mirror of
https://github.com/RVC-Boss/GPT-SoVITS.git
synced 2025-04-06 03:57:44 +08:00
Merge branch 'fast_inference_' of https://github.com/RVC-Boss/GPT-SoVITS
This commit is contained in:
commit
8b548e1956
3
.gitignore
vendored
3
.gitignore
vendored
@ -10,5 +10,6 @@ reference
|
|||||||
GPT_weights
|
GPT_weights
|
||||||
SoVITS_weights
|
SoVITS_weights
|
||||||
TEMP
|
TEMP
|
||||||
|
ffmpeg.exe
|
||||||
|
ffprobe.exe
|
||||||
|
|
||||||
|
@ -13,11 +13,11 @@ from AR.modules.lr_schedulers import WarmupCosineLRSchedule
|
|||||||
from AR.modules.optim import ScaledAdam
|
from AR.modules.optim import ScaledAdam
|
||||||
|
|
||||||
class Text2SemanticLightningModule(LightningModule):
|
class Text2SemanticLightningModule(LightningModule):
|
||||||
def __init__(self, config, output_dir, is_train=True):
|
def __init__(self, config, output_dir, is_train=True, flash_attn_enabled:bool = False):
|
||||||
super().__init__()
|
super().__init__()
|
||||||
self.config = config
|
self.config = config
|
||||||
self.top_k = 3
|
self.top_k = 3
|
||||||
self.model = Text2SemanticDecoder(config=config, top_k=self.top_k)
|
self.model = Text2SemanticDecoder(config=config, top_k=self.top_k,flash_attn_enabled=flash_attn_enabled)
|
||||||
pretrained_s1 = config.get("pretrained_s1")
|
pretrained_s1 = config.get("pretrained_s1")
|
||||||
if pretrained_s1 and is_train:
|
if pretrained_s1 and is_train:
|
||||||
# print(self.load_state_dict(torch.load(pretrained_s1,map_location="cpu")["state_dict"]))
|
# print(self.load_state_dict(torch.load(pretrained_s1,map_location="cpu")["state_dict"]))
|
||||||
|
@ -1,5 +1,9 @@
|
|||||||
# modified from https://github.com/yangdongchao/SoundStorm/blob/master/soundstorm/s1/AR/models/t2s_model.py
|
# modified from https://github.com/yangdongchao/SoundStorm/blob/master/soundstorm/s1/AR/models/t2s_model.py
|
||||||
# reference: https://github.com/lifeiteng/vall-e
|
# reference: https://github.com/lifeiteng/vall-e
|
||||||
|
import os, sys
|
||||||
|
now_dir = os.getcwd()
|
||||||
|
sys.path.append(now_dir)
|
||||||
|
from typing import List
|
||||||
import torch
|
import torch
|
||||||
from tqdm import tqdm
|
from tqdm import tqdm
|
||||||
|
|
||||||
@ -35,8 +39,144 @@ default_config = {
|
|||||||
}
|
}
|
||||||
|
|
||||||
|
|
||||||
|
@torch.jit.script
|
||||||
|
class T2SMLP:
|
||||||
|
def __init__(self, w1, b1, w2, b2):
|
||||||
|
self.w1 = w1
|
||||||
|
self.b1 = b1
|
||||||
|
self.w2 = w2
|
||||||
|
self.b2 = b2
|
||||||
|
|
||||||
|
def forward(self, x):
|
||||||
|
x = F.relu(F.linear(x, self.w1, self.b1))
|
||||||
|
x = F.linear(x, self.w2, self.b2)
|
||||||
|
return x
|
||||||
|
|
||||||
|
|
||||||
|
@torch.jit.script
|
||||||
|
class T2SBlock:
|
||||||
|
def __init__(
|
||||||
|
self,
|
||||||
|
num_heads,
|
||||||
|
hidden_dim: int,
|
||||||
|
mlp: T2SMLP,
|
||||||
|
qkv_w,
|
||||||
|
qkv_b,
|
||||||
|
out_w,
|
||||||
|
out_b,
|
||||||
|
norm_w1,
|
||||||
|
norm_b1,
|
||||||
|
norm_eps1,
|
||||||
|
norm_w2,
|
||||||
|
norm_b2,
|
||||||
|
norm_eps2,
|
||||||
|
):
|
||||||
|
self.num_heads = num_heads
|
||||||
|
self.mlp = mlp
|
||||||
|
self.hidden_dim: int = hidden_dim
|
||||||
|
self.qkv_w = qkv_w
|
||||||
|
self.qkv_b = qkv_b
|
||||||
|
self.out_w = out_w
|
||||||
|
self.out_b = out_b
|
||||||
|
self.norm_w1 = norm_w1
|
||||||
|
self.norm_b1 = norm_b1
|
||||||
|
self.norm_eps1 = norm_eps1
|
||||||
|
self.norm_w2 = norm_w2
|
||||||
|
self.norm_b2 = norm_b2
|
||||||
|
self.norm_eps2 = norm_eps2
|
||||||
|
|
||||||
|
def process_prompt(self, x, attn_mask : torch.Tensor):
|
||||||
|
q, k, v = F.linear(x, self.qkv_w, self.qkv_b).chunk(3, dim=-1)
|
||||||
|
|
||||||
|
batch_size = q.shape[0]
|
||||||
|
q_len = q.shape[1]
|
||||||
|
kv_len = k.shape[1]
|
||||||
|
|
||||||
|
k_cache = k
|
||||||
|
v_cache = v
|
||||||
|
|
||||||
|
q = q.view(batch_size, q_len, self.num_heads, -1).transpose(1, 2)
|
||||||
|
k = k_cache.view(batch_size, kv_len, self.num_heads, -1).transpose(1, 2)
|
||||||
|
v = v_cache.view(batch_size, kv_len, self.num_heads, -1).transpose(1, 2)
|
||||||
|
|
||||||
|
attn = F.scaled_dot_product_attention(q, k, v, attn_mask)
|
||||||
|
|
||||||
|
attn = attn.permute(2, 0, 1, 3).reshape(batch_size*q_len, self.hidden_dim)
|
||||||
|
attn = attn.view(q_len, batch_size, self.hidden_dim).transpose(1, 0)
|
||||||
|
attn = F.linear(attn, self.out_w, self.out_b)
|
||||||
|
|
||||||
|
x = F.layer_norm(
|
||||||
|
x + attn, [self.hidden_dim], self.norm_w1, self.norm_b1, self.norm_eps1
|
||||||
|
)
|
||||||
|
x = F.layer_norm(
|
||||||
|
x + self.mlp.forward(x),
|
||||||
|
[self.hidden_dim],
|
||||||
|
self.norm_w2,
|
||||||
|
self.norm_b2,
|
||||||
|
self.norm_eps2,
|
||||||
|
)
|
||||||
|
return x, k_cache, v_cache
|
||||||
|
|
||||||
|
def decode_next_token(self, x, k_cache, v_cache):
|
||||||
|
q, k, v = F.linear(x, self.qkv_w, self.qkv_b).chunk(3, dim=-1)
|
||||||
|
|
||||||
|
k_cache = torch.cat([k_cache, k], dim=1)
|
||||||
|
v_cache = torch.cat([v_cache, v], dim=1)
|
||||||
|
|
||||||
|
batch_size = q.shape[0]
|
||||||
|
q_len = q.shape[1]
|
||||||
|
kv_len = k_cache.shape[1]
|
||||||
|
|
||||||
|
q = q.view(batch_size, q_len, self.num_heads, -1).transpose(1, 2)
|
||||||
|
k = k_cache.view(batch_size, kv_len, self.num_heads, -1).transpose(1, 2)
|
||||||
|
v = v_cache.view(batch_size, kv_len, self.num_heads, -1).transpose(1, 2)
|
||||||
|
|
||||||
|
|
||||||
|
attn = F.scaled_dot_product_attention(q, k, v)
|
||||||
|
|
||||||
|
attn = attn.permute(2, 0, 1, 3).reshape(batch_size*q_len, self.hidden_dim)
|
||||||
|
attn = attn.view(q_len, batch_size, self.hidden_dim).transpose(1, 0)
|
||||||
|
attn = F.linear(attn, self.out_w, self.out_b)
|
||||||
|
|
||||||
|
x = F.layer_norm(
|
||||||
|
x + attn, [self.hidden_dim], self.norm_w1, self.norm_b1, self.norm_eps1
|
||||||
|
)
|
||||||
|
x = F.layer_norm(
|
||||||
|
x + self.mlp.forward(x),
|
||||||
|
[self.hidden_dim],
|
||||||
|
self.norm_w2,
|
||||||
|
self.norm_b2,
|
||||||
|
self.norm_eps2,
|
||||||
|
)
|
||||||
|
return x, k_cache, v_cache
|
||||||
|
|
||||||
|
|
||||||
|
@torch.jit.script
|
||||||
|
class T2STransformer:
|
||||||
|
def __init__(self, num_blocks : int, blocks: List[T2SBlock]):
|
||||||
|
self.num_blocks : int = num_blocks
|
||||||
|
self.blocks = blocks
|
||||||
|
|
||||||
|
def process_prompt(
|
||||||
|
self, x, attn_mask : torch.Tensor):
|
||||||
|
k_cache : List[torch.Tensor] = []
|
||||||
|
v_cache : List[torch.Tensor] = []
|
||||||
|
for i in range(self.num_blocks):
|
||||||
|
x, k_cache_, v_cache_ = self.blocks[i].process_prompt(x, attn_mask)
|
||||||
|
k_cache.append(k_cache_)
|
||||||
|
v_cache.append(v_cache_)
|
||||||
|
return x, k_cache, v_cache
|
||||||
|
|
||||||
|
def decode_next_token(
|
||||||
|
self, x, k_cache: List[torch.Tensor], v_cache: List[torch.Tensor]
|
||||||
|
):
|
||||||
|
for i in range(self.num_blocks):
|
||||||
|
x, k_cache[i], v_cache[i] = self.blocks[i].decode_next_token(x, k_cache[i], v_cache[i])
|
||||||
|
return x, k_cache, v_cache
|
||||||
|
|
||||||
|
|
||||||
class Text2SemanticDecoder(nn.Module):
|
class Text2SemanticDecoder(nn.Module):
|
||||||
def __init__(self, config, norm_first=False, top_k=3):
|
def __init__(self, config, norm_first=False, top_k=3, flash_attn_enabled:bool=False):
|
||||||
super(Text2SemanticDecoder, self).__init__()
|
super(Text2SemanticDecoder, self).__init__()
|
||||||
self.model_dim = config["model"]["hidden_dim"]
|
self.model_dim = config["model"]["hidden_dim"]
|
||||||
self.embedding_dim = config["model"]["embedding_dim"]
|
self.embedding_dim = config["model"]["embedding_dim"]
|
||||||
@ -88,6 +228,47 @@ class Text2SemanticDecoder(nn.Module):
|
|||||||
multidim_average="global",
|
multidim_average="global",
|
||||||
ignore_index=self.EOS,
|
ignore_index=self.EOS,
|
||||||
)
|
)
|
||||||
|
|
||||||
|
self.enable_flash_attn(flash_attn_enabled)
|
||||||
|
|
||||||
|
def enable_flash_attn(self, enable:bool=True):
|
||||||
|
|
||||||
|
if not enable:
|
||||||
|
print("Not Using Flash Attention")
|
||||||
|
self.infer_panel = self.infer_panel_batch_only
|
||||||
|
else:
|
||||||
|
self.infer_panel = self.infer_panel_batch_infer_with_flash_attn
|
||||||
|
print("Using Flash Attention")
|
||||||
|
blocks = []
|
||||||
|
|
||||||
|
for i in range(self.num_layers):
|
||||||
|
layer = self.h.layers[i]
|
||||||
|
t2smlp = T2SMLP(
|
||||||
|
layer.linear1.weight,
|
||||||
|
layer.linear1.bias,
|
||||||
|
layer.linear2.weight,
|
||||||
|
layer.linear2.bias
|
||||||
|
)
|
||||||
|
|
||||||
|
block = T2SBlock(
|
||||||
|
self.num_head,
|
||||||
|
self.model_dim,
|
||||||
|
t2smlp,
|
||||||
|
layer.self_attn.in_proj_weight,
|
||||||
|
layer.self_attn.in_proj_bias,
|
||||||
|
layer.self_attn.out_proj.weight,
|
||||||
|
layer.self_attn.out_proj.bias,
|
||||||
|
layer.norm1.weight,
|
||||||
|
layer.norm1.bias,
|
||||||
|
layer.norm1.eps,
|
||||||
|
layer.norm2.weight,
|
||||||
|
layer.norm2.bias,
|
||||||
|
layer.norm2.eps
|
||||||
|
)
|
||||||
|
|
||||||
|
blocks.append(block)
|
||||||
|
|
||||||
|
self.t2s_transformer = T2STransformer(self.num_layers, blocks)
|
||||||
|
|
||||||
def make_input_data(self, x, x_lens, y, y_lens, bert_feature):
|
def make_input_data(self, x, x_lens, y, y_lens, bert_feature):
|
||||||
x = self.ar_text_embedding(x)
|
x = self.ar_text_embedding(x)
|
||||||
@ -321,19 +502,197 @@ class Text2SemanticDecoder(nn.Module):
|
|||||||
# 错位
|
# 错位
|
||||||
return targets[:, :-1], targets[:, 1:]
|
return targets[:, :-1], targets[:, 1:]
|
||||||
|
|
||||||
def infer_panel(
|
def infer_panel_batch_infer_with_flash_attn(
|
||||||
self,
|
self,
|
||||||
x, #####全部文本token
|
x:List[torch.LongTensor], #####全部文本token
|
||||||
x_lens,
|
x_lens:torch.LongTensor,
|
||||||
prompts, ####参考音频token
|
prompts:torch.LongTensor, ####参考音频token
|
||||||
bert_feature,
|
bert_feature:List[torch.LongTensor],
|
||||||
top_k: int = -100,
|
top_k: int = -100,
|
||||||
top_p: int = 100,
|
top_p: int = 100,
|
||||||
early_stop_num: int = -1,
|
early_stop_num: int = -1,
|
||||||
temperature: float = 1.0,
|
temperature: float = 1.0,
|
||||||
):
|
):
|
||||||
x = self.ar_text_embedding(x)
|
# 先对phones进行embedding、对bert_features进行project,再pad到相同长度,以缓解复读问题。(可能还有其他因素导致复读)
|
||||||
x = x + self.bert_proj(bert_feature.transpose(1, 2))
|
max_len = 0
|
||||||
|
for x_item, bert_item in zip(x, bert_feature):
|
||||||
|
max_len = max(max_len, x_item.shape[0], bert_item.shape[1])
|
||||||
|
x_list = [self.ar_text_embedding(item) for item in x]
|
||||||
|
x_list = [F.pad(item,(0,0,0,max_len-item.shape[0]),value=0) if item.shape[0]<max_len else item for item in x_list]
|
||||||
|
x = torch.stack(x_list, dim=0)
|
||||||
|
|
||||||
|
bert_features_list = [self.bert_proj(item.transpose(0, 1)) for item in bert_feature]
|
||||||
|
bert_features_list = [F.pad(item,(0,0,0,max_len-item.shape[0]), value=0) if item.shape[0]<max_len else item for item in bert_features_list]
|
||||||
|
bert_feature = torch.stack(bert_features_list, dim=0)
|
||||||
|
|
||||||
|
# bert_feature = self.bert_proj(bert_feature.transpose(1, 2))
|
||||||
|
# x = self.ar_text_embedding(x)
|
||||||
|
x = x + bert_feature
|
||||||
|
x = self.ar_text_position(x)
|
||||||
|
|
||||||
|
# AR Decoder
|
||||||
|
y = prompts
|
||||||
|
|
||||||
|
x_len = x.shape[1]
|
||||||
|
x_attn_mask = torch.zeros((x_len, x_len), dtype=torch.bool)
|
||||||
|
stop = False
|
||||||
|
# print(1111111,self.num_layers)
|
||||||
|
|
||||||
|
k_cache = None
|
||||||
|
v_cache = None
|
||||||
|
################### first step ##########################
|
||||||
|
if y is not None:
|
||||||
|
y_emb = self.ar_audio_embedding(y)
|
||||||
|
y_len = y_emb.shape[1]
|
||||||
|
prefix_len = y.shape[1]
|
||||||
|
y_pos = self.ar_audio_position(y_emb)
|
||||||
|
xy_pos = torch.concat([x, y_pos], dim=1)
|
||||||
|
ref_free = False
|
||||||
|
else:
|
||||||
|
y_emb = None
|
||||||
|
y_len = 0
|
||||||
|
prefix_len = 0
|
||||||
|
y_pos = None
|
||||||
|
xy_pos = x
|
||||||
|
y = torch.zeros(x.shape[0], 0, dtype=torch.int, device=x.device)
|
||||||
|
ref_free = True
|
||||||
|
|
||||||
|
|
||||||
|
##### create mask #####
|
||||||
|
bsz = x.shape[0]
|
||||||
|
src_len = x_len + y_len
|
||||||
|
y_lens = torch.LongTensor([y_len]*bsz).to(x.device)
|
||||||
|
y_mask = make_pad_mask(y_lens)
|
||||||
|
x_mask = make_pad_mask(x_lens)
|
||||||
|
|
||||||
|
# (bsz, x_len + y_len)
|
||||||
|
xy_padding_mask = torch.concat([x_mask, y_mask], dim=1)
|
||||||
|
|
||||||
|
x_mask = F.pad(
|
||||||
|
x_attn_mask,
|
||||||
|
(0, y_len), ###xx的纯0扩展到xx纯0+xy纯1,(x,x+y)
|
||||||
|
value=True,
|
||||||
|
)
|
||||||
|
y_mask = F.pad( ###yy的右上1扩展到左边xy的0,(y,x+y)
