mirror of
https://github.com/RVC-Boss/GPT-SoVITS.git
synced 2025-10-07 23:48:48 +08:00
Merge c24398df8a8d220d02d8af144e9ed297dfc4eb30 into e4b17c40bfb120dd93a360cba849b320e443052b
This commit is contained in:
commit
8e7f448418
@ -253,10 +253,11 @@ class TTS:
|
|||||||
if self.configs.is_half and str(self.configs.device)!="cpu":
|
if self.configs.is_half and str(self.configs.device)!="cpu":
|
||||||
self.bert_model = self.bert_model.half()
|
self.bert_model = self.bert_model.half()
|
||||||
|
|
||||||
def init_vits_weights(self, weights_path: str):
|
def init_vits_weights(self, weights_path: str, save_configs: bool = True):
|
||||||
print(f"Loading VITS weights from {weights_path}")
|
print(f"Loading VITS weights from {weights_path}")
|
||||||
self.configs.vits_weights_path = weights_path
|
self.configs.vits_weights_path = weights_path
|
||||||
self.configs.save_configs()
|
if save_configs:
|
||||||
|
self.configs.save_configs()
|
||||||
dict_s2 = torch.load(weights_path, map_location=self.configs.device)
|
dict_s2 = torch.load(weights_path, map_location=self.configs.device)
|
||||||
hps = dict_s2["config"]
|
hps = dict_s2["config"]
|
||||||
self.configs.filter_length = hps["data"]["filter_length"]
|
self.configs.filter_length = hps["data"]["filter_length"]
|
||||||
@ -285,10 +286,11 @@ class TTS:
|
|||||||
self.vits_model = self.vits_model.half()
|
self.vits_model = self.vits_model.half()
|
||||||
|
|
||||||
|
|
||||||
def init_t2s_weights(self, weights_path: str):
|
def init_t2s_weights(self, weights_path: str, save_configs: bool = True):
|
||||||
print(f"Loading Text2Semantic weights from {weights_path}")
|
print(f"Loading Text2Semantic weights from {weights_path}")
|
||||||
self.configs.t2s_weights_path = weights_path
|
self.configs.t2s_weights_path = weights_path
|
||||||
self.configs.save_configs()
|
if save_configs:
|
||||||
|
self.configs.save_configs()
|
||||||
self.configs.hz = 50
|
self.configs.hz = 50
|
||||||
dict_s1 = torch.load(weights_path, map_location=self.configs.device)
|
dict_s1 = torch.load(weights_path, map_location=self.configs.device)
|
||||||
config = dict_s1["config"]
|
config = dict_s1["config"]
|
||||||
@ -334,14 +336,15 @@ class TTS:
|
|||||||
if self.cnhuhbert_model is not None:
|
if self.cnhuhbert_model is not None:
|
||||||
self.cnhuhbert_model = self.cnhuhbert_model.float()
|
self.cnhuhbert_model = self.cnhuhbert_model.float()
|
||||||
|
|
||||||
def set_device(self, device: torch.device):
|
def set_device(self, device: torch.device, save_configs: bool = True):
|
||||||
'''
|
'''
|
||||||
To set the device for all models.
|
To set the device for all models.
|
||||||
Args:
|
Args:
|
||||||
device: torch.device, the device to use for all models.
|
device: torch.device, the device to use for all models.
