clean branch

This commit is contained in:
林北1941783147 2024-01-24 22:55:18 +08:00
parent 3ece938c77
commit 8ccb4d8b7d
4 changed files with 0 additions and 385 deletions

5
.gitignore vendored
View File

@ -4,8 +4,3 @@ __pycache__
env
runtime
.idea
TEMP
ffmpeg.exe
ffprobe.exe
GPT_weights/
SoVITS_weights/

View File

@ -1,12 +1,5 @@
import sys,os
#model type name
MODEL_TYPE_GPT = "GPT"
MODEL_TYPE_SOVITS = "SOVITS"
#model folder path
MODEL_FOLDER_PATH_GPT = "GPT_weights"
MODEL_FOLDER_PATH_SOVITS = "SoVITS_weights"
# 推理用的指定模型
sovits_path = ""

View File

@ -1,2 +0,0 @@
*
!.gitignore

View File

@ -1,371 +0,0 @@
import config
import sys,os
import gradio as gr
import torch
import numpy as np
import librosa,torch
from transformers import AutoModelForMaskedLM, AutoTokenizer
from feature_extractor import cnhubert
from module.models import SynthesizerTrn
from AR.models.t2s_lightning_module import Text2SemanticLightningModule
from text import cleaned_text_to_sequence
from text.cleaner import clean_text
from time import time as ttime
from module.mel_processing import spectrogram_torch
from my_utils import load_audio
from tools.i18n.i18n import I18nAuto
hps = None
ssl_model = None
vq_model = None
t2s_model = None
is_half = config.is_half
hz = 50
max_sec = None
top_k = None
#后期可能将这里个path分离成变量
bert_path = config.bert_path
cnhubert_base_path = config.cnhubert_path
cnhubert.cnhubert_base_path = cnhubert_base_path
device = "cuda" #不确定能否支持cpu,先预留
tokenizer = None
bert_model = None
i18n = I18nAuto()
cwd = os.getcwd()
sys.path.append(cwd)
SUPPORT_LANGUAGE = [i18n("中文"),i18n("英文"),i18n("日文")]
dict_language={
i18n("中文"):"zh",
i18n("英文"):"en",
i18n("日文"):"ja"
}
def read_model_path(model_type):
model_list = []
if model_type == config.MODEL_TYPE_GPT:
folder_path = os.path.join(cwd,config.MODEL_FOLDER_PATH_GPT)
file_type = ".ckpt"
elif model_type == config.MODEL_TYPE_SOVITS:
folder_path = os.path.join(cwd,config.MODEL_FOLDER_PATH_SOVITS)
file_type = ".pth"
for root, dirs, files in os.walk(folder_path):
for file_name in files:
if file_name.endswith(file_type):
file_path = os.path.join(root, file_name)
model_list.append((file_name,file_path))
return model_list
def refresh_model_list():
gpt_choices = read_model_path(config.MODEL_TYPE_GPT)
sovits_choices = read_model_path(config.MODEL_TYPE_SOVITS)
return gr.Dropdown(choices=sorted(gpt_choices),value=gpt_choices[0]if len(gpt_choices)>0 else "",interactive=True),gr.Dropdown(choices=sorted(sovits_choices),value=sovits_choices[0]if len(sovits_choices)>0 else None,interactive=True)
def get_bert_feature(text, word2ph):
global tokenizer,bert_model
with torch.no_grad():
inputs = tokenizer(text, return_tensors="pt")
for i in inputs:
inputs[i] = inputs[i].to(device) #####输入是long不用管精度问题精度随bert_model
res = bert_model(**inputs, output_hidden_states=True)
res = torch.cat(res["hidden_states"][-3:-2], -1)[0].cpu()[1:-1]
assert len(word2ph) == len(text)
phone_level_feature = []
for i in range(len(word2ph)):
repeat_feature = res[i].repeat(word2ph[i], 1)
phone_level_feature.append(repeat_feature)
phone_level_feature = torch.cat(phone_level_feature, dim=0)
# if(is_half==True):phone_level_feature=phone_level_feature.half()
return phone_level_feature.T
class DictToAttrRecursive(dict):
def __init__(self, input_dict):
super().__init__(input_dict)
for key, value in input_dict.items():
if isinstance(value, dict):
value = DictToAttrRecursive(value)
self[key] = value
setattr(self, key, value)
def __getattr__(self, item):
try:
return self[item]
except KeyError:
raise AttributeError(f"Attribute {item} not found")
def __setattr__(self, key, value):
if isinstance(value, dict):
value = DictToAttrRecursive(value)
super(DictToAttrRecursive, self).__setitem__(key, value)
super().__setattr__(key, value)
def __delattr__(self, item):
try:
del self[item]
except KeyError:
raise AttributeError(f"Attribute {item} not found")