|
||||||
|
torch.triu(torch.ones(y_len, y_len, dtype=torch.bool), diagonal=1),
|
||||||
|
(x_len, 0),
|
||||||
|
value=False,
|
||||||
|
)
|
||||||
|
|
||||||
|
xy_mask = torch.concat([x_mask, y_mask], dim=0).view(1 , src_len, src_len).expand(bsz, -1, -1).to(x.device)
|
||||||
|
# xy_mask = torch.triu(torch.ones(src_len, src_len, dtype=torch.bool, device=x.device), diagonal=1)
|
||||||
|
xy_padding_mask = xy_padding_mask.view(bsz, 1, src_len).expand(-1, src_len, src_len)
|
||||||
|
xy_attn_mask = xy_mask.logical_or(xy_padding_mask)
|
||||||
|
xy_attn_mask = xy_attn_mask.unsqueeze(1).expand(-1, self.num_head, -1, -1)
|
||||||
|
new_attn_mask = torch.zeros_like(xy_attn_mask, dtype=x.dtype)
|
||||||
|
xy_attn_mask = new_attn_mask.masked_fill(xy_attn_mask, float("-inf"))
|
||||||
|
|
||||||
|
###### decode #####
|
||||||
|
y_list = [None]*y.shape[0]
|
||||||
|
batch_idx_map = list(range(y.shape[0]))
|
||||||
|
idx_list = [None]*y.shape[0]
|
||||||
|
for idx in tqdm(range(1500)):
|
||||||
|
if idx == 0:
|
||||||
|
xy_dec, k_cache, v_cache = self.t2s_transformer.process_prompt(xy_pos, xy_attn_mask)
|
||||||
|
else:
|
||||||
|
xy_dec, k_cache, v_cache = self.t2s_transformer.decode_next_token(xy_pos, k_cache, v_cache)
|
||||||
|
|
||||||
|
logits = self.ar_predict_layer(
|
||||||
|
xy_dec[:, -1]
|
||||||
|
)
|
||||||
|
|
||||||
|
if idx == 0:
|
||||||
|
xy_attn_mask = None
|
||||||
|
logits = logits[:, :-1]
|
||||||
|
|
||||||
|
samples = sample(
|
||||||
|
logits, y, top_k=top_k, top_p=top_p, repetition_penalty=1.35, temperature=temperature
|
||||||
|
)[0]
|
||||||
|
|
||||||
|
y = torch.concat([y, samples], dim=1)
|
||||||
|
|
||||||
|
####### 移除batch中已经生成完毕的序列,进一步优化计算量
|
||||||
|
reserved_idx_of_batch_for_y = None
|
||||||
|
if (self.EOS in samples[:, 0]) or \
|
||||||
|
(self.EOS in torch.argmax(logits, dim=-1)): ###如果生成到EOS,则停止
|
||||||
|
l = samples[:, 0]==self.EOS
|
||||||
|
removed_idx_of_batch_for_y = torch.where(l==True)[0].tolist()
|
||||||
|
reserved_idx_of_batch_for_y = torch.where(l==False)[0]
|
||||||
|
# batch_indexs = torch.tensor(batch_idx_map, device=y.device)[removed_idx_of_batch_for_y]
|
||||||
|
for i in removed_idx_of_batch_for_y:
|
||||||
|
batch_index = batch_idx_map[i]
|
||||||
|
idx_list[batch_index] = idx - 1
|
||||||
|
y_list[batch_index] = y[i, :-1]
|
||||||
|
|
||||||
|
batch_idx_map = [batch_idx_map[i] for i in reserved_idx_of_batch_for_y.tolist()]
|
||||||
|
|
||||||
|
# 只保留batch中未生成完毕的序列
|
||||||
|
if reserved_idx_of_batch_for_y is not None:
|
||||||
|
# index = torch.LongTensor(batch_idx_map).to(y.device)
|
||||||
|
y = torch.index_select(y, dim=0, index=reserved_idx_of_batch_for_y)
|
||||||
|
if k_cache is not None :
|
||||||
|
for i in range(len(k_cache)):
|
||||||
|
k_cache[i] = torch.index_select(k_cache[i], dim=0, index=reserved_idx_of_batch_for_y)
|
||||||
|
v_cache[i] = torch.index_select(v_cache[i], dim=0, index=reserved_idx_of_batch_for_y)
|
||||||
|
|
||||||
|
|
||||||
|
if (early_stop_num != -1 and (y.shape[1] - prefix_len) > early_stop_num) or idx==1499:
|
||||||
|
print("use early stop num:", early_stop_num)
|
||||||
|
stop = True
|
||||||
|
for i, batch_index in enumerate(batch_idx_map):
|
||||||
|
batch_index = batch_idx_map[i]
|
||||||
|
idx_list[batch_index] = idx
|
||||||
|
y_list[batch_index] = y[i, :-1]
|
||||||
|
|
||||||
|
if not (None in idx_list):
|
||||||
|
stop = True
|
||||||
|
|
||||||
|
if stop:
|
||||||
|
if y.shape[1]==0:
|
||||||
|
y = torch.concat([y, torch.zeros_like(samples)], dim=1)
|
||||||
|
print("bad zero prediction")
|
||||||
|
print(f"T2S Decoding EOS [{prefix_len} -> {y.shape[1]}]")
|
||||||
|
break
|
||||||
|
|
||||||
|
####################### update next step ###################################
|
||||||
|
y_emb = self.ar_audio_embedding(y[:, -1:])
|
||||||
|
xy_pos = y_emb * self.ar_audio_position.x_scale + self.ar_audio_position.alpha * self.ar_audio_position.pe[:, y_len + idx].to( dtype= y_emb.dtype,device=y_emb.device)
|
||||||
|
|
||||||
|
if (None in idx_list):
|
||||||
|
for i in range(x.shape[0]):
|
||||||
|
if idx_list[i] is None:
|
||||||
|
idx_list[i] = 1500-1 ###如果没有生成到EOS,就用最大长度代替
|
||||||
|
|
||||||
|
if ref_free:
|
||||||
|
return y_list, [0]*x.shape[0]
|
||||||
|
return y_list, idx_list
|
||||||
|
|
||||||
|
def infer_panel_batch_only(
|
||||||
|
self,
|
||||||
|
x:List[torch.LongTensor], #####全部文本token
|
||||||
|
x_lens:torch.LongTensor,
|
||||||
|
prompts:torch.LongTensor, ####参考音频token
|
||||||
|
bert_feature:List[torch.LongTensor],
|
||||||
|
top_k: int = -100,
|
||||||
|
top_p: int = 100,
|
||||||
|
early_stop_num: int = -1,
|
||||||
|
temperature: float = 1.0,
|
||||||
|
):
|
||||||
|
# 先对phones进行embedding、对bert_features进行project,再pad到相同长度,以缓解复读问题。(可能还有其他因素导致复读)
|
||||||
|
max_len = 0
|
||||||
|
for x_item, bert_item in zip(x, bert_feature):
|
||||||
|
max_len = max(max_len, x_item.shape[0], bert_item.shape[1])
|
||||||
|
x_list = [self.ar_text_embedding(item) for item in x]
|
||||||
|
x_list = [F.pad(item,(0,0,0,max_len-item.shape[0]),value=0) if item.shape[0]<max_len else item for item in x_list]
|
||||||
|
x = torch.stack(x_list, dim=0)
|
||||||
|
|
||||||
|
bert_features_list = [self.bert_proj(item.transpose(0, 1)) for item in bert_feature]
|
||||||
|
bert_features_list = [F.pad(item,(0,0,0,max_len-item.shape[0]), value=0) if item.shape[0]<max_len else item for item in bert_features_list]
|
||||||
|
bert_feature = torch.stack(bert_features_list, dim=0)
|
||||||
|
|
||||||
|
# bert_feature = self.bert_proj(bert_feature.transpose(1, 2))
|
||||||
|
# x = self.ar_text_embedding(x)
|
||||||
|
x = x + bert_feature
|
||||||
x = self.ar_text_position(x)
|
x = self.ar_text_position(x)
|
||||||
|
|
||||||
# AR Decoder
|
# AR Decoder
|
||||||
@ -372,21 +731,37 @@ class Text2SemanticDecoder(nn.Module):
|
|||||||
y = torch.zeros(x.shape[0], 0, dtype=torch.int, device=x.device)
|
y = torch.zeros(x.shape[0], 0, dtype=torch.int, device=x.device)
|
||||||
ref_free = True
|
ref_free = True
|
||||||
|
|
||||||
x_attn_mask_pad = F.pad(
|
##### create mask #####
|
||||||
x_attn_mask,
|
bsz = x.shape[0]
|
||||||
(0, y_len), ###xx的纯0扩展到xx纯0+xy纯1,(x,x+y)
|
src_len = x_len + y_len
|
||||||
value=True,
|
y_lens = torch.LongTensor([y_len]*bsz).to(x.device)
|
||||||
)
|
y_mask = make_pad_mask(y_lens)
|
||||||
y_attn_mask = F.pad( ###yy的右上1扩展到左边xy的0,(y,x+y)
|
x_mask = make_pad_mask(x_lens)
|
||||||
|
|
||||||
|
# (bsz, x_len + y_len)
|
||||||
|
xy_padding_mask = torch.concat([x_mask, y_mask], dim=1)
|
||||||
|
|
||||||
|
x_mask = F.pad(
|
||||||
|
x_attn_mask,
|
||||||
|
(0, y_len), ###xx的纯0扩展到xx纯0+xy纯1,(x,x+y)
|
||||||
|
value=True,
|
||||||
|
)
|
||||||
|
y_mask = F.pad( ###yy的右上1扩展到左边xy的0,(y,x+y)
|
||||||
torch.triu(torch.ones(y_len, y_len, dtype=torch.bool), diagonal=1),
|
torch.triu(torch.ones(y_len, y_len, dtype=torch.bool), diagonal=1),
|
||||||
(x_len, 0),
|
(x_len, 0),
|
||||||
value=False,
|
value=False,
|
||||||
)
|
)
|
||||||
xy_attn_mask = torch.concat([x_attn_mask_pad, y_attn_mask], dim=0).to(
|
|
||||||
x.device
|
|
||||||
)
|
|
||||||
|
|
||||||
|
xy_mask = torch.concat([x_mask, y_mask], dim=0).view(1 , src_len, src_len).expand(bsz*self.num_head, -1, -1).to(x.device)
|
||||||
|
# xy_mask = torch.triu(torch.ones(src_len, src_len, dtype=torch.bool, device=x.device), diagonal=1)
|
||||||
|
xy_padding_mask = xy_padding_mask.view(bsz, 1, src_len).expand(bsz, src_len, src_len).repeat(self.num_head, 1, 1)
|
||||||
|
xy_attn_mask = xy_mask.logical_or(xy_padding_mask)
|
||||||
|
new_attn_mask = torch.zeros_like(xy_attn_mask, dtype=x.dtype)
|
||||||
|
xy_attn_mask = new_attn_mask.masked_fill(xy_attn_mask, float("-inf"))
|
||||||
|
|
||||||
|
y_list = [None]*y.shape[0]
|
||||||
|
batch_idx_map = list(range(y.shape[0]))
|
||||||
|
idx_list = [None]*y.shape[0]
|
||||||
for idx in tqdm(range(1500)):
|
for idx in tqdm(range(1500)):
|
||||||
|
|
||||||
xy_dec, _ = self.h((xy_pos, None), mask=xy_attn_mask, cache=cache)
|
xy_dec, _ = self.h((xy_pos, None), mask=xy_attn_mask, cache=cache)
|
||||||
@ -397,17 +772,45 @@ class Text2SemanticDecoder(nn.Module):
|
|||||||
if(idx==0):###第一次跑不能EOS否则没有了
|
if(idx==0):###第一次跑不能EOS否则没有了
|
||||||
logits = logits[:, :-1] ###刨除1024终止符号的概率
|
logits = logits[:, :-1] ###刨除1024终止符号的概率
|
||||||
samples = sample(
|
samples = sample(
|
||||||
logits[0], y, top_k=top_k, top_p=top_p, repetition_penalty=1.35, temperature=temperature
|
logits, y, top_k=top_k, top_p=top_p, repetition_penalty=1.35, temperature=temperature
|
||||||
)[0].unsqueeze(0)
|
)[0]
|
||||||
# 本次生成的 semantic_ids 和之前的 y 构成新的 y
|
# 本次生成的 semantic_ids 和之前的 y 构成新的 y
|
||||||
# print(samples.shape)#[1,1]#第一个1是bs
|
# print(samples.shape)#[1,1]#第一个1是bs
|
||||||
y = torch.concat([y, samples], dim=1)
|
y = torch.concat([y, samples], dim=1)
|
||||||
|
|
||||||
|
# 移除已经生成完毕的序列
|
||||||
|
reserved_idx_of_batch_for_y = None
|
||||||
|
if (self.EOS in torch.argmax(logits, dim=-1)) or \
|
||||||
|
(self.EOS in samples[:, 0]): ###如果生成到EOS,则停止
|
||||||
|
l = samples[:, 0]==self.EOS
|
||||||
|
removed_idx_of_batch_for_y = torch.where(l==True)[0].tolist()
|
||||||
|
reserved_idx_of_batch_for_y = torch.where(l==False)[0]
|
||||||
|
# batch_indexs = torch.tensor(batch_idx_map, device=y.device)[removed_idx_of_batch_for_y]
|
||||||
|
for i in removed_idx_of_batch_for_y:
|
||||||
|
batch_index = batch_idx_map[i]
|
||||||
|
idx_list[batch_index] = idx - 1
|
||||||
|
y_list[batch_index] = y[i, :-1]
|
||||||
|
|
||||||
|
batch_idx_map = [batch_idx_map[i] for i in reserved_idx_of_batch_for_y.tolist()]
|
||||||
|
|
||||||
|
# 只保留未生成完毕的序列
|
||||||
|
if reserved_idx_of_batch_for_y is not None:
|
||||||
|
# index = torch.LongTensor(batch_idx_map).to(y.device)
|
||||||
|
y = torch.index_select(y, dim=0, index=reserved_idx_of_batch_for_y)
|
||||||
|
if cache["y_emb"] is not None:
|
||||||
|
cache["y_emb"] = torch.index_select(cache["y_emb"], dim=0, index=reserved_idx_of_batch_for_y)
|
||||||
|
if cache["k"] is not None:
|
||||||
|
for i in range(self.num_layers):
|
||||||
|
# 因为kv转置了,所以batch dim是1
|
||||||
|
cache["k"][i] = torch.index_select(cache["k"][i], dim=1, index=reserved_idx_of_batch_for_y)
|
||||||
|
cache["v"][i] = torch.index_select(cache["v"][i], dim=1, index=reserved_idx_of_batch_for_y)
|
||||||
|
|
||||||
|
|
||||||
if early_stop_num != -1 and (y.shape[1] - prefix_len) > early_stop_num:
|
if early_stop_num != -1 and (y.shape[1] - prefix_len) > early_stop_num:
|
||||||
print("use early stop num:", early_stop_num)
|
print("use early stop num:", early_stop_num)
|
||||||
stop = True
|
stop = True
|
||||||
|
|
||||||
if torch.argmax(logits, dim=-1)[0] == self.EOS or samples[0, 0] == self.EOS:
|
if not (None in idx_list):
|
||||||
# print(torch.argmax(logits, dim=-1)[0] == self.EOS, samples[0, 0] == self.EOS)
|
# print(torch.argmax(logits, dim=-1)[0] == self.EOS, samples[0, 0] == self.EOS)
|
||||||
stop = True
|
stop = True
|
||||||
if stop:
|
if stop:
|
||||||
@ -443,6 +846,12 @@ class Text2SemanticDecoder(nn.Module):
|
|||||||
xy_attn_mask = torch.zeros(
|
xy_attn_mask = torch.zeros(
|
||||||
(1, x_len + y_len), dtype=torch.bool, device=xy_pos.device
|
(1, x_len + y_len), dtype=torch.bool, device=xy_pos.device
|
||||||
)
|
)
|
||||||
|
|
||||||
|
if (None in idx_list):
|
||||||
|
for i in range(x.shape[0]):
|
||||||
|
if idx_list[i] is None:
|
||||||
|
idx_list[i] = 1500-1 ###如果没有生成到EOS,就用最大长度代替
|
||||||
|
|
||||||
if ref_free:
|
if ref_free:
|
||||||
return y[:, :-1], 0
|
return y_list, [0]*x.shape[0]
|
||||||
return y[:, :-1], idx-1
|
return y_list, idx_list
|
483
GPT_SoVITS/AR/models/t2s_model_batch_only.py
Normal file
483
GPT_SoVITS/AR/models/t2s_model_batch_only.py
Normal file
@ -0,0 +1,483 @@
|
|||||||
|
# modified from https://github.com/feng-yufei/shared_debugging_code/blob/main/model/t2s_model.py
|
||||||
|
import torch
|
||||||
|
from tqdm import tqdm
|
||||||
|
|
||||||
|
from AR.models.utils import make_pad_mask
|
||||||
|
from AR.models.utils import (
|
||||||
|
topk_sampling,
|
||||||
|
sample,
|
||||||
|
logits_to_probs,
|
||||||
|
multinomial_sample_one_no_sync,
|
||||||
|
dpo_loss,
|
||||||
|
make_reject_y,
|
||||||
|
get_batch_logps
|
||||||
|
)
|
||||||
|
from AR.modules.embedding import SinePositionalEmbedding
|
||||||
|
from AR.modules.embedding import TokenEmbedding
|
||||||
|
from AR.modules.transformer import LayerNorm
|
||||||
|
from AR.modules.transformer import TransformerEncoder
|
||||||
|
from AR.modules.transformer import TransformerEncoderLayer
|
||||||
|
from torch import nn
|
||||||
|
from torch.nn import functional as F
|
||||||
|
from torchmetrics.classification import MulticlassAccuracy