|
||||||
'''
|
'''
|
||||||
self.configs.device = device
|
self.configs.device = device
|
||||||
self.configs.save_configs()
|
if save_configs:
|
||||||
|
self.configs.save_configs()
|
||||||
if self.t2s_model is not None:
|
if self.t2s_model is not None:
|
||||||
self.t2s_model = self.t2s_model.to(device)
|
self.t2s_model = self.t2s_model.to(device)
|
||||||
if self.vits_model is not None:
|
if self.vits_model is not None:
|
||||||
|
133
GPT_SoVITS/TTS_infer_pack/tts_instance_pool.py
Normal file
133
GPT_SoVITS/TTS_infer_pack/tts_instance_pool.py
Normal file
@ -0,0 +1,133 @@
|
|||||||
|
import threading
|
||||||
|
from time import perf_counter
|
||||||
|
import traceback
|
||||||
|
from typing import Dict, Union
|
||||||
|
|
||||||
|
from GPT_SoVITS.TTS_infer_pack.TTS import TTS, TTS_Config
|
||||||
|
|
||||||
|
|
||||||
|
class TTSWrapper(TTS):
|
||||||
|
heat: float = 0
|
||||||
|
usage_count: int = 0
|
||||||
|
usage_counter: int = 0
|
||||||
|
usage_time: float = 0.0
|
||||||
|
first_used_time: float = 0.0
|
||||||
|
|
||||||
|
def __init__(self, configs: Union[dict, str, TTS_Config]):
|
||||||
|
super(TTSWrapper, self).__init__(configs)
|
||||||
|
self.first_used_time = perf_counter()
|
||||||
|
|
||||||
|
def __hash__(self) -> int:
|
||||||
|
return hash(self.first_used_time)
|
||||||
|
|
||||||
|
def run(self, *args, **kwargs):
|
||||||
|
self.usage_counter += 1
|
||||||
|
t0 = perf_counter()
|
||||||
|
for result in super(TTSWrapper, self).run(*args, **kwargs):
|
||||||
|
yield result
|
||||||
|
t1 = perf_counter()
|
||||||
|
self.usage_time += t1 - t0
|
||||||
|
idle_time = self.usage_time - self.first_used_time
|
||||||
|
self.heat = self.usage_counter / idle_time
|
||||||
|
|
||||||
|
def reset_heat(self):
|
||||||
|
self.heat: int = 0
|
||||||
|
self.usage_count: int = 0
|
||||||
|
self.usage_time: float = 0.0
|
||||||
|
self.first_used_time: float = perf_counter()
|
||||||
|
|
||||||
|
|
||||||
|
class TTSInstancePool:
|
||||||
|
def __init__(self, max_size):
|
||||||
|
self.max_size: int = max_size
|
||||||
|
self.semaphore: threading.Semaphore = threading.Semaphore(max_size)
|
||||||
|
self.pool_lock: threading.Lock = threading.Lock()
|
||||||
|
self.pool: Dict[int, TTSWrapper] = dict()
|
||||||
|
self.current_index: int = 0
|
||||||
|
self.size: int = 0
|
||||||
|
|
||||||
|
def acquire(self, configs: TTS_Config):
|
||||||
|
|
||||||
|
self.semaphore.acquire()
|
||||||
|
try:
|
||||||
|
with self.pool_lock:
|
||||||
|
# 查询最匹配的实例
|
||||||
|
indexed_key = None
|
||||||
|
rank = []
|
||||||
|
for key, tts_instance in self.pool.items():
|
||||||
|
if tts_instance.configs.vits_weights_path == configs.vits_weights_path \
|
||||||
|
and tts_instance.configs.t2s_weights_path == configs.t2s_weights_path:
|
||||||
|
indexed_key = key
|
||||||
|
rank.append((tts_instance.heat, key))
|
||||||
|
rank.sort(key=lambda x: x[0])
|
||||||
|
matched_key = None if len(rank) == 0 else rank[0][1]
|
||||||
|
|
||||||
|
# 如果已有实例匹配,则直接复用
|
||||||
|
if indexed_key is not None:
|
||||||
|
tts_instance = self._reuse_instance(indexed_key, configs)
|
||||||
|
print(f"如果已有实例匹配,则直接复用: {configs.vits_weights_path} {configs.t2s_weights_path}")
|
||||||
|
return tts_instance
|
||||||
|
|
||||||
|
# 如果pool未满,则创建一个新实例
|
||||||
|
if self.size < self.max_size:
|
||||||
|
tts_instance = TTSWrapper(configs)
|
||||||
|
self.size += 1