def get_spepc(hps, filename):
audio = load_audio(filename, int(hps.data.sampling_rate))
audio = torch.FloatTensor(audio)
audio_norm = audio
audio_norm = audio_norm.unsqueeze(0)
spec = spectrogram_torch(
audio_norm,
hps.data.filter_length,
hps.data.sampling_rate,
hps.data.hop_length,
hps.data.win_length,
center=False,
)
return spec
def load_models(sovits_path, gpt_path):
global tokenizer,bert_model,hps,ssl_model,vq_model,t2s_model,is_half,hz,max_sec,top_k
print(f"SoVITS model path: {sovits_path}")
print(f"GPT model path: {gpt_path}")
if sovits_path is None or gpt_path is None:
print("Choose both of two models before loading")
return "请正确选择两个模型",gr.Button(interactive=False)
torch.cuda.empty_cache()
tokenizer = AutoTokenizer.from_pretrained(bert_path)
bert_model = AutoModelForMaskedLM.from_pretrained(bert_path)
if is_half == True:
bert_model = bert_model.half().to(device)
else:
bert_model = bert_model.to(device)
dict_s2=torch.load(sovits_path,map_location="cpu")
hps=dict_s2["config"]
hps = DictToAttrRecursive(hps)
hps.model.semantic_frame_rate = "25hz"
dict_s1 = torch.load(gpt_path, map_location="cpu")
dict_s1_config = dict_s1["config"]
max_sec = dict_s1_config["data"]["max_sec"]
top_k=dict_s1_config["inference"]["top_k"]
ssl_model = cnhubert.get_model()
if is_half == True:
ssl_model = ssl_model.half().to(device)
else:
ssl_model = ssl_model.to(device)
vq_model = SynthesizerTrn(
hps.data.filter_length // 2 + 1,
hps.train.segment_size // hps.data.hop_length,
n_speakers=hps.data.n_speakers,
**hps.model
)
if is_half:
vq_model = vq_model.half().to(device)
else:
vq_model = vq_model.to(device)
vq_model.eval()
print(vq_model.load_state_dict(dict_s2["weight"], strict=False))
t2s_model = Text2SemanticLightningModule(dict_s1_config, "ojbk", is_train=False)
t2s_model.load_state_dict(dict_s1["weight"])
if is_half == True:
t2s_model = t2s_model.half()
t2s_model = t2s_model.to(device)
t2s_model.eval()
total = sum([param.nelement() for param in t2s_model.parameters()])
print("Number of parameter: %.2fM" % (total / 1e6))
#加载模型成功
return "模型加载成功",gr.Button(interactive=True)
def get_tts_wav(ref_wav_path, prompt_text, prompt_language, text, text_language):
global hps,ssl_model,vq_model,t2s_model,is_half,hz,max_sec,top_k
t0 = ttime()
prompt_text = prompt_text.strip("\n")
prompt_language, text = prompt_language, text.strip("\n")
zero_wav = np.zeros(
int(hps.data.sampling_rate * 0.3),
dtype=np.float16 if is_half else np.float32,
)
with torch.no_grad():
wav16k, sr = librosa.load(ref_wav_path, sr=16000)
wav16k = torch.from_numpy(wav16k)
zero_wav_torch = torch.from_numpy(zero_wav)
if is_half == True:
wav16k = wav16k.half().to(device)
zero_wav_torch = zero_wav_torch.half().to(device)
else:
wav16k = wav16k.to(device)
zero_wav_torch = zero_wav_torch.to(device)
wav16k=torch.cat([wav16k,zero_wav_torch])
ssl_content = ssl_model.model(wav16k.unsqueeze(0))[
"last_hidden_state"
].transpose(
1, 2
) # .float()
codes = vq_model.extract_latent(ssl_content)
prompt_semantic = codes[0, 0]
t1 = ttime()
prompt_language = dict_language[prompt_language]
text_language = dict_language[text_language]
phones1, word2ph1, norm_text1 = clean_text(prompt_text, prompt_language)
phones1 = cleaned_text_to_sequence(phones1)
texts = text.split("\n")
audio_opt = []
for text in texts:
# 解决输入目标文本的空行导致报错的问题
if (len(text.strip()) == 0):
continue
phones2, word2ph2, norm_text2 = clean_text(text, text_language)
phones2 = cleaned_text_to_sequence(phones2)
if prompt_language == "zh":
bert1 = get_bert_feature(norm_text1, word2ph1).to(device)
else:
bert1 = torch.zeros(
(1024, len(phones1)),
dtype=torch.float16 if is_half == True else torch.float32,
).to(device)
if text_language == "zh":
bert2 = get_bert_feature(norm_text2, word2ph2).to(device)
else:
bert2 = torch.zeros((1024, len(phones2))).to(bert1)
bert = torch.cat([bert1, bert2], 1)