|
||||||
|
|
||||||
|
default_config = {
|
||||||
|
"embedding_dim": 512,
|
||||||
|
"hidden_dim": 512,
|
||||||
|
"num_head": 8,
|
||||||
|
"num_layers": 12,
|
||||||
|
"num_codebook": 8,
|
||||||
|
"p_dropout": 0.0,
|
||||||
|
"vocab_size": 1024 + 1,
|
||||||
|
"phoneme_vocab_size": 512,
|
||||||
|
"EOS": 1024,
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
class Text2SemanticDecoder(nn.Module):
|
||||||
|
def __init__(self, config, norm_first=False, top_k=3):
|
||||||
|
super(Text2SemanticDecoder, self).__init__()
|
||||||
|
self.model_dim = config["model"]["hidden_dim"]
|
||||||
|
self.embedding_dim = config["model"]["embedding_dim"]
|
||||||
|
self.num_head = config["model"]["head"]
|
||||||
|
self.num_layers = config["model"]["n_layer"]
|
||||||
|
self.norm_first = norm_first
|
||||||
|
self.vocab_size = config["model"]["vocab_size"]
|
||||||
|
self.phoneme_vocab_size = config["model"]["phoneme_vocab_size"]
|
||||||
|
self.p_dropout = config["model"]["dropout"]
|
||||||
|
self.EOS = config["model"]["EOS"]
|
||||||
|
self.norm_first = norm_first
|
||||||
|
assert self.EOS == self.vocab_size - 1
|
||||||
|
# should be same as num of kmeans bin
|
||||||
|
# assert self.EOS == 1024
|
||||||
|
self.bert_proj = nn.Linear(1024, self.embedding_dim)
|
||||||
|
self.ar_text_embedding = TokenEmbedding(
|
||||||
|
self.embedding_dim, self.phoneme_vocab_size, self.p_dropout
|
||||||
|
)
|
||||||
|
self.ar_text_position = SinePositionalEmbedding(
|
||||||
|
self.embedding_dim, dropout=0.1, scale=False, alpha=True
|
||||||
|
)
|
||||||
|
self.ar_audio_embedding = TokenEmbedding(
|
||||||
|
self.embedding_dim, self.vocab_size, self.p_dropout
|
||||||
|
)
|
||||||
|
self.ar_audio_position = SinePositionalEmbedding(
|
||||||
|
self.embedding_dim, dropout=0.1, scale=False, alpha=True
|
||||||
|
)
|
||||||
|
|
||||||
|
self.h = TransformerEncoder(
|
||||||
|
TransformerEncoderLayer(
|
||||||
|
d_model=self.model_dim,
|
||||||
|
nhead=self.num_head,
|
||||||
|
dim_feedforward=self.model_dim * 4,
|
||||||
|
dropout=0.1,
|
||||||
|
batch_first=True,
|
||||||
|
norm_first=norm_first,
|
||||||
|
),
|
||||||
|
num_layers=self.num_layers,
|
||||||
|
norm=LayerNorm(self.model_dim) if norm_first else None,
|
||||||
|
)
|
||||||
|
|
||||||
|
self.ar_predict_layer = nn.Linear(self.model_dim, self.vocab_size, bias=False)
|
||||||
|
self.loss_fct = nn.CrossEntropyLoss(reduction="sum")
|
||||||
|
|
||||||
|
self.ar_accuracy_metric = MulticlassAccuracy(
|
||||||
|
self.vocab_size,
|
||||||
|
top_k=top_k,
|
||||||
|
average="micro",
|
||||||
|
multidim_average="global",
|
||||||
|
ignore_index=self.EOS,
|
||||||
|
)
|
||||||
|
|
||||||
|
def make_input_data(self, x, x_lens, y, y_lens, bert_feature):
|
||||||
|
x = self.ar_text_embedding(x)
|
||||||
|
x = x + self.bert_proj(bert_feature.transpose(1, 2))
|
||||||
|
x = self.ar_text_position(x)
|
||||||
|
x_mask = make_pad_mask(x_lens)
|
||||||
|
|
||||||
|
y_mask = make_pad_mask(y_lens)
|
||||||
|
y_mask_int = y_mask.type(torch.int64)
|
||||||
|
codes = y.type(torch.int64) * (1 - y_mask_int)
|
||||||
|
|
||||||
|
# Training
|
||||||
|
# AR Decoder
|
||||||
|
y, targets = self.pad_y_eos(codes, y_mask_int, eos_id=self.EOS)
|
||||||
|
x_len = x_lens.max()
|
||||||
|
y_len = y_lens.max()
|
||||||
|
y_emb = self.ar_audio_embedding(y)
|
||||||
|
y_pos = self.ar_audio_position(y_emb)
|
||||||
|
|
||||||
|
xy_padding_mask = torch.concat([x_mask, y_mask], dim=1)
|
||||||
|
|
||||||
|
ar_xy_padding_mask = xy_padding_mask
|
||||||
|
|
||||||
|
x_attn_mask = F.pad(
|
||||||
|
torch.zeros((x_len, x_len), dtype=torch.bool, device=x.device),
|
||||||
|
(0, y_len),
|
||||||
|
value=True,
|
||||||
|
)
|
||||||
|
|
||||||
|
y_attn_mask = F.pad(
|
||||||
|
torch.triu(
|
||||||
|
torch.ones(y_len, y_len, dtype=torch.bool, device=x.device),
|
||||||
|
diagonal=1,
|
||||||
|
),
|
||||||
|
(x_len, 0),
|
||||||
|
value=False,
|
||||||
|
)
|
||||||
|
|
||||||
|
xy_attn_mask = torch.concat([x_attn_mask, y_attn_mask], dim=0)
|
||||||
|
bsz, src_len = x.shape[0], x_len + y_len
|
||||||
|
_xy_padding_mask = (
|
||||||
|
ar_xy_padding_mask.view(bsz, 1, 1, src_len)
|
||||||
|
.expand(-1, self.num_head, -1, -1)
|
||||||
|
.reshape(bsz * self.num_head, 1, src_len)
|
||||||
|
)
|
||||||
|
xy_attn_mask = xy_attn_mask.logical_or(_xy_padding_mask)
|
||||||
|
new_attn_mask = torch.zeros_like(xy_attn_mask, dtype=x.dtype)
|
||||||
|
new_attn_mask.masked_fill_(xy_attn_mask, float("-inf"))
|
||||||
|
xy_attn_mask = new_attn_mask
|
||||||
|
# x 和完整的 y 一次性输入模型
|
||||||
|
xy_pos = torch.concat([x, y_pos], dim=1)
|
||||||
|
|
||||||
|
return xy_pos, xy_attn_mask, targets
|
||||||
|
|
||||||
|
def forward(self, x, x_lens, y, y_lens, bert_feature):
|
||||||
|
"""
|
||||||
|
x: phoneme_ids
|
||||||
|
y: semantic_ids
|
||||||
|
"""
|
||||||
|
|
||||||
|
reject_y, reject_y_lens = make_reject_y(y, y_lens)
|
||||||
|
|
||||||
|
xy_pos, xy_attn_mask, targets = self.make_input_data(x, x_lens, y, y_lens, bert_feature)
|
||||||
|
|
||||||
|
xy_dec, _ = self.h(
|
||||||
|
(xy_pos, None),
|
||||||
|
mask=xy_attn_mask,
|
||||||
|
)
|
||||||
|
x_len = x_lens.max()
|
||||||
|
logits = self.ar_predict_layer(xy_dec[:, x_len:])
|
||||||
|
|
||||||
|
###### DPO #############
|
||||||
|
reject_xy_pos, reject_xy_attn_mask, reject_targets = self.make_input_data(x, x_lens, reject_y, reject_y_lens, bert_feature)
|
||||||
|
|
||||||
|
reject_xy_dec, _ = self.h(
|
||||||
|
(reject_xy_pos, None),
|
||||||
|
mask=reject_xy_attn_mask,
|
||||||
|
)
|
||||||
|
x_len = x_lens.max()
|
||||||
|
reject_logits = self.ar_predict_layer(reject_xy_dec[:, x_len:])
|
||||||
|
|
||||||
|
# loss
|
||||||
|
# from feiteng: 每次 duration 越多, 梯度更新也应该更多, 所以用 sum
|
||||||
|
|
||||||
|
loss_1 = F.cross_entropy(logits.permute(0, 2, 1), targets, reduction="sum")
|
||||||
|
acc = self.ar_accuracy_metric(logits.permute(0, 2, 1).detach(), targets).item()
|
||||||
|
|
||||||
|
A_logits, R_logits = get_batch_logps(logits, reject_logits, targets, reject_targets)
|
||||||
|
loss_2, _, _ = dpo_loss(A_logits, R_logits, 0, 0, 0.2, reference_free=True)
|
||||||
|
|
||||||
|
loss = loss_1 + loss_2
|
||||||
|
|
||||||
|
return loss, acc
|
||||||
|
|
||||||
|
def forward_old(self, x, x_lens, y, y_lens, bert_feature):
|
||||||
|
"""
|
||||||
|
x: phoneme_ids
|
||||||
|
y: semantic_ids
|
||||||
|
"""
|
||||||
|
x = self.ar_text_embedding(x)
|
||||||
|
x = x + self.bert_proj(bert_feature.transpose(1, 2))
|
||||||
|
x = self.ar_text_position(x)
|
||||||
|
x_mask = make_pad_mask(x_lens)
|
||||||
|
|
||||||
|
y_mask = make_pad_mask(y_lens)
|
||||||
|
y_mask_int = y_mask.type(torch.int64)
|
||||||
|
codes = y.type(torch.int64) * (1 - y_mask_int)
|
||||||
|
|
||||||
|
# Training
|
||||||
|
# AR Decoder
|
||||||
|
y, targets = self.pad_y_eos(codes, y_mask_int, eos_id=self.EOS)
|
||||||
|
x_len = x_lens.max()
|
||||||
|
y_len = y_lens.max()
|
||||||
|
y_emb = self.ar_audio_embedding(y)
|
||||||
|
y_pos = self.ar_audio_position(y_emb)
|
||||||
|
|
||||||
|
xy_padding_mask = torch.concat([x_mask, y_mask], dim=1)
|
||||||
|
ar_xy_padding_mask = xy_padding_mask
|
||||||
|
|
||||||
|
x_attn_mask = F.pad(
|
||||||
|
torch.zeros((x_len, x_len), dtype=torch.bool, device=x.device),
|
||||||
|
(0, y_len),
|
||||||
|
value=True,
|
||||||
|
)
|
||||||
|
y_attn_mask = F.pad(
|
||||||
|
torch.triu(
|
||||||
|
torch.ones(y_len, y_len, dtype=torch.bool, device=x.device),
|
||||||
|
diagonal=1,
|
||||||
|
),
|
||||||
|
(x_len, 0),
|
||||||
|
value=False,
|
||||||
|
)
|
||||||
|
xy_attn_mask = torch.concat([x_attn_mask, y_attn_mask], dim=0)
|
||||||
|
bsz, src_len = x.shape[0], x_len + y_len
|
||||||
|
_xy_padding_mask = (
|
||||||
|
ar_xy_padding_mask.view(bsz, 1, 1, src_len)
|
||||||
|
.expand(-1, self.num_head, -1, -1)
|
||||||
|
.reshape(bsz * self.num_head, 1, src_len)
|
||||||
|
)
|
||||||
|
xy_attn_mask = xy_attn_mask.logical_or(_xy_padding_mask)
|
||||||
|
new_attn_mask = torch.zeros_like(xy_attn_mask, dtype=x.dtype)
|
||||||
|
new_attn_mask.masked_fill_(xy_attn_mask, float("-inf"))
|
||||||
|
xy_attn_mask = new_attn_mask
|
||||||
|
# x 和完整的 y 一次性输入模型
|
||||||
|
xy_pos = torch.concat([x, y_pos], dim=1)
|
||||||
|
xy_dec, _ = self.h(
|
||||||
|
(xy_pos, None),
|
||||||
|
mask=xy_attn_mask,
|
||||||
|
)
|
||||||
|
logits = self.ar_predict_layer(xy_dec[:, x_len:]).permute(0, 2, 1)
|
||||||
|
# loss
|
||||||
|
# from feiteng: 每次 duration 越多, 梯度更新也应该更多, 所以用 sum
|
||||||
|
loss = F.cross_entropy(logits, targets, reduction="sum")
|
||||||
|
acc = self.ar_accuracy_metric(logits.detach(), targets).item()
|
||||||
|
return loss, acc
|
||||||
|
|
||||||
|
# 需要看下这个函数和 forward 的区别以及没有 semantic 的时候 prompts 输入什么
|
||||||
|
def infer(
|
||||||
|
self,
|
||||||
|
x,
|
||||||
|
x_lens,
|
||||||
|
prompts,
|
||||||
|
bert_feature,
|
||||||
|
top_k: int = -100,
|
||||||
|
early_stop_num: int = -1,
|
||||||
|
temperature: float = 1.0,
|
||||||
|
):
|
||||||
|
x = self.ar_text_embedding(x)
|
||||||
|
x = x + self.bert_proj(bert_feature.transpose(1, 2))
|
||||||
|
x = self.ar_text_position(x)
|
||||||
|
|
||||||
|
# AR Decoder
|
||||||
|
y = prompts
|
||||||
|
prefix_len = y.shape[1]
|
||||||
|
x_len = x.shape[1]
|
||||||
|
x_attn_mask = torch.zeros((x_len, x_len), dtype=torch.bool)
|
||||||
|
stop = False
|
||||||
|
for _ in tqdm(range(1500)):
|
||||||
|
y_emb = self.ar_audio_embedding(y)
|
||||||
|
y_pos = self.ar_audio_position(y_emb)
|
||||||
|
# x 和逐渐增长的 y 一起输入给模型
|
||||||
|
xy_pos = torch.concat([x, y_pos], dim=1)
|
||||||
|
y_len = y.shape[1]
|
||||||
|
x_attn_mask_pad = F.pad(
|
||||||
|
x_attn_mask,
|
||||||
|
(0, y_len),
|
||||||
|
value=True,
|
||||||
|
)
|
||||||
|
y_attn_mask = F.pad(
|
||||||
|
torch.triu(torch.ones(y_len, y_len, dtype=torch.bool), diagonal=1),
|
||||||
|
(x_len, 0),
|
||||||
|
value=False,
|
||||||
|
)
|
||||||
|
xy_attn_mask = torch.concat([x_attn_mask_pad, y_attn_mask], dim=0).to(
|
||||||
|
y.device
|
||||||
|
)
|
||||||
|
|
||||||
|
xy_dec, _ = self.h(
|
||||||
|
(xy_pos, None),
|
||||||
|
mask=xy_attn_mask,
|
||||||
|
)
|
||||||
|
logits = self.ar_predict_layer(xy_dec[:, -1])
|
||||||
|
samples = topk_sampling(
|
||||||
|
logits, top_k=top_k, top_p=1.0, temperature=temperature
|
||||||
|
)
|
||||||
|
|
||||||
|
if early_stop_num != -1 and (y.shape[1] - prefix_len) > early_stop_num:
|
||||||
|
print("use early stop num:", early_stop_num)
|
||||||
|
stop = True
|
||||||
|
|
||||||
|
if torch.argmax(logits, dim=-1)[0] == self.EOS or samples[0, 0] == self.EOS:
|
||||||
|
# print(torch.argmax(logits, dim=-1)[0] == self.EOS, samples[0, 0] == self.EOS)
|
||||||
|
stop = True
|
||||||
|
if stop:
|
||||||
|
if prompts.shape[1] == y.shape[1]:
|
||||||
|
y = torch.concat([y, torch.zeros_like(samples)], dim=1)
|
||||||
|
print("bad zero prediction")
|
||||||
|
print(f"T2S Decoding EOS [{prefix_len} -> {y.shape[1]}]")
|
||||||
|
break
|
||||||
|
# 本次生成的 semantic_ids 和之前的 y 构成新的 y
|
||||||
|
# print(samples.shape)#[1,1]#第一个1是bs
|
||||||
|
# import os
|
||||||
|
# os._exit(2333)
|
||||||
|
y = torch.concat([y, samples], dim=1)
|
||||||
|
return y
|
||||||
|
|
||||||
|
def pad_y_eos(self, y, y_mask_int, eos_id):
|
||||||
|
targets = F.pad(y, (0, 1), value=0) + eos_id * F.pad(
|
||||||
|
y_mask_int, (0, 1), value=1
|
||||||
|
)
|
||||||
|
# 错位
|
||||||
|
return targets[:, :-1], targets[:, 1:]
|
||||||
|
|
||||||
|
def infer_panel(
|
||||||
|
self,
|
||||||
|
x, #####全部文本token
|
||||||
|
x_lens,
|
||||||
|
prompts, ####参考音频token
|
||||||
|
bert_feature,
|
||||||
|
top_k: int = -100,
|
||||||
|
top_p: int = 100,
|
||||||
|
early_stop_num: int = -1,
|
||||||
|
temperature: float = 1.0,
|
||||||
|
):
|
||||||
|
x = self.ar_text_embedding(x)
|
||||||
|
x = x + self.bert_proj(bert_feature.transpose(1, 2))
|
||||||
|
x = self.ar_text_position(x)
|
||||||
|
|
||||||
|
# AR Decoder
|
||||||
|
y = prompts
|
||||||
|
|
||||||
|
x_len = x.shape[1]
|
||||||
|
x_attn_mask = torch.zeros((x_len, x_len), dtype=torch.bool)
|
||||||
|
stop = False
|
||||||
|
# print(1111111,self.num_layers)
|
||||||
|
cache = {
|
||||||
|
"all_stage": self.num_layers,
|
||||||
|
"k": [None] * self.num_layers, ###根据配置自己手写
|
||||||
|
"v": [None] * self.num_layers,
|
||||||
|
# "xy_pos":None,##y_pos位置编码每次都不一样的没法缓存,每次都要重新拼xy_pos.主要还是写法原因,其实是可以历史统一一样的,但也没啥计算量就不管了
|
||||||
|
"y_emb": None, ##只需要对最新的samples求emb,再拼历史的就行
|
||||||
|
# "logits":None,###原版就已经只对结尾求再拼接了,不用管
|
||||||
|
# "xy_dec":None,###不需要,本来只需要最后一个做logits
|
||||||
|
"first_infer": 1,
|
||||||
|
"stage": 0,
|
||||||
|
}
|
||||||
|
################### first step ##########################
|
||||||
|
if y is not None:
|
||||||
|
y_emb = self.ar_audio_embedding(y)
|
||||||
|
y_len = y_emb.shape[1]
|
||||||
|
prefix_len = y.shape[1]
|
||||||
|
y_pos = self.ar_audio_position(y_emb)
|
||||||
|
xy_pos = torch.concat([x, y_pos], dim=1)
|
||||||
|
cache["y_emb"] = y_emb
|
||||||
|
ref_free = False
|
||||||
|
else:
|
||||||
|
y_emb = None
|
||||||
|
y_len = 0
|
||||||
|
prefix_len = 0
|
||||||
|
y_pos = None
|
||||||
|
xy_pos = x
|
||||||
|
y = torch.zeros(x.shape[0], 0, dtype=torch.int, device=x.device)
|
||||||
|
ref_free = True
|
||||||
|
|
||||||
|
x_attn_mask_pad = F.pad(
|
||||||
|
x_attn_mask,
|
||||||
|
(0, y_len), ###xx的纯0扩展到xx纯0+xy纯1,(x,x+y)
|
||||||
|
value=True,
|
||||||
|
)
|
||||||
|
y_attn_mask = F.pad( ###yy的右上1扩展到左边xy的0,(y,x+y)
|
||||||
|
torch.triu(torch.ones(y_len, y_len, dtype=torch.bool), diagonal=1),
|
||||||
|
(x_len, 0),
|
||||||
|
value=False,
|
||||||
|
)
|
||||||
|
xy_attn_mask = torch.concat([x_attn_mask_pad, y_attn_mask], dim=0).to(
|
||||||
|
x.device
|
||||||
|
)
|
||||||
|
|
||||||
|
y_list = [None]*y.shape[0]
|
||||||
|
batch_idx_map = list(range(y.shape[0]))
|
||||||
|
idx_list = [None]*y.shape[0]
|
||||||
|
for idx in tqdm(range(1500)):
|
||||||
|
|
||||||
|
xy_dec, _ = self.h((xy_pos, None), mask=xy_attn_mask, cache=cache)
|
||||||
|
logits = self.ar_predict_layer(
|
||||||
|
xy_dec[:, -1]
|
||||||
|
) ##不用改,如果用了cache的默认就是只有一帧,取最后一帧一样的
|
||||||
|
# samples = topk_sampling(logits, top_k=top_k, top_p=1.0, temperature=temperature)
|
||||||
|
if(idx==0):###第一次跑不能EOS否则没有了
|
||||||
|
logits = logits[:, :-1] ###刨除1024终止符号的概率
|
||||||
|
samples = sample(
|
||||||
|
logits, y, top_k=top_k, top_p=top_p, repetition_penalty=1.35, temperature=temperature
|
||||||
|
)[0]
|
||||||
|
# 本次生成的 semantic_ids 和之前的 y 构成新的 y
|
||||||
|
# print(samples.shape)#[1,1]#第一个1是bs
|
||||||
|
y = torch.concat([y, samples], dim=1)
|
||||||
|
|
||||||
|
# 移除已经生成完毕的序列
|
||||||
|
reserved_idx_of_batch_for_y = None
|
||||||
|
if (self.EOS in torch.argmax(logits, dim=-1)) or \
|
||||||
|
(self.EOS in samples[:, 0]): ###如果生成到EOS,则停止
|
||||||
|
l = samples[:, 0]==self.EOS
|
||||||
|
removed_idx_of_batch_for_y = torch.where(l==True)[0].tolist()
|
||||||
|
reserved_idx_of_batch_for_y = torch.where(l==False)[0]
|
||||||
|
# batch_indexs = torch.tensor(batch_idx_map, device=y.device)[removed_idx_of_batch_for_y]
|
||||||
|
for i in removed_idx_of_batch_for_y:
|
||||||
|
batch_index = batch_idx_map[i]
|
||||||
|
idx_list[batch_index] = idx - 1
|
||||||
|
y_list[batch_index] = y[i, :-1]
|
||||||
|
|
||||||
|
batch_idx_map = [batch_idx_map[i] for i in reserved_idx_of_batch_for_y.tolist()]
|
||||||
|
|
||||||
|
# 只保留未生成完毕的序列
|
||||||
|
if reserved_idx_of_batch_for_y is not None:
|
||||||
|
# index = torch.LongTensor(batch_idx_map).to(y.device)
|
||||||
|
y = torch.index_select(y, dim=0, index=reserved_idx_of_batch_for_y)
|
||||||
|
if cache["y_emb"] is not None:
|
||||||
|
cache["y_emb"] = torch.index_select(cache["y_emb"], dim=0, index=reserved_idx_of_batch_for_y)
|
||||||
|
if cache["k"] is not None:
|
||||||
|
for i in range(self.num_layers):
|
||||||
|
# 因为kv转置了,所以batch dim是1
|
||||||
|
cache["k"][i] = torch.index_select(cache["k"][i], dim=1, index=reserved_idx_of_batch_for_y)
|
||||||
|
cache["v"][i] = torch.index_select(cache["v"][i], dim=1, index=reserved_idx_of_batch_for_y)
|
||||||
|
|
||||||
|
|
||||||
|
if early_stop_num != -1 and (y.shape[1] - prefix_len) > early_stop_num:
|
||||||
|
print("use early stop num:", early_stop_num)
|
||||||
|
stop = True
|
||||||
|
|
||||||
|
if not (None in idx_list):
|
||||||
|
# print(torch.argmax(logits, dim=-1)[0] == self.EOS, samples[0, 0] == self.EOS)
|
||||||
|
stop = True
|
||||||
|
if stop:
|
||||||
|
# if prompts.shape[1] == y.shape[1]:
|
||||||
|
# y = torch.concat([y, torch.zeros_like(samples)], dim=1)
|
||||||
|
# print("bad zero prediction")
|
||||||
|
if y.shape[1]==0:
|
||||||
|
y = torch.concat([y, torch.zeros_like(samples)], dim=1)
|
||||||
|
print("bad zero prediction")
|
||||||
|
print(f"T2S Decoding EOS [{prefix_len} -> {y.shape[1]}]")
|
||||||
|
break
|
||||||
|
|
||||||
|
####################### update next step ###################################
|
||||||
|
cache["first_infer"] = 0
|
||||||
|
if cache["y_emb"] is not None:
|
||||||
|
y_emb = torch.cat(
|
||||||
|
[cache["y_emb"], self.ar_audio_embedding(y[:, -1:])], dim = 1
|
||||||
|
)
|
||||||
|
cache["y_emb"] = y_emb
|
||||||
|
y_pos = self.ar_audio_position(y_emb)
|
||||||
|
xy_pos = y_pos[:, -1:]
|
||||||
|
else:
|
||||||
|
y_emb = self.ar_audio_embedding(y[:, -1:])
|
||||||
|
cache["y_emb"] = y_emb
|
||||||
|
y_pos = self.ar_audio_position(y_emb)
|
||||||
|
xy_pos = y_pos
|
||||||
|
y_len = y_pos.shape[1]
|
||||||
|
|
||||||
|
###最右边一列(是错的)
|
||||||
|
# xy_attn_mask=torch.ones((1, x_len+y_len), dtype=torch.bool,device=xy_pos.device)
|
||||||
|
# xy_attn_mask[:,-1]=False
|
||||||
|
###最下面一行(是对的)
|
||||||
|
xy_attn_mask = torch.zeros(
|
||||||
|
(1, x_len + y_len), dtype=torch.bool, device=xy_pos.device
|
||||||
|
)
|
||||||
|
|
||||||
|
if (None in idx_list):
|
||||||
|
for i in range(x.shape[0]):
|
||||||
|
if idx_list[i] is None:
|
||||||
|
idx_list[i] = 1500-1 ###如果没有生成到EOS,就用最大长度代替
|
||||||
|
|
||||||
|
if ref_free:
|
||||||
|
return y_list, [0]*x.shape[0]
|
||||||
|
return y_list, idx_list
|
@ -115,17 +115,17 @@ def logits_to_probs(
|
|||||||
top_p: Optional[int] = None,
|
top_p: Optional[int] = None,
|
||||||
repetition_penalty: float = 1.0,
|
repetition_penalty: float = 1.0,
|
||||||
):
|
):
|
||||||
if previous_tokens is not None:
|
# if previous_tokens is not None:
|
||||||
previous_tokens = previous_tokens.squeeze()
|
# previous_tokens = previous_tokens.squeeze()
|
||||||
# print(logits.shape,previous_tokens.shape)
|
# print(logits.shape,previous_tokens.shape)
|
||||||
# pdb.set_trace()
|
# pdb.set_trace()
|
||||||
if previous_tokens is not None and repetition_penalty != 1.0:
|
if previous_tokens is not None and repetition_penalty != 1.0:
|
||||||
previous_tokens = previous_tokens.long()
|
previous_tokens = previous_tokens.long()
|
||||||
score = torch.gather(logits, dim=0, index=previous_tokens)
|
score = torch.gather(logits, dim=1, index=previous_tokens)
|
||||||
score = torch.where(
|
score = torch.where(
|
||||||
score < 0, score * repetition_penalty, score / repetition_penalty
|
score < 0, score * repetition_penalty, score / repetition_penalty
|
||||||
)
|
)
|
||||||
logits.scatter_(dim=0, index=previous_tokens, src=score)
|
logits.scatter_(dim=1, index=previous_tokens, src=score)
|
||||||
|
|
||||||
if top_p is not None and top_p < 1.0:
|
if top_p is not None and top_p < 1.0:
|
||||||
sorted_logits, sorted_indices = torch.sort(logits, descending=True)
|
sorted_logits, sorted_indices = torch.sort(logits, descending=True)
|
||||||
@ -133,9 +133,9 @@ def logits_to_probs(
|
|||||||
torch.nn.functional.softmax(sorted_logits, dim=-1), dim=-1
|
torch.nn.functional.softmax(sorted_logits, dim=-1), dim=-1
|
||||||
)
|
)
|
||||||
sorted_indices_to_remove = cum_probs > top_p
|
sorted_indices_to_remove = cum_probs > top_p
|
||||||
sorted_indices_to_remove[0] = False # keep at least one option
|
sorted_indices_to_remove[:, 0] = False # keep at least one option
|
||||||
indices_to_remove = sorted_indices_to_remove.scatter(
|
indices_to_remove = sorted_indices_to_remove.scatter(
|
||||||
dim=0, index=sorted_indices, src=sorted_indices_to_remove
|
dim=1, index=sorted_indices, src=sorted_indices_to_remove
|
||||||
)
|
)
|
||||||
logits = logits.masked_fill(indices_to_remove, -float("Inf"))
|
logits = logits.masked_fill(indices_to_remove, -float("Inf"))
|
||||||
|
|
||||||
@ -143,7 +143,7 @@ def logits_to_probs(
|
|||||||
|
|
||||||
if top_k is not None:
|
if top_k is not None:
|
||||||
v, _ = torch.topk(logits, min(top_k, logits.size(-1)))
|
v, _ = torch.topk(logits, min(top_k, logits.size(-1)))
|
||||||
pivot = v.select(-1, -1).unsqueeze(-1)
|
pivot = v[: , -1].unsqueeze(-1)
|
||||||
logits = torch.where(logits < pivot, -float("Inf"), logits)
|
logits = torch.where(logits < pivot, -float("Inf"), logits)
|
||||||
|
|
||||||
probs = torch.nn.functional.softmax(logits, dim=-1)
|
probs = torch.nn.functional.softmax(logits, dim=-1)
|
||||||
|
920
GPT_SoVITS/TTS_infer_pack/TTS.py
Normal file
920
GPT_SoVITS/TTS_infer_pack/TTS.py
Normal file
@ -0,0 +1,920 @@
|
|||||||
|
from copy import deepcopy
|
||||||
|
import math
|
||||||
|
import os, sys
|
||||||
|
import random
|
||||||
|
import traceback
|
||||||
|
|
||||||
|
from tqdm import tqdm
|
||||||
|
now_dir = os.getcwd()
|
||||||
|
sys.path.append(now_dir)
|
||||||
|
import ffmpeg
|
||||||
|
import os
|
||||||
|
from typing import Generator, List, Union
|
||||||
|
import numpy as np
|
||||||
|
import torch
|
||||||
|
import torch.nn.functional as F
|
||||||
|
import yaml
|
||||||
|
from transformers import AutoModelForMaskedLM, AutoTokenizer
|
||||||
|
|
||||||
|
from AR.models.t2s_lightning_module import Text2SemanticLightningModule
|
||||||
|
from feature_extractor.cnhubert import CNHubert
|
||||||
|
from module.models import SynthesizerTrn
|
||||||
|
import librosa
|
||||||
|
from time import time as ttime
|
||||||
|
from tools.i18n.i18n import I18nAuto
|
||||||
|
from my_utils import load_audio
|
||||||
|
from module.mel_processing import spectrogram_torch
|
||||||
|
from TTS_infer_pack.text_segmentation_method import splits
|
||||||
|
from TTS_infer_pack.TextPreprocessor import TextPreprocessor
|
||||||
|
i18n = I18nAuto()
|
||||||
|
|
||||||
|
# configs/tts_infer.yaml
|
||||||
|
"""
|
||||||
|
default:
|
||||||
|
device: cpu
|
||||||
|
is_half: false
|
||||||
|
bert_base_path: GPT_SoVITS/pretrained_models/chinese-roberta-wwm-ext-large
|
||||||
|
cnhuhbert_base_path: GPT_SoVITS/pretrained_models/chinese-hubert-base
|
||||||
|
t2s_weights_path: GPT_SoVITS/pretrained_models/s1bert25hz-2kh-longer-epoch=68e-step=50232.ckpt
|
||||||
|
vits_weights_path: GPT_SoVITS/pretrained_models/s2G488k.pth
|
||||||
|
flash_attn_enabled: true
|
||||||
|
|
||||||
|
custom:
|
||||||
|
device: cuda
|
||||||
|
is_half: true
|
||||||
|
bert_base_path: GPT_SoVITS/pretrained_models/chinese-roberta-wwm-ext-large
|
||||||
|
cnhuhbert_base_path: GPT_SoVITS/pretrained_models/chinese-hubert-base
|
||||||
|
t2s_weights_path: GPT_SoVITS/pretrained_models/s1bert25hz-2kh-longer-epoch=68e-step=50232.ckpt
|
||||||
|
vits_weights_path: GPT_SoVITS/pretrained_models/s2G488k.pth
|
||||||
|
flash_attn_enabled: true
|
||||||
|
|
||||||
|
|
||||||
|
"""
|
||||||
|
|
||||||
|
def set_seed(seed:int):
|
||||||
|
seed = int(seed)
|
||||||
|
seed = seed if seed != -1 else random.randrange(1 << 32)
|
||||||
|
print(f"Set seed to {seed}")
|
||||||
|
os.environ['PYTHONHASHSEED'] = str(seed)
|
||||||
|
random.seed(seed)
|
||||||
|
np.random.seed(seed)
|
||||||
|
torch.manual_seed(seed)
|
||||||
|
try:
|
||||||
|
if torch.cuda.is_available():
|
||||||
|
torch.cuda.manual_seed(seed)
|
||||||
|
torch.cuda.manual_seed_all(seed)
|
||||||
|
# torch.backends.cudnn.deterministic = True
|
||||||
|
# torch.backends.cudnn.benchmark = False
|
||||||
|
# torch.backends.cudnn.enabled = True
|
||||||
|
except:
|
||||||
|
pass
|
||||||
|
return seed
|
||||||
|
|
||||||
|
class TTS_Config:
|
||||||
|
default_configs={
|
||||||
|
"device": "cpu",
|
||||||
|
"is_half": False,
|
||||||
|
"t2s_weights_path": "GPT_SoVITS/pretrained_models/s1bert25hz-2kh-longer-epoch=68e-step=50232.ckpt",
|
||||||
|
"vits_weights_path": "GPT_SoVITS/pretrained_models/s2G488k.pth",
|
||||||
|
"cnhuhbert_base_path": "GPT_SoVITS/pretrained_models/chinese-hubert-base",
|
||||||
|
"bert_base_path": "GPT_SoVITS/pretrained_models/chinese-roberta-wwm-ext-large",
|
||||||
|
"flash_attn_enabled": True
|
||||||
|
}
|
||||||
|
configs:dict = None
|
||||||
|
def __init__(self, configs: Union[dict, str]=None):
|
||||||
|
|
||||||
|
# 设置默认配置文件路径
|
||||||
|
configs_base_path:str = "GPT_SoVITS/configs/"
|
||||||
|
os.makedirs(configs_base_path, exist_ok=True)
|
||||||
|
self.configs_path:str = os.path.join(configs_base_path, "tts_infer.yaml")
|
||||||
|
|
||||||
|
if configs in ["", None]:
|
||||||
|
if not os.path.exists(self.configs_path):
|
||||||
|
self.save_configs()
|
||||||
|
print(f"Create default config file at {self.configs_path}")
|
||||||
|
configs:dict = {"default": deepcopy(self.default_configs)}
|
||||||
|
|
||||||
|
if isinstance(configs, str):
|
||||||
|
self.configs_path = configs
|
||||||
|
configs:dict = self._load_configs(self.configs_path)
|
||||||
|
|
||||||
|
assert isinstance(configs, dict)
|
||||||
|
default_configs:dict = configs.get("default", None)
|
||||||
|
if default_configs is not None:
|
||||||
|
self.default_configs = default_configs
|
||||||
|
|
||||||
|
self.configs:dict = configs.get("custom", deepcopy(self.default_configs))
|
||||||
|
|
||||||
|
|
||||||
|
self.device = self.configs.get("device", torch.device("cpu"))
|
||||||
|
self.is_half = self.configs.get("is_half", False)
|
||||||
|
self.flash_attn_enabled = self.configs.get("flash_attn_enabled", True)
|
||||||
|
self.t2s_weights_path = self.configs.get("t2s_weights_path", None)
|
||||||
|
self.vits_weights_path = self.configs.get("vits_weights_path", None)
|
||||||
|
self.bert_base_path = self.configs.get("bert_base_path", None)
|
||||||
|
self.cnhuhbert_base_path = self.configs.get("cnhuhbert_base_path", None)
|
||||||
|
|
||||||
|
|
||||||
|
if (self.t2s_weights_path in [None, ""]) or (not os.path.exists(self.t2s_weights_path)):
|
||||||
|
self.t2s_weights_path = self.default_configs['t2s_weights_path']
|
||||||
|
print(f"fall back to default t2s_weights_path: {self.t2s_weights_path}")
|
||||||
|
if (self.vits_weights_path in [None, ""]) or (not os.path.exists(self.vits_weights_path)):
|
||||||
|
self.vits_weights_path = self.default_configs['vits_weights_path']
|
||||||
|
print(f"fall back to default vits_weights_path: {self.vits_weights_path}")
|
||||||
|
if (self.bert_base_path in [None, ""]) or (not os.path.exists(self.bert_base_path)):
|
||||||
|
self.bert_base_path = self.default_configs['bert_base_path']
|
||||||
|
print(f"fall back to default bert_base_path: {self.bert_base_path}")
|
||||||
|
if (self.cnhuhbert_base_path in [None, ""]) or (not os.path.exists(self.cnhuhbert_base_path)):
|
||||||
|
self.cnhuhbert_base_path = self.default_configs['cnhuhbert_base_path']
|
||||||
|
print(f"fall back to default cnhuhbert_base_path: {self.cnhuhbert_base_path}")
|
||||||
|
self.update_configs()
|
||||||
|
|
||||||
|
|
||||||
|
self.max_sec = None
|
||||||
|
self.hz:int = 50
|
||||||
|
self.semantic_frame_rate:str = "25hz"
|
||||||
|
self.segment_size:int = 20480
|
||||||
|
self.filter_length:int = 2048
|
||||||
|
self.sampling_rate:int = 32000
|
||||||
|
self.hop_length:int = 640
|
||||||
|
self.win_length:int = 2048
|
||||||
|
self.n_speakers:int = 300
|
||||||
|
|
||||||
|
self.langauges:list = ["auto", "en", "zh", "ja", "all_zh", "all_ja"]
|
||||||
|
# print(self)
|
||||||
|
|
||||||
|
def _load_configs(self, configs_path: str)->dict:
|
||||||
|
with open(configs_path, 'r') as f:
|
||||||
|
configs = yaml.load(f, Loader=yaml.FullLoader)
|
||||||
|
|
||||||
|
return configs
|
||||||
|
|
||||||
|
def save_configs(self, configs_path:str=None)->None:
|
||||||
|
configs={
|
||||||
|
"default":self.default_configs,
|
||||||
|
}
|
||||||
|
if self.configs is not None:
|
||||||
|
configs["custom"] = self.update_configs()
|
||||||
|
|
||||||
|
if configs_path is None:
|
||||||
|
configs_path = self.configs_path
|
||||||
|
with open(configs_path, 'w') as f:
|
||||||
|
yaml.dump(configs, f)
|
||||||
|
|
||||||
|
def update_configs(self):
|
||||||
|
self.config = {
|
||||||
|
"device" : str(self.device),
|
||||||
|
"is_half" : self.is_half,
|
||||||
|
"t2s_weights_path" : self.t2s_weights_path,
|
||||||
|
"vits_weights_path" : self.vits_weights_path,
|
||||||
|
"bert_base_path" : self.bert_base_path,
|
||||||
|
"cnhuhbert_base_path": self.cnhuhbert_base_path,
|
||||||
|
"flash_attn_enabled" : self.flash_attn_enabled
|
||||||
|
}
|
||||||
|
return self.config
|
||||||
|
|
||||||
|
def __str__(self):
|
||||||
|
self.configs = self.update_configs()
|
||||||
|
string = "TTS Config".center(100, '-') + '\n'
|
||||||
|
for k, v in self.configs.items():
|
||||||
|
string += f"{str(k).ljust(20)}: {str(v)}\n"
|
||||||
|
string += "-" * 100 + '\n'
|
||||||
|
return string
|
||||||
|
|
||||||
|
def __repr__(self):
|
||||||
|
return self.__str__()
|
||||||
|
|
||||||
|
|
||||||
|
class TTS:
|
||||||
|
def __init__(self, configs: Union[dict, str, TTS_Config]):
|
||||||
|
if isinstance(configs, TTS_Config):
|
||||||
|
self.configs = configs
|
||||||
|
else:
|
||||||
|
self.configs:TTS_Config = TTS_Config(configs)
|
||||||
|
|
||||||
|
self.t2s_model:Text2SemanticLightningModule = None
|
||||||
|
self.vits_model:SynthesizerTrn = None
|
||||||
|
self.bert_tokenizer:AutoTokenizer = None
|
||||||
|
self.bert_model:AutoModelForMaskedLM = None
|
||||||
|
self.cnhuhbert_model:CNHubert = None
|
||||||
|
|
||||||
|
self._init_models()
|
||||||
|
|
||||||
|
self.text_preprocessor:TextPreprocessor = \
|
||||||
|
TextPreprocessor(self.bert_model,
|
||||||
|
self.bert_tokenizer,
|
||||||
|
self.configs.device)
|
||||||
|
|
||||||
|
|
||||||
|
self.prompt_cache:dict = {
|
||||||
|
"ref_audio_path":None,
|
||||||
|
"prompt_semantic":None,
|
||||||
|
"refer_spepc":None,
|
||||||
|
"prompt_text":None,
|
||||||
|
"prompt_lang":None,
|
||||||
|
"phones":None,
|
||||||
|
"bert_features":None,
|
||||||
|
"norm_text":None,
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
self.stop_flag:bool = False
|
||||||
|
self.precison:torch.dtype = torch.float16 if self.configs.is_half else torch.float32
|
||||||
|
|
||||||
|
def _init_models(self,):
|
||||||
|
self.init_t2s_weights(self.configs.t2s_weights_path)
|
||||||
|
self.init_vits_weights(self.configs.vits_weights_path)
|
||||||
|
self.init_bert_weights(self.configs.bert_base_path)
|
||||||
|
self.init_cnhuhbert_weights(self.configs.cnhuhbert_base_path)
|
||||||
|
# self.enable_half_precision(self.configs.is_half)
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
def init_cnhuhbert_weights(self, base_path: str):
|
||||||
|
print(f"Loading CNHuBERT weights from {base_path}")
|
||||||
|
self.cnhuhbert_model = CNHubert(base_path)
|
||||||
|
self.cnhuhbert_model=self.cnhuhbert_model.eval()
|
||||||
|
self.cnhuhbert_model = self.cnhuhbert_model.to(self.configs.device)
|
||||||
|
if self.configs.is_half and str(self.configs.device)!="cpu":
|
||||||
|
self.cnhuhbert_model = self.cnhuhbert_model.half()
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
def init_bert_weights(self, base_path: str):
|
||||||
|
print(f"Loading BERT weights from {base_path}")
|
||||||
|
self.bert_tokenizer = AutoTokenizer.from_pretrained(base_path)
|
||||||
|
self.bert_model = AutoModelForMaskedLM.from_pretrained(base_path)
|
||||||
|
self.bert_model=self.bert_model.eval()
|
||||||
|
self.bert_model = self.bert_model.to(self.configs.device)
|
||||||
|
if self.configs.is_half and str(self.configs.device)!="cpu":
|
||||||
|
self.bert_model = self.bert_model.half()
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
def init_vits_weights(self, weights_path: str):
|
||||||
|
print(f"Loading VITS weights from {weights_path}")
|
||||||
|
self.configs.vits_weights_path = weights_path
|
||||||
|
self.configs.save_configs()
|
||||||
|
dict_s2 = torch.load(weights_path, map_location=self.configs.device)
|
||||||
|
hps = dict_s2["config"]
|
||||||
|
self.configs.filter_length = hps["data"]["filter_length"]
|
||||||
|
self.configs.segment_size = hps["train"]["segment_size"]
|
||||||
|
self.configs.sampling_rate = hps["data"]["sampling_rate"]
|
||||||
|
self.configs.hop_length = hps["data"]["hop_length"]
|
||||||
|
self.configs.win_length = hps["data"]["win_length"]
|
||||||
|
self.configs.n_speakers = hps["data"]["n_speakers"]
|
||||||
|
self.configs.semantic_frame_rate = "25hz"
|
||||||
|
kwargs = hps["model"]
|
||||||
|
vits_model = SynthesizerTrn(
|
||||||
|
self.configs.filter_length // 2 + 1,
|
||||||
|
self.configs.segment_size // self.configs.hop_length,
|
||||||
|
n_speakers=self.configs.n_speakers,
|
||||||
|
**kwargs
|
||||||
|
)
|
||||||
|
# if ("pretrained" not in weights_path):
|
||||||
|
if hasattr(vits_model, "enc_q"):
|
||||||
|
del vits_model.enc_q
|
||||||
|
|
||||||
|
vits_model = vits_model.to(self.configs.device)
|
||||||
|
vits_model = vits_model.eval()
|
||||||
|
vits_model.load_state_dict(dict_s2["weight"], strict=False)
|
||||||
|
self.vits_model = vits_model
|
||||||
|
if self.configs.is_half and str(self.configs.device)!="cpu":
|
||||||
|
self.vits_model = self.vits_model.half()
|
||||||
|
|
||||||
|
|
||||||
|
def init_t2s_weights(self, weights_path: str):
|
||||||
|
print(f"Loading Text2Semantic weights from {weights_path}")
|
||||||
|
self.configs.t2s_weights_path = weights_path
|
||||||
|
self.configs.save_configs()
|
||||||
|
self.configs.hz = 50
|
||||||
|
dict_s1 = torch.load(weights_path, map_location=self.configs.device)
|
||||||
|
config = dict_s1["config"]
|
||||||
|
self.configs.max_sec = config["data"]["max_sec"]
|
||||||
|
t2s_model = Text2SemanticLightningModule(config, "****", is_train=False,
|
||||||
|
flash_attn_enabled=self.configs.flash_attn_enabled)
|
||||||
|
t2s_model.load_state_dict(dict_s1["weight"])
|
||||||
|
t2s_model = t2s_model.to(self.configs.device)
|
||||||
|
t2s_model = t2s_model.eval()
|
||||||
|
self.t2s_model = t2s_model
|
||||||
|
if self.configs.is_half and str(self.configs.device)!="cpu":
|
||||||
|
self.t2s_model = self.t2s_model.half()
|
||||||
|
|
||||||
|
def enable_half_precision(self, enable: bool = True):
|
||||||
|
'''
|
||||||
|
To enable half precision for the TTS model.
|
||||||
|
Args:
|
||||||
|
enable: bool, whether to enable half precision.
|
||||||
|
|
||||||
|
'''
|
||||||
|
if str(self.configs.device) == "cpu" and enable:
|
||||||
|
print("Half precision is not supported on CPU.")
|
||||||
|
return
|
||||||
|
|
||||||
|
self.configs.is_half = enable
|
||||||
|
self.precison = torch.float16 if enable else torch.float32
|
||||||
|
self.configs.save_configs()
|
||||||
|
if enable:
|
||||||
|
if self.t2s_model is not None:
|
||||||
|
self.t2s_model =self.t2s_model.half()
|
||||||
|
if self.vits_model is not None:
|
||||||
|
self.vits_model = self.vits_model.half()
|
||||||
|
if self.bert_model is not None:
|
||||||
|
self.bert_model =self.bert_model.half()
|
||||||
|
if self.cnhuhbert_model is not None:
|
||||||
|
self.cnhuhbert_model = self.cnhuhbert_model.half()
|
||||||
|
else:
|
||||||
|
if self.t2s_model is not None:
|
||||||
|
self.t2s_model = self.t2s_model.float()
|
||||||
|
if self.vits_model is not None:
|
||||||
|
self.vits_model = self.vits_model.float()
|
||||||
|
if self.bert_model is not None:
|
||||||
|
self.bert_model = self.bert_model.float()
|
||||||
|
if self.cnhuhbert_model is not None:
|
||||||
|
self.cnhuhbert_model = self.cnhuhbert_model.float()
|
||||||
|
|
||||||
|
def set_device(self, device: torch.device):
|
||||||
|
'''
|
||||||
|
To set the device for all models.
|
||||||
|
Args:
|
||||||
|
device: torch.device, the device to use for all models.
|
||||||
|
'''
|
||||||
|
self.configs.device = device
|
||||||
|
self.configs.save_configs()
|
||||||
|
if self.t2s_model is not None:
|
||||||
|
self.t2s_model = self.t2s_model.to(device)
|
||||||
|
if self.vits_model is not None:
|
||||||
|
self.vits_model = self.vits_model.to(device)
|
||||||
|
if self.bert_model is not None:
|
||||||
|
self.bert_model = self.bert_model.to(device)
|
||||||
|
if self.cnhuhbert_model is not None:
|
||||||
|
self.cnhuhbert_model = self.cnhuhbert_model.to(device)
|
||||||
|
|
||||||
|
def set_ref_audio(self, ref_audio_path:str):
|
||||||
|
'''
|
||||||
|
To set the reference audio for the TTS model,
|
||||||
|
including the prompt_semantic and refer_spepc.
|
||||||
|
Args:
|
||||||
|
ref_audio_path: str, the path of the reference audio.
|
||||||
|
'''
|
||||||
|
self._set_prompt_semantic(ref_audio_path)
|
||||||
|
self._set_ref_spepc(ref_audio_path)
|
||||||
|
|
||||||
|
def _set_ref_spepc(self, ref_audio_path):
|
||||||
|
audio = load_audio(ref_audio_path, int(self.configs.sampling_rate))
|
||||||
|
audio = torch.FloatTensor(audio)
|
||||||
|
audio_norm = audio
|
||||||
|
audio_norm = audio_norm.unsqueeze(0)
|
||||||
|
spec = spectrogram_torch(
|
||||||
|
audio_norm,
|
||||||
|
self.configs.filter_length,
|
||||||
|
self.configs.sampling_rate,
|
||||||
|
self.configs.hop_length,
|
||||||
|
self.configs.win_length,
|
||||||
|
center=False,
|
||||||
|
)
|
||||||
|
spec = spec.to(self.configs.device)
|
||||||
|
if self.configs.is_half:
|
||||||
|
spec = spec.half()
|
||||||
|
# self.refer_spepc = spec
|
||||||
|
self.prompt_cache["refer_spepc"] = spec
|
||||||
|
|
||||||
|
|
||||||
|
def _set_prompt_semantic(self, ref_wav_path:str):
|
||||||
|
zero_wav = np.zeros(
|
||||||
|
int(self.configs.sampling_rate * 0.3),
|
||||||
|
dtype=np.float16 if self.configs.is_half else np.float32,
|
||||||
|
)
|
||||||
|
with torch.no_grad():
|
||||||
|
wav16k, sr = librosa.load(ref_wav_path, sr=16000)
|
||||||
|
if (wav16k.shape[0] > 160000 or wav16k.shape[0] < 48000):
|
||||||
|
raise OSError(i18n("参考音频在3~10秒范围外,请更换!"))