|
||||||
|
print(f"如果pool未满,则创建一个新实例: {configs.vits_weights_path} {configs.t2s_weights_path}")
|
||||||
|
return tts_instance
|
||||||
|
else:
|
||||||
|
# 否则用最合适的实例进行复用
|
||||||
|
tts_instance = self._reuse_instance(matched_key, configs)
|
||||||
|
print(f"否则用最合适的实例进行复用: {configs.vits_weights_path} {configs.t2s_weights_path}")
|
||||||
|
return tts_instance
|
||||||
|
except Exception as e:
|
||||||
|
self.semaphore.release()
|
||||||
|
traceback.print_exc()
|
||||||
|
raise e
|
||||||
|
|
||||||
|
def release(self, tts_instance: TTSWrapper):
|
||||||
|
assert tts_instance is not None
|
||||||
|
with self.pool_lock:
|
||||||
|
key = hash(tts_instance)
|
||||||
|
if key in self.pool.keys():
|
||||||
|
return
|
||||||
|
self.pool[key] = tts_instance
|
||||||
|
self.semaphore.release()
|
||||||
|
|
||||||
|
def clear_pool(self):
|
||||||
|
for i in range(self.max_size):
|
||||||
|
self.semaphore.acquire()
|
||||||
|
with self.pool_lock:
|
||||||
|
self.pool.clear()
|
||||||
|
# for i in range(self.max_size):
|
||||||
|
self.semaphore.release(self.max_size)
|
||||||
|
|
||||||
|
def _reuse_instance(self, instance_key: int, configs: TTS_Config) -> TTSWrapper:
|
||||||
|
"""
|
||||||
|
复用已有实例
|
||||||
|
args:
|
||||||
|
instance_key: int, 已有实例的Key
|
||||||
|
config: TTS_Config
|
||||||
|
return:
|
||||||
|
TTS_Wrapper: 返回复用的TTS实例
|
||||||
|
"""
|
||||||
|
|
||||||
|
# 复用已有实例
|
||||||
|
tts_instance = self.pool.pop(instance_key, None)
|
||||||
|
if tts_instance is None:
|
||||||
|
raise ValueError("Instance not found")
|
||||||
|
|
||||||
|
tts_instance.configs.device = configs.device
|
||||||
|
if tts_instance.configs.vits_weights_path != configs.vits_weights_path \
|
||||||
|
or tts_instance.configs.t2s_weights_path != configs.t2s_weights_path:
|
||||||
|
tts_instance.reset_heat()
|
||||||
|
|
||||||
|
if tts_instance.configs.vits_weights_path != configs.vits_weights_path:
|
||||||
|
tts_instance.init_vits_weights(configs.vits_weights_path, False)
|
||||||
|
tts_instance.configs.vits_weights_path = configs.vits_weights_path
|
||||||
|
|
||||||
|
if tts_instance.configs.t2s_weights_path != configs.t2s_weights_path:
|
||||||
|
tts_instance.init_t2s_weights(configs.t2s_weights_path, False)
|
||||||
|
tts_instance.configs.t2s_weights_path = configs.t2s_weights_path
|
||||||
|
|
||||||
|
tts_instance.set_device(configs.device, False)
|
||||||
|
return tts_instance
|
14
GPT_SoVITS/configs/voices/voice1.yaml
Normal file
14
GPT_SoVITS/configs/voices/voice1.yaml
Normal file
@ -0,0 +1,14 @@
|
|||||||
|
custom:
|
||||||
|
bert_base_path: GPT_SoVITS/pretrained_models/chinese-roberta-wwm-ext-large
|
||||||
|
cnhuhbert_base_path: GPT_SoVITS/pretrained_models/chinese-hubert-base
|
||||||
|
device: cpu
|
||||||
|
is_half: false
|
||||||
|
t2s_weights_path: GPT_weights/liyunlong-e15.ckpt
|
||||||
|
vits_weights_path: SoVITS_weights/liyunlong_e8_s176.pth
|
||||||
|
default:
|
||||||
|
bert_base_path: GPT_SoVITS/pretrained_models/chinese-roberta-wwm-ext-large
|
||||||
|
cnhuhbert_base_path: GPT_SoVITS/pretrained_models/chinese-hubert-base
|
||||||
|
device: cpu
|
||||||
|
is_half: false
|
||||||
|
t2s_weights_path: GPT_SoVITS/pretrained_models/s1bert25hz-2kh-longer-epoch=68e-step=50232.ckpt
|
||||||
|
vits_weights_path: GPT_SoVITS/pretrained_models/s2G488k.pth
|
14
GPT_SoVITS/configs/voices/voice2.yaml
Normal file
14