all_phoneme_ids = torch.LongTensor(phones1 + phones2).to(device).unsqueeze(0)
bert = bert.to(device).unsqueeze(0)
all_phoneme_len = torch.tensor([all_phoneme_ids.shape[-1]]).to(device)
prompt = prompt_semantic.unsqueeze(0).to(device)
t2 = ttime()
with torch.no_grad():
# pred_semantic = t2s_model.model.infer(
pred_semantic, idx = t2s_model.model.infer_panel(
all_phoneme_ids,
all_phoneme_len,
prompt,
bert,
# prompt_phone_len=ph_offset,
top_k=top_k,
early_stop_num=hz * max_sec,
)
t3 = ttime()
# print(pred_semantic.shape,idx)
pred_semantic = pred_semantic[:, -idx:].unsqueeze(
0
) # .unsqueeze(0)#mq要多unsqueeze一次
refer = get_spepc(hps, ref_wav_path) # .to(device)
if is_half == True:
refer = refer.half().to(device)
else:
refer = refer.to(device)
# audio = vq_model.decode(pred_semantic, all_phoneme_ids, refer).detach().cpu().numpy()[0, 0]
audio = (
vq_model.decode(
pred_semantic, torch.LongTensor(phones2).to(device).unsqueeze(0), refer
)
.detach()
.cpu()
.numpy()[0, 0]
) ###试试重建不带上prompt部分
audio_opt.append(audio)
audio_opt.append(zero_wav)
t4 = ttime()
print("%.3f\t%.3f\t%.3f\t%.3f" % (t1 - t0, t2 - t1, t3 - t2, t4 - t3))
yield hps.data.sampling_rate, (np.concatenate(audio_opt, 0) * 32768).astype(
np.int16
)
splits = {
"",
"",
"",
"",
",",
".",
"?",
"!",
"~",
":",
"",
"",
"",
} # 不考虑省略号
def split(todo_text):
todo_text = todo_text.replace("……", "").replace("——", "")
if todo_text[-1] not in splits:
todo_text += ""
i_split_head = i_split_tail = 0
len_text = len(todo_text)
todo_texts = []
while 1:
if i_split_head >= len_text:
break # 结尾一定有标点,所以直接跳出即可,最后一段在上次已加入
if todo_text[i_split_head] in splits:
i_split_head += 1
todo_texts.append(todo_text[i_split_tail:i_split_head])
i_split_tail = i_split_head
else:
i_split_head += 1
return todo_texts
def start_webui():
ngpu = torch.cuda.device_count()
gpu_list = []
for i in range(ngpu):
gpu_list.append((torch.cuda.get_device_name(i),i))
print(gpu_list)
gpt_choices = read_model_path(config.MODEL_TYPE_GPT)
sovits_choices = read_model_path(config.MODEL_TYPE_SOVITS)
with gr.Blocks() as demo:
with gr.Row():
message_text = gr.Textbox("信息",interactive=False)
with gr.Accordion(label="设备"):
with gr.Row():
cuda_device_index = gr.Dropdown(choices=gpu_list,value=0 if len(gpu_list)>0 else None,label="CUDA设备",interactive=True)
with gr.Accordion(label="模型"):
with gr.Row():
gpt_dropdown = gr.Dropdown(choices=sorted(gpt_choices),value=gpt_choices[0][1]if len(gpt_choices)>0 else None,label="选择GPT模型",interactive=True)
sovits_dropdown = gr.Dropdown(choices=sorted(sovits_choices),value=sovits_choices[0][1]if len(sovits_choices)>0 else None,label="选择SoVITS模型",interactive=True)
with gr.Row():
model_load_button = gr.Button("加载模型",variant="primary")
model_refresh_button = gr.Button("刷新模型", variant="secondary")
with gr.Accordion(label="参考"):
with gr.Group():
with gr.Row():
with gr.Row():
ref_wav_path = gr.Audio(label="参考音频", type="filepath", scale=3)
ref_language = gr.Dropdown(choices=SUPPORT_LANGUAGE,value=i18n("中文"),label="参考语种",interactive=True,min_width=50, scale=1)
ref_text = gr.TextArea(label="参考文本",scale=1)
with gr.Row():
output_language = gr.Dropdown(choices=SUPPORT_LANGUAGE,value=i18n("中文"),label="合成语种",interactive=True, scale=2)
preprocess_output_text_button = gr.Button("合成文本预处理",variant="primary",scale=3)
inference_button = gr.Button(i18n("合成语音"), interactive=False,variant="primary")
output_text = gr.TextArea(label="合成文本",interactive=True)
output_audio = gr.Audio(label="输出结果")
model_load_button.click(load_models,[gpt_dropdown,sovits_dropdown],[message_text,inference_button])
model_refresh_button.click(refresh_model_list,[],[gpt_dropdown,sovits_dropdown])
inference_button.click(
get_tts_wav,
[ref_wav_path, ref_text, ref_language, output_text, output_language],
[output_audio],
)
demo.queue(max_size=1022).launch(server_port=2777)
if __name__ == "__main__":
start_webui()