|
||||||
|
wav16k = torch.from_numpy(wav16k)
|
||||||
|
zero_wav_torch = torch.from_numpy(zero_wav)
|
||||||
|
wav16k = wav16k.to(self.configs.device)
|
||||||
|
zero_wav_torch = zero_wav_torch.to(self.configs.device)
|
||||||
|
if self.configs.is_half:
|
||||||
|
wav16k = wav16k.half()
|
||||||
|
zero_wav_torch = zero_wav_torch.half()
|
||||||
|
|
||||||
|
wav16k = torch.cat([wav16k, zero_wav_torch])
|
||||||
|
hubert_feature = self.cnhuhbert_model.model(wav16k.unsqueeze(0))[
|
||||||
|
"last_hidden_state"
|
||||||
|
].transpose(
|
||||||
|
1, 2
|
||||||
|
) # .float()
|
||||||
|
codes = self.vits_model.extract_latent(hubert_feature)
|
||||||
|
|
||||||
|
prompt_semantic = codes[0, 0].to(self.configs.device)
|
||||||
|
self.prompt_cache["prompt_semantic"] = prompt_semantic
|
||||||
|
|
||||||
|
def batch_sequences(self, sequences: List[torch.Tensor], axis: int = 0, pad_value: int = 0, max_length:int=None):
|
||||||
|
seq = sequences[0]
|
||||||
|
ndim = seq.dim()
|
||||||
|
if axis < 0:
|
||||||
|
axis += ndim
|
||||||
|
dtype:torch.dtype = seq.dtype
|
||||||
|
pad_value = torch.tensor(pad_value, dtype=dtype)
|
||||||
|
seq_lengths = [seq.shape[axis] for seq in sequences]
|
||||||
|
if max_length is None:
|
||||||
|
max_length = max(seq_lengths)
|
||||||
|
else:
|
||||||
|
max_length = max(seq_lengths) if max_length < max(seq_lengths) else max_length
|
||||||
|
|
||||||
|
padded_sequences = []
|
||||||
|
for seq, length in zip(sequences, seq_lengths):
|
||||||
|
padding = [0] * axis + [0, max_length - length] + [0] * (ndim - axis - 1)
|
||||||
|
padded_seq = torch.nn.functional.pad(seq, padding, value=pad_value)
|
||||||
|
padded_sequences.append(padded_seq)
|
||||||
|
batch = torch.stack(padded_sequences)
|
||||||
|
return batch
|
||||||
|
|
||||||
|
def to_batch(self, data:list,
|
||||||
|
prompt_data:dict=None,
|
||||||
|
batch_size:int=5,
|
||||||
|
threshold:float=0.75,
|
||||||
|
split_bucket:bool=True,
|
||||||
|
device:torch.device=torch.device("cpu"),
|
||||||
|
precison:torch.dtype=torch.float32,
|
||||||
|
):
|
||||||
|
|
||||||
|
_data:list = []
|
||||||
|
index_and_len_list = []
|
||||||
|
for idx, item in enumerate(data):
|
||||||
|
norm_text_len = len(item["norm_text"])
|
||||||
|
index_and_len_list.append([idx, norm_text_len])
|
||||||
|
|
||||||
|
batch_index_list = []
|
||||||
|
if split_bucket:
|
||||||
|
index_and_len_list.sort(key=lambda x: x[1])
|
||||||
|
index_and_len_list = np.array(index_and_len_list, dtype=np.int64)
|
||||||
|
|
||||||
|
batch_index_list_len = 0
|
||||||
|
pos = 0
|
||||||
|
while pos <index_and_len_list.shape[0]:
|
||||||
|
# batch_index_list.append(index_and_len_list[pos:min(pos+batch_size,len(index_and_len_list))])
|
||||||
|
pos_end = min(pos+batch_size,index_and_len_list.shape[0])
|
||||||
|
while pos < pos_end:
|
||||||
|
batch=index_and_len_list[pos:pos_end, 1].astype(np.float32)
|
||||||
|
score=batch[(pos_end-pos)//2]/(batch.mean()+1e-8)
|
||||||
|
if (score>=threshold) or (pos_end-pos==1):
|
||||||
|
batch_index=index_and_len_list[pos:pos_end, 0].tolist()
|
||||||
|
batch_index_list_len += len(batch_index)
|
||||||
|
batch_index_list.append(batch_index)
|
||||||
|
pos = pos_end
|
||||||
|
break
|
||||||
|
pos_end=pos_end-1
|
||||||
|
|
||||||
|
assert batch_index_list_len == len(data)
|
||||||
|
|
||||||
|
else:
|
||||||
|
for i in range(len(data)):
|
||||||
|
if i%batch_size == 0:
|
||||||
|
batch_index_list.append([])
|
||||||
|
batch_index_list[-1].append(i)
|
||||||
|
|
||||||
|
|
||||||
|
for batch_idx, index_list in enumerate(batch_index_list):
|
||||||
|
item_list = [data[idx] for idx in index_list]
|
||||||
|
phones_list = []
|
||||||
|
phones_len_list = []
|
||||||
|
# bert_features_list = []
|
||||||
|
all_phones_list = []
|
||||||
|
all_phones_len_list = []
|
||||||
|
all_bert_features_list = []
|
||||||
|
norm_text_batch = []
|
||||||
|
bert_max_len = 0
|
||||||
|
phones_max_len = 0
|
||||||
|
for item in item_list:
|
||||||
|
if prompt_data is not None:
|
||||||
|
all_bert_features = torch.cat([prompt_data["bert_features"], item["bert_features"]], 1)\
|
||||||
|
.to(dtype=precison, device=device)
|
||||||
|
all_phones = torch.LongTensor(prompt_data["phones"]+item["phones"]).to(device)
|
||||||
|
phones = torch.LongTensor(item["phones"]).to(device)
|
||||||
|
# norm_text = prompt_data["norm_text"]+item["norm_text"]
|
||||||
|
else:
|
||||||
|
all_bert_features = item["bert_features"]\
|
||||||
|
.to(dtype=precison, device=device)
|
||||||
|
phones = torch.LongTensor(item["phones"]).to(device)
|
||||||
|
all_phones = phones
|
||||||
|
# norm_text = item["norm_text"]
|
||||||
|
|
||||||
|
bert_max_len = max(bert_max_len, all_bert_features.shape[-1])
|
||||||
|
phones_max_len = max(phones_max_len, phones.shape[-1])
|
||||||
|
|
||||||
|
phones_list.append(phones)
|
||||||
|
phones_len_list.append(phones.shape[-1])
|
||||||
|
all_phones_list.append(all_phones)
|
||||||
|
all_phones_len_list.append(all_phones.shape[-1])
|
||||||
|
all_bert_features_list.append(all_bert_features)
|
||||||
|
norm_text_batch.append(item["norm_text"])
|
||||||
|
|
||||||
|
phones_batch = phones_list
|
||||||
|
all_phones_batch = all_phones_list
|
||||||
|
all_bert_features_batch = all_bert_features_list
|
||||||
|
|
||||||
|
|
||||||
|
# max_len = max(bert_max_len, phones_max_len)
|
||||||
|
# phones_batch = self.batch_sequences(phones_list, axis=0, pad_value=0, max_length=max_len)
|
||||||
|
#### 直接对phones和bert_features进行pad,会增大复读概率。
|
||||||
|
# all_phones_batch = self.batch_sequences(all_phones_list, axis=0, pad_value=0, max_length=max_len)
|
||||||
|
# all_bert_features_batch = all_bert_features_list
|
||||||
|
# all_bert_features_batch = torch.zeros(len(item_list), 1024, max_len, dtype=precison, device=device)
|
||||||
|
# for idx, item in enumerate(all_bert_features_list):
|
||||||
|
# all_bert_features_batch[idx, :, : item.shape[-1]] = item
|
||||||
|
|
||||||
|
# #### 先对phones进行embedding、对bert_features进行project,再pad到相同长度,以缓解复读问题。(可能还有其他因素导致复读)
|
||||||
|
# all_phones_list = [self.t2s_model.model.ar_text_embedding(item.to(self.t2s_model.device)) for item in all_phones_list]
|
||||||
|
# all_phones_list = [F.pad(item,(0,0,0,max_len-item.shape[0]),value=0) for item in all_phones_list]
|
||||||
|
# all_phones_batch = torch.stack(all_phones_list, dim=0)
|
||||||
|
|
||||||
|
# all_bert_features_list = [self.t2s_model.model.bert_proj(item.to(self.t2s_model.device).transpose(0, 1)) for item in all_bert_features_list]
|
||||||
|
# all_bert_features_list = [F.pad(item,(0,0,0,max_len-item.shape[0]), value=0) for item in all_bert_features_list]
|
||||||
|
# all_bert_features_batch = torch.stack(all_bert_features_list, dim=0)
|
||||||
|
|
||||||
|
batch = {
|
||||||
|
"phones": phones_batch,
|
||||||
|
"phones_len": torch.LongTensor(phones_len_list).to(device),
|
||||||
|
"all_phones": all_phones_batch,
|
||||||
|
"all_phones_len": torch.LongTensor(all_phones_len_list).to(device),
|
||||||
|
"all_bert_features": all_bert_features_batch,
|
||||||
|
"norm_text": norm_text_batch
|
||||||
|
}
|
||||||
|
_data.append(batch)
|
||||||
|
|
||||||
|
return _data, batch_index_list
|
||||||
|
|
||||||
|
def recovery_order(self, data:list, batch_index_list:list)->list:
|
||||||
|
'''
|
||||||
|
Recovery the order of the audio according to the batch_index_list.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
data (List[list(np.ndarray)]): the out of order audio .
|
||||||
|
batch_index_list (List[list[int]]): the batch index list.
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
list (List[np.ndarray]): the data in the original order.
|
||||||
|
'''
|
||||||
|
lenght = len(sum(batch_index_list, []))
|
||||||
|
_data = [None]*lenght
|
||||||
|
for i, index_list in enumerate(batch_index_list):
|
||||||
|
for j, index in enumerate(index_list):
|
||||||
|
_data[index] = data[i][j]
|
||||||
|
return _data
|
||||||
|
|
||||||
|
def stop(self,):
|
||||||
|
'''
|
||||||
|
Stop the inference process.
|
||||||
|
'''
|
||||||
|
self.stop_flag = True
|
||||||
|
|
||||||
|
|
||||||
|
def run(self, inputs:dict):
|
||||||
|
"""
|
||||||
|
Text to speech inference.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
inputs (dict):
|
||||||
|
{
|
||||||
|
"text": "", # str. text to be synthesized
|
||||||
|
"text_lang: "", # str. language of the text to be synthesized
|
||||||
|
"ref_audio_path": "", # str. reference audio path
|
||||||
|
"prompt_text": "", # str. prompt text for the reference audio
|
||||||
|
"prompt_lang": "", # str. language of the prompt text for the reference audio
|
||||||
|
"top_k": 5, # int. top k sampling
|
||||||
|
"top_p": 1, # float. top p sampling
|
||||||
|
"temperature": 1, # float. temperature for sampling
|
||||||
|
"text_split_method": "", # str. text split method, see text_segmentaion_method.py for details.
|
||||||
|
"batch_size": 1, # int. batch size for inference
|
||||||
|
"batch_threshold": 0.75, # float. threshold for batch splitting.
|
||||||
|
"split_bucket: True, # bool. whether to split the batch into multiple buckets.
|
||||||
|
"return_fragment": False, # bool. step by step return the audio fragment.
|
||||||
|
"speed_factor":1.0, # float. control the speed of the synthesized audio.
|
||||||
|
"fragment_interval":0.3, # float. to control the interval of the audio fragment.
|
||||||
|
"seed": -1, # int. random seed for reproducibility.
|
||||||
|
}
|
||||||
|
returns:
|
||||||
|
tulpe[int, np.ndarray]: sampling rate and audio data.
|
||||||
|
"""
|
||||||
|
########## variables initialization ###########
|
||||||
|
self.stop_flag:bool = False
|
||||||
|
text:str = inputs.get("text", "")
|
||||||
|
text_lang:str = inputs.get("text_lang", "")
|
||||||
|
ref_audio_path:str = inputs.get("ref_audio_path", "")
|
||||||
|
prompt_text:str = inputs.get("prompt_text", "")
|
||||||
|
prompt_lang:str = inputs.get("prompt_lang", "")
|
||||||
|
top_k:int = inputs.get("top_k", 5)
|
||||||
|
top_p:float = inputs.get("top_p", 1)
|
||||||
|
temperature:float = inputs.get("temperature", 1)
|
||||||
|
text_split_method:str = inputs.get("text_split_method", "")
|
||||||
|
batch_size = inputs.get("batch_size", 1)
|
||||||
|
batch_threshold = inputs.get("batch_threshold", 0.75)
|
||||||
|
speed_factor = inputs.get("speed_factor", 1.0)
|
||||||
|
split_bucket = inputs.get("split_bucket", True)
|
||||||
|
return_fragment = inputs.get("return_fragment", False)
|
||||||
|
fragment_interval = inputs.get("fragment_interval", 0.3)
|
||||||
|
seed = inputs.get("seed", -1)
|
||||||
|
seed = -1 if seed in ["", None] else seed
|
||||||
|
set_seed(seed)
|
||||||
|
|
||||||
|
if return_fragment:
|
||||||
|
# split_bucket = False
|
||||||
|
print(i18n("分段返回模式已开启"))
|
||||||
|
if split_bucket:
|
||||||
|
split_bucket = False
|
||||||
|
print(i18n("分段返回模式不支持分桶处理,已自动关闭分桶处理"))
|
||||||
|
|
||||||
|
if split_bucket:
|
||||||
|
print(i18n("分桶处理模式已开启"))
|
||||||
|
|
||||||
|
if fragment_interval<0.01:
|
||||||
|
fragment_interval = 0.01
|
||||||
|
print(i18n("分段间隔过小,已自动设置为0.01"))
|
||||||
|
|
||||||
|
no_prompt_text = False
|
||||||
|
if prompt_text in [None, ""]:
|
||||||
|
no_prompt_text = True
|
||||||
|
|
||||||
|
assert text_lang in self.configs.langauges
|
||||||
|
if not no_prompt_text:
|
||||||
|
assert prompt_lang in self.configs.langauges
|
||||||
|
|
||||||
|
if ref_audio_path in [None, ""] and \
|
||||||
|
((self.prompt_cache["prompt_semantic"] is None) or (self.prompt_cache["refer_spepc"] is None)):
|
||||||
|
raise ValueError("ref_audio_path cannot be empty, when the reference audio is not set using set_ref_audio()")
|
||||||
|
|
||||||
|
|
||||||
|
###### setting reference audio and prompt text preprocessing ########
|
||||||
|
t0 = ttime()
|
||||||
|
if (ref_audio_path is not None) and (ref_audio_path != self.prompt_cache["ref_audio_path"]):
|
||||||
|
self.set_ref_audio(ref_audio_path)
|
||||||
|
|
||||||
|
if not no_prompt_text:
|
||||||
|
prompt_text = prompt_text.strip("\n")
|
||||||
|
if (prompt_text[-1] not in splits): prompt_text += "。" if prompt_lang != "en" else "."