GPT_SoVITS/configs/voices/voice2.yaml
Normal file
@ -0,0 +1,14 @@
|
|||||||
|
custom:
|
||||||
|
bert_base_path: GPT_SoVITS/pretrained_models/chinese-roberta-wwm-ext-large
|
||||||
|
cnhuhbert_base_path: GPT_SoVITS/pretrained_models/chinese-hubert-base
|
||||||
|
device: cpu
|
||||||
|
is_half: false
|
||||||
|
t2s_weights_path: GPT_weights/jackma-e10.ckpt
|
||||||
|
vits_weights_path: SoVITS_weights/jackma_e8_s192.pth
|
||||||
|
default:
|
||||||
|
bert_base_path: GPT_SoVITS/pretrained_models/chinese-roberta-wwm-ext-large
|
||||||
|
cnhuhbert_base_path: GPT_SoVITS/pretrained_models/chinese-hubert-base
|
||||||
|
device: cpu
|
||||||
|
is_half: false
|
||||||
|
t2s_weights_path: GPT_SoVITS/pretrained_models/s1bert25hz-2kh-longer-epoch=68e-step=50232.ckpt
|
||||||
|
vits_weights_path: GPT_SoVITS/pretrained_models/s2G488k.pth
|
14
GPT_SoVITS/configs/voices/voice3.yaml
Normal file
14
GPT_SoVITS/configs/voices/voice3.yaml
Normal file
@ -0,0 +1,14 @@
|
|||||||
|
custom:
|
||||||
|
bert_base_path: GPT_SoVITS/pretrained_models/chinese-roberta-wwm-ext-large
|
||||||
|
cnhuhbert_base_path: GPT_SoVITS/pretrained_models/chinese-hubert-base
|
||||||
|
device: cpu
|
||||||
|
is_half: false
|
||||||
|
t2s_weights_path: GPT_weights/stephenchow-e15.ckpt
|
||||||
|
vits_weights_path: SoVITS_weights/stephenchow_e8_s112.pth
|
||||||
|
default:
|
||||||
|
bert_base_path: GPT_SoVITS/pretrained_models/chinese-roberta-wwm-ext-large
|
||||||
|
cnhuhbert_base_path: GPT_SoVITS/pretrained_models/chinese-hubert-base
|
||||||
|
device: cpu
|
||||||
|
is_half: false
|
||||||
|
t2s_weights_path: GPT_SoVITS/pretrained_models/s1bert25hz-2kh-longer-epoch=68e-step=50232.ckpt
|
||||||
|
vits_weights_path: GPT_SoVITS/pretrained_models/s2G488k.pth
|
35
api_v3.py
35
api_v3.py
@ -104,6 +104,8 @@ from typing import Generator
|
|||||||
|
|
||||||
import torch
|
import torch
|
||||||
|
|
||||||
|
from TTS_infer_pack.tts_instance_pool import TTSInstancePool, TTSWrapper
|
||||||
|
|
||||||
now_dir = os.getcwd()
|
now_dir = os.getcwd()
|
||||||
sys.path.append(now_dir)
|
sys.path.append(now_dir)
|
||||||
sys.path.append("%s/GPT_SoVITS" % (now_dir))
|
sys.path.append("%s/GPT_SoVITS" % (now_dir))
|
||||||
@ -119,11 +121,10 @@ from fastapi.responses import JSONResponse
|
|||||||
from fastapi import FastAPI
|
from fastapi import FastAPI
|
||||||
import uvicorn
|
import uvicorn
|
||||||
from io import BytesIO
|
from io import BytesIO
|
||||||
from GPT_SoVITS.TTS_infer_pack.TTS import TTS, TTS_Config
|
from GPT_SoVITS.TTS_infer_pack.TTS import TTS_Config
|
||||||
from GPT_SoVITS.TTS_infer_pack.text_segmentation_method import get_method_names as get_cut_method_names
|
from GPT_SoVITS.TTS_infer_pack.text_segmentation_method import get_method_names as get_cut_method_names
|
||||||
from fastapi.responses import StreamingResponse
|
from fastapi.responses import StreamingResponse
|
||||||
from pydantic import BaseModel
|
from pydantic import BaseModel
|
||||||
from functools import lru_cache
|
|
||||||
|
|
||||||
cut_method_names = get_cut_method_names()
|
cut_method_names = get_cut_method_names()
|
||||||
|
|
||||||
@ -137,6 +138,9 @@ argv = sys.argv
|
|||||||
|
|
||||||
APP = FastAPI()
|
APP = FastAPI()
|
||||||
|
|
||||||
|
max_size = 10
|
||||||
|
tts_instance_pool = TTSInstancePool(max_size)
|
||||||
|
|
||||||
|
|
||||||
class TTS_Request(BaseModel):
|
class TTS_Request(BaseModel):
