9872:9872 -p 9873:9873 -p 9874:9874 --shm-size="16G" -d breakstring/gpt-sovits:dev-20240123.03
|
||||
docker run --rm -it --gpus=all --env=is_half=False --volume=G:\GPT-SoVITS-DockerTest\output:/workspace/output --volume=G:\GPT-SoVITS-DockerTest\logs:/workspace/logs --volume=G:\GPT-SoVITS-DockerTest\SoVITS_weights:/workspace/SoVITS_weights --workdir=/workspace -p 9870:9870 -p 9871:9871 -p 9872:9872 -p 9873:9873 -p 9874:9874 --shm-size="16G" -d breakstring/gpt-sovits:xxxxx
|
||||
```
|
||||
|
||||
|
||||
|
Loading…
x
Reference in New Issue
Block a user