|
||||||
|
print(i18n("实际输入的参考文本:"), prompt_text)
|
||||||
|
if self.prompt_cache["prompt_text"] != prompt_text:
|
||||||
|
self.prompt_cache["prompt_text"] = prompt_text
|
||||||
|
self.prompt_cache["prompt_lang"] = prompt_lang
|
||||||
|
phones, bert_features, norm_text = \
|
||||||
|
self.text_preprocessor.segment_and_extract_feature_for_text(
|
||||||
|
prompt_text,
|
||||||
|
prompt_lang)
|
||||||
|
self.prompt_cache["phones"] = phones
|
||||||
|
self.prompt_cache["bert_features"] = bert_features
|
||||||
|
self.prompt_cache["norm_text"] = norm_text
|
||||||
|
|
||||||
|
|
||||||
|
###### text preprocessing ########
|
||||||
|
t1 = ttime()
|
||||||
|
data:list = None
|
||||||
|
if not return_fragment:
|
||||||
|
data = self.text_preprocessor.preprocess(text, text_lang, text_split_method)
|
||||||
|
if len(data) == 0:
|
||||||
|
yield self.configs.sampling_rate, np.zeros(int(self.configs.sampling_rate),
|
||||||
|
dtype=np.int16)
|
||||||
|
return
|
||||||
|
|
||||||
|
batch_index_list:list = None
|
||||||
|
data, batch_index_list = self.to_batch(data,
|
||||||
|
prompt_data=self.prompt_cache if not no_prompt_text else None,
|
||||||
|
batch_size=batch_size,
|
||||||
|
threshold=batch_threshold,
|
||||||
|
split_bucket=split_bucket,
|
||||||
|
device=self.configs.device,
|
||||||
|
precison=self.precison
|
||||||
|
)
|
||||||
|
else:
|
||||||
|
print(i18n("############ 切分文本 ############"))
|
||||||
|
texts = self.text_preprocessor.pre_seg_text(text, text_lang, text_split_method)
|
||||||
|
data = []
|
||||||
|
for i in range(len(texts)):
|
||||||
|
if i%batch_size == 0:
|
||||||
|
data.append([])
|
||||||
|
data[-1].append(texts[i])
|
||||||
|
|
||||||
|
def make_batch(batch_texts):
|
||||||
|
batch_data = []
|
||||||
|
print(i18n("############ 提取文本Bert特征 ############"))
|
||||||
|
for text in tqdm(batch_texts):
|
||||||
|
phones, bert_features, norm_text = self.text_preprocessor.segment_and_extract_feature_for_text(text, text_lang)
|
||||||
|
if phones is None:
|
||||||
|
continue
|
||||||
|
res={
|
||||||
|
"phones": phones,
|
||||||
|
"bert_features": bert_features,
|
||||||
|
"norm_text": norm_text,
|
||||||
|
}
|
||||||
|
batch_data.append(res)
|
||||||
|
if len(batch_data) == 0:
|
||||||
|
return None
|
||||||
|
batch, _ = self.to_batch(batch_data,
|
||||||
|
prompt_data=self.prompt_cache if not no_prompt_text else None,
|
||||||
|
batch_size=batch_size,
|
||||||
|
threshold=batch_threshold,
|
||||||
|
split_bucket=False,
|
||||||
|
device=self.configs.device,
|
||||||
|
precison=self.precison
|
||||||
|
)
|
||||||
|
return batch[0]
|
||||||
|
|
||||||
|
t2 = ttime()
|
||||||
|
try:
|
||||||
|
print("############ 推理 ############")
|
||||||
|
###### inference ######
|
||||||
|
t_34 = 0.0
|
||||||
|
t_45 = 0.0
|
||||||
|
audio = []
|
||||||
|
for item in data:
|
||||||
|
t3 = ttime()
|
||||||
|
if return_fragment:
|
||||||
|
item = make_batch(item)
|
||||||
|
if item is None:
|
||||||
|
continue
|
||||||
|
|
||||||
|
batch_phones:List[torch.LongTensor] = item["phones"]
|
||||||
|
batch_phones_len:torch.LongTensor = item["phones_len"]
|
||||||
|
all_phoneme_ids:List[torch.LongTensor] = item["all_phones"]
|
||||||
|
all_phoneme_lens:torch.LongTensor = item["all_phones_len"]
|
||||||
|
all_bert_features:List[torch.LongTensor] = item["all_bert_features"]
|
||||||
|
norm_text:str = item["norm_text"]
|
||||||
|
|
||||||
|
print(i18n("前端处理后的文本(每句):"), norm_text)
|
||||||
|
if no_prompt_text :
|
||||||
|
prompt = None
|
||||||
|
else:
|
||||||
|
prompt = self.prompt_cache["prompt_semantic"].expand(len(all_phoneme_ids), -1).to(self.configs.device)
|
||||||
|
|
||||||
|
with torch.no_grad():
|
||||||
|
pred_semantic_list, idx_list = self.t2s_model.model.infer_panel(
|
||||||
|
all_phoneme_ids,
|
||||||
|
all_phoneme_lens,
|
||||||
|
prompt,
|
||||||
|
all_bert_features,
|
||||||
|
# prompt_phone_len=ph_offset,
|
||||||
|
top_k=top_k,
|
||||||
|
top_p=top_p,
|
||||||
|
temperature=temperature,
|
||||||
|
early_stop_num=self.configs.hz * self.configs.max_sec,
|
||||||
|
)
|
||||||
|
t4 = ttime()
|
||||||
|
t_34 += t4 - t3
|
||||||
|
|
||||||
|
refer_audio_spepc:torch.Tensor = self.prompt_cache["refer_spepc"]\
|
||||||
|
.to(dtype=self.precison, device=self.configs.device)
|
||||||
|
|
||||||
|
batch_audio_fragment = []
|
||||||
|
|
||||||
|
# ## vits并行推理 method 1
|
||||||
|
# pred_semantic_list = [item[-idx:] for item, idx in zip(pred_semantic_list, idx_list)]
|
||||||
|
# pred_semantic_len = torch.LongTensor([item.shape[0] for item in pred_semantic_list]).to(self.configs.device)
|
||||||
|
# pred_semantic = self.batch_sequences(pred_semantic_list, axis=0, pad_value=0).unsqueeze(0)
|
||||||
|
# max_len = 0
|
||||||
|
# for i in range(0, len(batch_phones)):
|
||||||
|
# max_len = max(max_len, batch_phones[i].shape[-1])
|
||||||
|
# batch_phones = self.batch_sequences(batch_phones, axis=0, pad_value=0, max_length=max_len)
|
||||||
|
# batch_phones = batch_phones.to(self.configs.device)
|
||||||
|
# batch_audio_fragment = (self.vits_model.batched_decode(
|
||||||
|
# pred_semantic, pred_semantic_len, batch_phones, batch_phones_len,refer_audio_spepc
|
||||||
|
# ))
|
||||||
|
|
||||||
|
# ## vits并行推理 method 2
|
||||||
|
pred_semantic_list = [item[-idx:] for item, idx in zip(pred_semantic_list, idx_list)]
|
||||||
|
upsample_rate = math.prod(self.vits_model.upsample_rates)
|
||||||
|
audio_frag_idx = [pred_semantic_list[i].shape[0]*2*upsample_rate for i in range(0, len(pred_semantic_list))]
|
||||||
|
audio_frag_end_idx = [ sum(audio_frag_idx[:i+1]) for i in range(0, len(audio_frag_idx))]
|
||||||
|
all_pred_semantic = torch.cat(pred_semantic_list).unsqueeze(0).unsqueeze(0).to(self.configs.device)
|
||||||
|
_batch_phones = torch.cat(batch_phones).unsqueeze(0).to(self.configs.device)
|
||||||
|
_batch_audio_fragment = (self.vits_model.decode(
|
||||||
|
all_pred_semantic, _batch_phones,refer_audio_spepc
|
||||||
|
).detach()[0, 0, :])
|
||||||
|
audio_frag_end_idx.insert(0, 0)
|
||||||
|
batch_audio_fragment= [_batch_audio_fragment[audio_frag_end_idx[i-1]:audio_frag_end_idx[i]] for i in range(1, len(audio_frag_end_idx))]
|
||||||
|
|
||||||
|
|
||||||
|
# ## vits串行推理
|
||||||
|
# for i, idx in enumerate(idx_list):
|
||||||
|
# phones = batch_phones[i].unsqueeze(0).to(self.configs.device)
|
||||||
|
# _pred_semantic = (pred_semantic_list[i][-idx:].unsqueeze(0).unsqueeze(0)) # .unsqueeze(0)#mq要多unsqueeze一次
|
||||||
|
# audio_fragment =(self.vits_model.decode(
|
||||||
|
# _pred_semantic, phones, refer_audio_spepc
|
||||||
|
# ).detach()[0, 0, :])
|
||||||
|
# batch_audio_fragment.append(
|
||||||
|
# audio_fragment
|
||||||
|
# ) ###试试重建不带上prompt部分
|
||||||
|
|
||||||
|
t5 = ttime()
|
||||||
|
t_45 += t5 - t4
|
||||||
|
if return_fragment:
|
||||||
|
print("%.3f\t%.3f\t%.3f\t%.3f" % (t1 - t0, t2 - t1, t4 - t3, t5 - t4))
|
||||||
|
yield self.audio_postprocess([batch_audio_fragment],
|
||||||
|
self.configs.sampling_rate,
|
||||||
|
None,
|
||||||
|
speed_factor,
|
||||||
|
False,
|
||||||
|
fragment_interval
|
||||||
|
)
|
||||||
|
else:
|
||||||
|
audio.append(batch_audio_fragment)
|
||||||
|
|
||||||
|
if self.stop_flag:
|
||||||
|
yield self.configs.sampling_rate, np.zeros(int(self.configs.sampling_rate),
|
||||||
|
dtype=np.int16)
|
||||||
|
return
|
||||||
|
|
||||||
|
if not return_fragment:
|
||||||
|
print("%.3f\t%.3f\t%.3f\t%.3f" % (t1 - t0, t2 - t1, t_34, t_45))
|
||||||
|
yield self.audio_postprocess(audio,
|
||||||
|
self.configs.sampling_rate,
|
||||||
|
batch_index_list,
|
||||||
|
speed_factor,
|
||||||
|
split_bucket,
|
||||||
|
fragment_interval
|
||||||
|
)
|
||||||
|
except Exception as e:
|
||||||
|
traceback.print_exc()
|
||||||
|
# 必须返回一个空音频, 否则会导致显存不释放。
|
||||||
|
yield self.configs.sampling_rate, np.zeros(int(self.configs.sampling_rate),
|
||||||
|
dtype=np.int16)
|
||||||
|
# 重置模型, 否则会导致显存释放不完全。
|
||||||
|
del self.t2s_model
|
||||||
|
del self.vits_model
|
||||||
|
self.t2s_model = None
|
||||||
|
self.vits_model = None
|
||||||
|
self.init_t2s_weights(self.configs.t2s_weights_path)
|
||||||
|
self.init_vits_weights(self.configs.vits_weights_path)
|
||||||
|
finally:
|
||||||
|
self.empty_cache()
|
||||||
|
|
||||||
|
def empty_cache(self):
|
||||||
|
try:
|
||||||
|
if "cuda" in str(self.configs.device):
|
||||||
|
torch.cuda.empty_cache()
|
||||||
|
elif str(self.configs.device) == "mps":
|
||||||
|
torch.mps.empty_cache()
|
||||||
|
except:
|
||||||
|
pass
|
||||||
|
|
||||||
|
def audio_postprocess(self,
|
||||||
|
audio:List[torch.Tensor],
|
||||||
|
sr:int,
|
||||||
|
batch_index_list:list=None,
|
||||||
|
speed_factor:float=1.0,
|
||||||
|
split_bucket:bool=True,
|
||||||
|
fragment_interval:float=0.3
|
||||||
|
)->tuple[int, np.ndarray]:
|
||||||
|
zero_wav = torch.zeros(
|
||||||
|
int(self.configs.sampling_rate * fragment_interval),
|
||||||
|
dtype=self.precison,
|
||||||
|
device=self.configs.device
|
||||||
|
)
|
||||||
|
|
||||||
|
for i, batch in enumerate(audio):
|
||||||
|
for j, audio_fragment in enumerate(batch):
|
||||||
|
max_audio=torch.abs(audio_fragment).max()#简单防止16bit爆音
|
||||||
|
if max_audio>1: audio_fragment/=max_audio
|
||||||
|
audio_fragment:torch.Tensor = torch.cat([audio_fragment, zero_wav], dim=0)
|
||||||
|
audio[i][j] = audio_fragment.cpu().numpy()
|
||||||
|
|
||||||
|
|
||||||
|
if split_bucket:
|
||||||
|
audio = self.recovery_order(audio, batch_index_list)
|
||||||
|
else:
|
||||||
|
# audio = [item for batch in audio for item in batch]
|
||||||
|
audio = sum(audio, [])
|
||||||
|
|
||||||
|
|
||||||
|
audio = np.concatenate(audio, 0)
|
||||||
|
audio = (audio * 32768).astype(np.int16)
|
||||||
|
|
||||||
|
try:
|
||||||
|
if speed_factor != 1.0:
|
||||||
|
audio = speed_change(audio, speed=speed_factor, sr=int(sr))
|
||||||
|
except Exception as e:
|
||||||
|
print(f"Failed to change speed of audio: \n{e}")
|
||||||
|
|
||||||
|
return sr, audio
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
def speed_change(input_audio:np.ndarray, speed:float, sr:int):
|
||||||
|
# 将 NumPy 数组转换为原始 PCM 流
|
||||||
|
raw_audio = input_audio.astype(np.int16).tobytes()
|
||||||
|
|
||||||
|
# 设置 ffmpeg 输入流
|
||||||
|
input_stream = ffmpeg.input('pipe:', format='s16le', acodec='pcm_s16le', ar=str(sr), ac=1)
|
||||||
|
|
||||||
|
# 变速处理
|
||||||
|
output_stream = input_stream.filter('atempo', speed)
|
||||||
|
|
||||||
|
# 输出流到管道
|
||||||
|
out, _ = (
|
||||||
|
output_stream.output('pipe:', format='s16le', acodec='pcm_s16le')
|
||||||
|
.run(input=raw_audio, capture_stdout=True, capture_stderr=True)
|
||||||
|
)
|
||||||
|
|
||||||
|
# 将管道输出解码为 NumPy 数组
|
||||||
|
processed_audio = np.frombuffer(out, np.int16)
|
||||||
|
|
||||||
|
return processed_audio
|
210
GPT_SoVITS/TTS_infer_pack/TextPreprocessor.py
Normal file
210
GPT_SoVITS/TTS_infer_pack/TextPreprocessor.py
Normal file
@ -0,0 +1,210 @@
|
|||||||
|
|
||||||
|
import os, sys
|
||||||
|
|
||||||
|
from tqdm import tqdm
|
||||||
|
now_dir = os.getcwd()
|
||||||
|
sys.path.append(now_dir)
|
||||||
|
|
||||||
|
import re
|
||||||
|
import torch
|
||||||
|
import LangSegment
|
||||||
|
from typing import Dict, List, Tuple
|
||||||
|
from text.cleaner import clean_text
|
||||||
|
from text import cleaned_text_to_sequence
|
||||||
|
from transformers import AutoModelForMaskedLM, AutoTokenizer
|
||||||
|
from TTS_infer_pack.text_segmentation_method import split_big_text, splits, get_method as get_seg_method
|
||||||
|
|
||||||
|
from tools.i18n.i18n import I18nAuto
|
||||||
|
|
||||||
|
i18n = I18nAuto()
|
||||||
|
|
||||||
|
def get_first(text:str) -> str:
|
||||||
|
pattern = "[" + "".join(re.escape(sep) for sep in splits) + "]"
|
||||||
|
text = re.split(pattern, text)[0].strip()
|
||||||
|
return text
|
||||||
|
|
||||||
|
def merge_short_text_in_array(texts:str, threshold:int) -> list:
|
||||||
|
if (len(texts)) < 2:
|
||||||
|
return texts
|
||||||
|
result = []
|
||||||
|
text = ""
|
||||||
|
for ele in texts:
|
||||||
|
text += ele
|
||||||
|
if len(text) >= threshold:
|
||||||
|
result.append(text)
|
||||||
|
text = ""
|
||||||
|
if (len(text) > 0):
|
||||||
|
if len(result) == 0:
|
||||||
|
result.append(text)
|
||||||
|
else:
|
||||||
|
result[len(result) - 1] += text
|
||||||
|
return result
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
class TextPreprocessor:
|
||||||
|
def __init__(self, bert_model:AutoModelForMaskedLM,
|
||||||
|
tokenizer:AutoTokenizer, device:torch.device):
|
||||||
|
self.bert_model = bert_model
|
||||||
|
self.tokenizer = tokenizer
|
||||||
|
self.device = device
|
||||||
|
|
||||||
|
def preprocess(self, text:str, lang:str, text_split_method:str)->List[Dict]:
|
||||||
|
print(i18n("############ 切分文本 ############"))
|
||||||
|
texts = self.pre_seg_text(text, lang, text_split_method)
|
||||||
|
result = []
|
||||||
|
print(i18n("############ 提取文本Bert特征 ############"))
|
||||||
|
for text in tqdm(texts):
|
||||||
|
phones, bert_features, norm_text = self.segment_and_extract_feature_for_text(text, lang)
|
||||||
|
if phones is None:
|
||||||
|
continue
|
||||||
|
res={
|
||||||
|
"phones": phones,
|
||||||
|
"bert_features": bert_features,
|
||||||
|
"norm_text": norm_text,
|
||||||
|
}
|
||||||
|
result.append(res)
|
||||||
|
return result
|
||||||
|
|
||||||
|
def pre_seg_text(self, text:str, lang:str, text_split_method:str):
|
||||||
|
text = text.strip("\n")
|
||||||
|
if (text[0] not in splits and len(get_first(text)) < 4):
|
||||||
|
text = "。" + text if lang != "en" else "." + text
|
||||||
|
print(i18n("实际输入的目标文本:"))
|
||||||
|
print(text)
|
||||||
|
|
||||||
|
seg_method = get_seg_method(text_split_method)
|
||||||
|
text = seg_method(text)
|
||||||
|
|
||||||
|
while "\n\n" in text:
|
||||||
|
text = text.replace("\n\n", "\n")
|
||||||
|
|
||||||
|
_texts = text.split("\n")
|
||||||
|
_texts = merge_short_text_in_array(_texts, 5)
|
||||||
|
texts = []
|
||||||
|
|
||||||
|
|
||||||
|
for text in _texts:
|
||||||
|
# 解决输入目标文本的空行导致报错的问题
|
||||||
|
if (len(text.strip()) == 0):
|
||||||
|
continue
|
||||||
|
if (text[-1] not in splits): text += "。" if lang != "en" else "."