|
||||||
text: str = None
|
text: str = None
|
||||||
@ -162,12 +166,6 @@ class TTS_Request(BaseModel):
|
|||||||
"""推理时需要加载的声音模型的yaml配置文件路径,如:GPT_SoVITS/configs/tts_infer.yaml"""
|
"""推理时需要加载的声音模型的yaml配置文件路径,如:GPT_SoVITS/configs/tts_infer.yaml"""
|
||||||
|
|
||||||
|
|
||||||
@lru_cache(maxsize=10)
|
|
||||||
def get_tts_instance(tts_config: TTS_Config) -> TTS:
|
|
||||||
print(f"load tts config from {tts_config.configs_path}")
|
|
||||||
return TTS(tts_config)
|
|
||||||
|
|
||||||
|
|
||||||
def pack_ogg(io_buffer: BytesIO, data: np.ndarray, rate: int):
|
def pack_ogg(io_buffer: BytesIO, data: np.ndarray, rate: int):
|
||||||
"""modify from https://github.com/RVC-Boss/GPT-SoVITS/pull/894/files"""
|
"""modify from https://github.com/RVC-Boss/GPT-SoVITS/pull/894/files"""
|
||||||
with sf.SoundFile(io_buffer, mode='w', samplerate=rate, channels=1, format='ogg') as audio_file:
|
with sf.SoundFile(io_buffer, mode='w', samplerate=rate, channels=1, format='ogg') as audio_file:
|
||||||
@ -318,7 +316,7 @@ async def tts_handle(req: dict):
|
|||||||
req["return_fragment"] = True
|
req["return_fragment"] = True
|
||||||
|
|
||||||
try:
|
try:
|
||||||
tts_instance = get_tts_instance(tts_config)
|
tts_instance = tts_instance_pool.acquire(tts_config)
|
||||||
|
|
||||||
move_to_gpu(tts_instance, tts_config)
|
move_to_gpu(tts_instance, tts_config)
|
||||||
|
|
||||||
@ -332,27 +330,30 @@ async def tts_handle(req: dict):
|
|||||||
for sr, chunk in tts_generator:
|
for sr, chunk in tts_generator:
|
||||||
yield pack_audio(BytesIO(), chunk, sr, media_type).getvalue()
|
yield pack_audio(BytesIO(), chunk, sr, media_type).getvalue()
|
||||||
move_to_cpu(tts_instance)
|
move_to_cpu(tts_instance)
|
||||||
|
tts_instance_pool.release(tts_instance)
|
||||||
|
|
||||||
# _media_type = f"audio/{media_type}" if not (streaming_mode and media_type in ["wav", "raw"]) else f"audio/x-{media_type}"
|
# _media_type = f"audio/{media_type}" if not (streaming_mode and media_type in ["wav", "raw"]) else
|
||||||
|
# f"audio/x-{media_type}"
|
||||||
return StreamingResponse(streaming_generator(tts_generator, media_type, ), media_type=f"audio/{media_type}")
|
return StreamingResponse(streaming_generator(tts_generator, media_type, ), media_type=f"audio/{media_type}")
|
||||||
|
|
||||||
else:
|
else:
|
||||||
sr, audio_data = next(tts_generator)
|
sr, audio_data = next(tts_generator)
|
||||||
audio_data = pack_audio(BytesIO(), audio_data, sr, media_type).getvalue()
|
audio_data = pack_audio(BytesIO(), audio_data, sr, media_type).getvalue()
|
||||||
move_to_cpu(tts_instance)
|
move_to_cpu(tts_instance)
|
||||||
|
tts_instance_pool.release(tts_instance)
|
||||||
return Response(audio_data, media_type=f"audio/{media_type}")
|
return Response(audio_data, media_type=f"audio/{media_type}")
|
||||||
except Exception as e:
|
except Exception as e:
|
||||||
return JSONResponse(status_code=400, content={"message": f"tts failed", "Exception": str(e)})
|
return JSONResponse(status_code=400, content={"message": f"tts failed", "Exception": str(e)})
|
||||||
|
|
||||||
|
|
||||||
def move_to_cpu(tts):
|
def move_to_cpu(tts: TTSWrapper):
|
||||||
cpu_device = torch.device('cpu')
|
cpu_device = torch.device('cpu')
|
||||||
tts.set_device(cpu_device)
|
tts.set_device(cpu_device, False)
|
||||||
print("Moved TTS models to CPU to save GPU memory.")
|
print("Moved TTS models to CPU to save GPU memory.")
|
||||||
|
|
||||||
|
|
||||||
def move_to_gpu(tts: TTS, tts_config: TTS_Config):
|
def move_to_gpu(tts: TTSWrapper, tts_config: TTS_Config):
|
||||||
tts.set_device(tts_config.device)
|
tts.set_device(tts_config.device, False)
|
||||||
print("Moved TTS models back to GPU for performance.")
|
print("Moved TTS models back to GPU for performance.")
|
||||||
|
|
||||||
|
|
||||||
@ -422,7 +423,7 @@ async def tts_post_endpoint(request: TTS_Request):
|
|||||||
async def set_refer_audio(refer_audio_path: str = None, tts_infer_yaml_path: str = "GPT_SoVITS/configs/tts_infer.yaml"):
|
async def set_refer_audio(refer_audio_path: str = None, tts_infer_yaml_path: str = "GPT_SoVITS/configs/tts_infer.yaml"):
|
||||||
try:
|
try:
|
||||||
tts_config = TTS_Config(tts_infer_yaml_path)
|
tts_config = TTS_Config(tts_infer_yaml_path)
|
||||||
tts_instance = get_tts_instance(tts_config)
|
tts_instance = tts_instance_pool.acquire(tts_config)
|
||||||
tts_instance.set_ref_audio(refer_audio_path)
|
tts_instance.set_ref_audio(refer_audio_path)
|
||||||
except Exception as e:
|
except Exception as e:
|
||||||
return JSONResponse(status_code=400, content={"message": f"set refer audio failed", "Exception": str(e)})
|
return JSONResponse(status_code=400, content={"message": f"set refer audio failed", "Exception": str(e)})
|
||||||
@ -436,7 +437,7 @@ async def set_gpt_weights(weights_path: str = None, tts_infer_yaml_path: str = "
|
|||||||
return JSONResponse(status_code=400, content={"message": "gpt weight path is required"})
|
return JSONResponse(status_code=400, content={"message": "gpt weight path is required"})
|
||||||
|
|
||||||
tts_config = TTS_Config(tts_infer_yaml_path)
|
tts_config = TTS_Config(tts_infer_yaml_path)
|
||||||
tts_instance = get_tts_instance(tts_config)
|
tts_instance = tts_instance_pool.acquire(tts_config)
|
||||||
tts_instance.init_t2s_weights(weights_path)
|
tts_instance.init_t2s_weights(weights_path)
|
||||||
except Exception as e:
|
except Exception as e:
|
||||||
return JSONResponse(status_code=400, content={"message": f"change gpt weight failed", "Exception": str(e)})
|
return JSONResponse(status_code=400, content={"message": f"change gpt weight failed", "Exception": str(e)})
|
||||||
@ -451,7 +452,7 @@ async def set_sovits_weights(weights_path: str = None, tts_infer_yaml_path: str
|
|||||||
return JSONResponse(status_code=400, content={"message": "sovits weight path is required"})
|
return JSONResponse(status_code=400, content={"message": "sovits weight path is required"})
|
||||||
|
|
||||||
tts_config = TTS_Config(tts_infer_yaml_path)
|
tts_config = TTS_Config(tts_infer_yaml_path)
|
||||||
tts_instance = get_tts_instance(tts_config)
|
tts_instance = tts_instance_pool.acquire(tts_config)
|
||||||
tts_instance.init_vits_weights(weights_path)
|
tts_instance.init_vits_weights(weights_path)
|
||||||
except Exception as e:
|
except Exception as e:
|
||||||
return JSONResponse(status_code=400, content={"message": f"change sovits weight failed", "Exception": str(e)})
|
return JSONResponse(status_code=400, content={"message": f"change sovits weight failed", "Exception": str(e)})
|
||||||
|
Loading…
x
Reference in New Issue
Block a user