|
||||||
|
|
||||||
|
# 解决句子过长导致Bert报错的问题
|
||||||
|
if (len(text) > 510):
|
||||||
|
texts.extend(split_big_text(text))
|
||||||
|
else:
|
||||||
|
texts.append(text)
|
||||||
|
|
||||||
|
print(i18n("实际输入的目标文本(切句后):"))
|
||||||
|
print(texts)
|
||||||
|
return texts
|
||||||
|
|
||||||
|
def segment_and_extract_feature_for_text(self, texts:list, language:str)->Tuple[list, torch.Tensor, str]:
|
||||||
|
textlist, langlist = self.seg_text(texts, language)
|
||||||
|
if len(textlist) == 0:
|
||||||
|
return None, None, None
|
||||||
|
|
||||||
|
phones, bert_features, norm_text = self.extract_bert_feature(textlist, langlist)
|
||||||
|
return phones, bert_features, norm_text
|
||||||
|
|
||||||
|
|
||||||
|
def seg_text(self, text:str, language:str)->Tuple[list, list]:
|
||||||
|
|
||||||
|
textlist=[]
|
||||||
|
langlist=[]
|
||||||
|
if language in ["auto", "zh", "ja"]:
|
||||||
|
LangSegment.setfilters(["zh","ja","en","ko"])
|
||||||
|
for tmp in LangSegment.getTexts(text):
|
||||||
|
if tmp["text"] == "":
|
||||||
|
continue
|
||||||
|
if tmp["lang"] == "ko":
|
||||||
|
langlist.append("zh")
|
||||||
|
elif tmp["lang"] == "en":
|
||||||
|
langlist.append("en")
|
||||||
|
else:
|
||||||
|
# 因无法区别中日文汉字,以用户输入为准
|
||||||
|
langlist.append(language if language!="auto" else tmp["lang"])
|
||||||
|
textlist.append(tmp["text"])
|
||||||
|
elif language == "en":
|
||||||
|
LangSegment.setfilters(["en"])
|
||||||
|
formattext = " ".join(tmp["text"] for tmp in LangSegment.getTexts(text))
|
||||||
|
while " " in formattext:
|
||||||
|
formattext = formattext.replace(" ", " ")
|
||||||
|
if formattext != "":
|
||||||
|
textlist.append(formattext)
|
||||||
|
langlist.append("en")
|
||||||
|
|
||||||
|
elif language in ["all_zh","all_ja"]:
|
||||||
|
|
||||||
|
formattext = text
|
||||||
|
while " " in formattext:
|
||||||
|
formattext = formattext.replace(" ", " ")
|
||||||
|
language = language.replace("all_","")
|
||||||
|
if text == "":
|
||||||
|
return [],[]
|
||||||
|
textlist.append(formattext)
|
||||||
|
langlist.append(language)
|
||||||
|
|
||||||
|
else:
|
||||||
|
raise ValueError(f"language {language} not supported")
|
||||||
|
|
||||||
|
return textlist, langlist
|
||||||
|
|
||||||
|
|
||||||
|
def extract_bert_feature(self, textlist:list, langlist:list):
|
||||||
|
phones_list = []
|
||||||
|
bert_feature_list = []
|
||||||
|
norm_text_list = []
|
||||||
|
for i in range(len(textlist)):
|
||||||
|
lang = langlist[i]
|
||||||
|
phones, word2ph, norm_text = self.clean_text_inf(textlist[i], lang)
|
||||||
|
_bert_feature = self.get_bert_inf(phones, word2ph, norm_text, lang)
|
||||||
|
# phones_list.append(phones)
|
||||||
|
phones_list.extend(phones)
|
||||||
|
norm_text_list.append(norm_text)
|
||||||
|
bert_feature_list.append(_bert_feature)
|
||||||
|
bert_feature = torch.cat(bert_feature_list, dim=1)
|
||||||
|
# phones = sum(phones_list, [])
|
||||||
|
norm_text = ''.join(norm_text_list)
|
||||||
|
return phones_list, bert_feature, norm_text
|
||||||
|
|
||||||
|
|
||||||
|
def get_bert_feature(self, text:str, word2ph:list)->torch.Tensor:
|
||||||
|
with torch.no_grad():
|
||||||
|
inputs = self.tokenizer(text, return_tensors="pt")
|
||||||
|
for i in inputs:
|
||||||
|
inputs[i] = inputs[i].to(self.device)
|
||||||
|
res = self.bert_model(**inputs, output_hidden_states=True)
|
||||||
|
res = torch.cat(res["hidden_states"][-3:-2], -1)[0].cpu()[1:-1]
|
||||||
|
assert len(word2ph) == len(text)
|
||||||
|
phone_level_feature = []
|
||||||
|
for i in range(len(word2ph)):
|
||||||
|
repeat_feature = res[i].repeat(word2ph[i], 1)
|
||||||
|
phone_level_feature.append(repeat_feature)
|
||||||
|
phone_level_feature = torch.cat(phone_level_feature, dim=0)
|
||||||
|
return phone_level_feature.T
|
||||||
|
|
||||||
|
def clean_text_inf(self, text:str, language:str):
|
||||||
|
phones, word2ph, norm_text = clean_text(text, language)
|
||||||
|
phones = cleaned_text_to_sequence(phones)
|
||||||
|
return phones, word2ph, norm_text
|
||||||
|
|
||||||
|
def get_bert_inf(self, phones:list, word2ph:list, norm_text:str, language:str):
|
||||||
|
language=language.replace("all_","")
|
||||||
|
if language == "zh":
|
||||||
|
feature = self.get_bert_feature(norm_text, word2ph).to(self.device)
|
||||||
|
else:
|
||||||
|
feature = torch.zeros(
|
||||||
|
(1024, len(phones)),
|
||||||
|
dtype=torch.float32,
|
||||||
|
).to(self.device)
|
||||||
|
|
||||||
|
return feature
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
1
GPT_SoVITS/TTS_infer_pack/__init__.py
Normal file
1
GPT_SoVITS/TTS_infer_pack/__init__.py
Normal file
@ -0,0 +1 @@
|
|||||||
|
from . import TTS, text_segmentation_method
|
152
GPT_SoVITS/TTS_infer_pack/text_segmentation_method.py
Normal file
152
GPT_SoVITS/TTS_infer_pack/text_segmentation_method.py
Normal file
@ -0,0 +1,152 @@
|
|||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
import re
|
||||||
|
from typing import Callable
|
||||||
|
from tools.i18n.i18n import I18nAuto
|
||||||
|
|
||||||
|
i18n = I18nAuto()
|
||||||
|
|
||||||
|
METHODS = dict()
|
||||||
|
|
||||||
|
def get_method(name:str)->Callable:
|
||||||
|
method = METHODS.get(name, None)
|
||||||
|
if method is None:
|
||||||
|
raise ValueError(f"Method {name} not found")
|
||||||
|
return method
|
||||||
|
|
||||||
|
def register_method(name):
|
||||||
|
def decorator(func):
|
||||||
|
METHODS[name] = func
|
||||||
|
return func
|
||||||
|
return decorator
|
||||||
|
|
||||||
|
splits = {",", "。", "?", "!", ",", ".", "?", "!", "~", ":", ":", "—", "…", }
|
||||||
|
|
||||||
|
def split_big_text(text, max_len=510):
|
||||||
|
# 定义全角和半角标点符号
|
||||||
|
punctuation = "".join(splits)
|
||||||
|
|
||||||
|
# 切割文本
|
||||||
|
segments = re.split('([' + punctuation + '])', text)
|
||||||
|
|
||||||
|
# 初始化结果列表和当前片段
|
||||||
|
result = []
|
||||||
|
current_segment = ''
|
||||||
|
|
||||||
|
for segment in segments:
|
||||||
|
# 如果当前片段加上新的片段长度超过max_len,就将当前片段加入结果列表,并重置当前片段
|
||||||
|
if len(current_segment + segment) > max_len:
|
||||||
|
result.append(current_segment)
|
||||||
|
current_segment = segment
|
||||||
|
else:
|
||||||
|
current_segment += segment
|
||||||
|
|
||||||
|
# 将最后一个片段加入结果列表
|
||||||
|
if current_segment:
|
||||||
|
result.append(current_segment)
|
||||||
|
|
||||||
|
return result
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
def split(todo_text):
|
||||||
|
todo_text = todo_text.replace("……", "。").replace("——", ",")
|
||||||
|
if todo_text[-1] not in splits:
|
||||||
|
todo_text += "。"
|
||||||
|
i_split_head = i_split_tail = 0
|
||||||
|
len_text = len(todo_text)
|
||||||
|
todo_texts = []
|
||||||
|
while 1:
|
||||||
|
if i_split_head >= len_text:
|
||||||
|
break # 结尾一定有标点,所以直接跳出即可,最后一段在上次已加入
|
||||||
|
if todo_text[i_split_head] in splits:
|
||||||
|
i_split_head += 1
|
||||||
|
todo_texts.append(todo_text[i_split_tail:i_split_head])
|
||||||
|
i_split_tail = i_split_head
|
||||||
|
else:
|
||||||
|
i_split_head += 1
|
||||||
|
return todo_texts
|
||||||
|
|
||||||
|
|
||||||
|
# 不切
|
||||||
|
@register_method("cut0")
|
||||||
|
def cut0(inp):
|
||||||
|
return inp
|
||||||
|
|
||||||
|
|
||||||
|
# 凑四句一切
|
||||||
|
@register_method("cut1")
|
||||||
|
def cut1(inp):
|
||||||
|
inp = inp.strip("\n")
|
||||||
|
inps = split(inp)
|
||||||
|
split_idx = list(range(0, len(inps), 4))
|
||||||
|
split_idx[-1] = None
|
||||||
|
if len(split_idx) > 1:
|
||||||
|
opts = []
|
||||||
|
for idx in range(len(split_idx) - 1):
|
||||||
|
opts.append("".join(inps[split_idx[idx]: split_idx[idx + 1]]))
|
||||||
|
else:
|
||||||
|
opts = [inp]
|
||||||
|
return "\n".join(opts)
|
||||||
|
|
||||||
|
# 凑50字一切
|
||||||
|
@register_method("cut2")
|
||||||
|
def cut2(inp):
|
||||||
|
inp = inp.strip("\n")
|
||||||
|
inps = split(inp)
|
||||||
|
if len(inps) < 2:
|
||||||
|
return inp
|
||||||
|
opts = []
|
||||||
|
summ = 0
|
||||||
|
tmp_str = ""
|
||||||
|
for i in range(len(inps)):
|
||||||
|
summ += len(inps[i])
|
||||||
|
tmp_str += inps[i]
|
||||||
|
if summ > 50:
|
||||||
|
summ = 0
|
||||||
|
opts.append(tmp_str)
|
||||||
|
tmp_str = ""
|
||||||
|
if tmp_str != "":
|
||||||
|
opts.append(tmp_str)
|
||||||
|
# print(opts)
|
||||||
|
if len(opts) > 1 and len(opts[-1]) < 50: ##如果最后一个太短了,和前一个合一起
|
||||||
|
opts[-2] = opts[-2] + opts[-1]
|
||||||
|
opts = opts[:-1]
|
||||||
|
return "\n".join(opts)
|
||||||
|
|
||||||
|
# 按中文句号。切
|
||||||
|
@register_method("cut3")
|
||||||
|
def cut3(inp):
|
||||||
|
inp = inp.strip("\n")
|
||||||
|
return "\n".join(["%s" % item for item in inp.strip("。").split("。")])
|
||||||
|
|
||||||
|
#按英文句号.切
|
||||||
|
@register_method("cut4")
|
||||||
|
def cut4(inp):
|
||||||
|
inp = inp.strip("\n")
|
||||||
|
return "\n".join(["%s" % item for item in inp.strip(".").split(".")])
|
||||||
|
|
||||||
|
# 按标点符号切
|
||||||
|
# contributed by https://github.com/AI-Hobbyist/GPT-SoVITS/blob/main/GPT_SoVITS/inference_webui.py
|
||||||
|
@register_method("cut5")
|
||||||
|
def cut5(inp):
|
||||||
|
# if not re.search(r'[^\w\s]', inp[-1]):
|
||||||
|
# inp += '。'
|
||||||
|
inp = inp.strip("\n")
|
||||||
|
punds = r'[,.;?!、,。?!;:…]'
|
||||||
|
items = re.split(f'({punds})', inp)
|
||||||
|
mergeitems = ["".join(group) for group in zip(items[::2], items[1::2])]
|
||||||
|
# 在句子不存在符号或句尾无符号的时候保证文本完整
|
||||||
|
if len(items)%2 == 1:
|
||||||
|
mergeitems.append(items[-1])
|
||||||
|
opt = "\n".join(mergeitems)
|
||||||
|
return opt
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == '__main__':
|
||||||
|
method = get_method("cut5")
|
||||||
|
print(method("你好,我是小明。你好,我是小红。你好,我是小刚。你好,我是小张。"))
|
||||||
|
|
16
GPT_SoVITS/configs/tts_infer.yaml
Normal file
16
GPT_SoVITS/configs/tts_infer.yaml
Normal file
@ -0,0 +1,16 @@
|
|||||||
|
custom:
|
||||||
|
bert_base_path: GPT_SoVITS/pretrained_models/chinese-roberta-wwm-ext-large
|
||||||
|
cnhuhbert_base_path: GPT_SoVITS/pretrained_models/chinese-hubert-base
|
||||||
|
device: cuda
|
||||||
|
flash_attn_enabled: true
|
||||||
|
is_half: true
|
||||||
|
t2s_weights_path: GPT_SoVITS/pretrained_models/s1bert25hz-2kh-longer-epoch=68e-step=50232.ckpt
|
||||||
|
vits_weights_path: GPT_SoVITS/pretrained_models/s2G488k.pth
|
||||||
|
default:
|
||||||
|
bert_base_path: GPT_SoVITS/pretrained_models/chinese-roberta-wwm-ext-large
|
||||||
|
cnhuhbert_base_path: GPT_SoVITS/pretrained_models/chinese-hubert-base
|
||||||
|
device: cpu
|
||||||
|
flash_attn_enabled: true
|
||||||
|
is_half: false
|
||||||
|
t2s_weights_path: GPT_SoVITS/pretrained_models/s1bert25hz-2kh-longer-epoch=68e-step=50232.ckpt
|
||||||
|
vits_weights_path: GPT_SoVITS/pretrained_models/s2G488k.pth
|
@ -20,13 +20,16 @@ cnhubert_base_path = None
|
|||||||
|
|
||||||
|
|
||||||
class CNHubert(nn.Module):
|
class CNHubert(nn.Module):
|
||||||
def __init__(self):
|
def __init__(self, base_path:str=None):
|
||||||
super().__init__()
|
super().__init__()
|
||||||
self.model = HubertModel.from_pretrained(cnhubert_base_path)
|
if base_path is None:
|
||||||
|
base_path = cnhubert_base_path
|
||||||
|
self.model = HubertModel.from_pretrained(base_path)
|
||||||
self.feature_extractor = Wav2Vec2FeatureExtractor.from_pretrained(
|
self.feature_extractor = Wav2Vec2FeatureExtractor.from_pretrained(
|
||||||
cnhubert_base_path
|
base_path
|
||||||
)
|
)
|
||||||
|
|
||||||
|
|
||||||
def forward(self, x):
|
def forward(self, x):
|
||||||
input_values = self.feature_extractor(
|
input_values = self.feature_extractor(
|
||||||
x, return_tensors="pt", sampling_rate=16000
|
x, return_tensors="pt", sampling_rate=16000
|
||||||
|
@ -7,7 +7,7 @@ import soundfile as sf
|
|||||||
from tools.i18n.i18n import I18nAuto
|
from tools.i18n.i18n import I18nAuto
|
||||||
i18n = I18nAuto()
|
i18n = I18nAuto()
|
||||||
|
|
||||||
from GPT_SoVITS.inference_webui import change_gpt_weights, change_sovits_weights, get_tts_wav
|
from GPT_SoVITS.inference_webui_old import change_gpt_weights, change_sovits_weights, get_tts_wav
|
||||||
|
|
||||||
|
|
||||||
class GPTSoVITSGUI(QMainWindow):
|
class GPTSoVITSGUI(QMainWindow):
|
||||||
|
@ -6,8 +6,11 @@
|
|||||||
全部按英文识别
|
全部按英文识别
|
||||||
全部按日文识别
|
全部按日文识别
|
||||||
'''
|
'''
|
||||||
|
import os, sys
|
||||||
|
now_dir = os.getcwd()
|
||||||
|
sys.path.append(now_dir)
|
||||||
|
|
||||||
import os, re, logging
|
import os, re, logging
|
||||||
import LangSegment
|
|
||||||
logging.getLogger("markdown_it").setLevel(logging.ERROR)
|
logging.getLogger("markdown_it").setLevel(logging.ERROR)
|
||||||
logging.getLogger("urllib3").setLevel(logging.ERROR)
|
logging.getLogger("urllib3").setLevel(logging.ERROR)
|
||||||
logging.getLogger("httpcore").setLevel(logging.ERROR)
|
logging.getLogger("httpcore").setLevel(logging.ERROR)
|
||||||
@ -18,31 +21,7 @@ logging.getLogger("torchaudio._extension").setLevel(logging.ERROR)
|
|||||||
import pdb
|
import pdb
|
||||||
import torch
|
import torch
|
||||||
|
|
||||||
if os.path.exists("./gweight.txt"):
|
|
||||||
with open("./gweight.txt", 'r', encoding="utf-8") as file:
|
|
||||||
gweight_data = file.read()
|
|
||||||
gpt_path = os.environ.get(
|
|
||||||
"gpt_path", gweight_data)
|
|
||||||
else:
|
|
||||||
gpt_path = os.environ.get(
|
|
||||||
"gpt_path", "GPT_SoVITS/pretrained_models/s1bert25hz-2kh-longer-epoch=68e-step=50232.ckpt")
|
|
||||||
|
|
||||||
if os.path.exists("./sweight.txt"):
|
|
||||||
with open("./sweight.txt", 'r', encoding="utf-8") as file:
|
|
||||||
sweight_data = file.read()
|
|
||||||
sovits_path = os.environ.get("sovits_path", sweight_data)
|
|
||||||
else:
|
|
||||||
sovits_path = os.environ.get("sovits_path", "GPT_SoVITS/pretrained_models/s2G488k.pth")
|
|
||||||
# gpt_path = os.environ.get(
|
|
||||||
# "gpt_path", "pretrained_models/s1bert25hz-2kh-longer-epoch=68e-step=50232.ckpt"
|
|
||||||
# )
|
|
||||||
# sovits_path = os.environ.get("sovits_path", "pretrained_models/s2G488k.pth")
|
|
||||||
cnhubert_base_path = os.environ.get(
|
|
||||||
"cnhubert_base_path", "GPT_SoVITS/pretrained_models/chinese-hubert-base"
|
|
||||||
)
|
|
||||||
bert_path = os.environ.get(
|
|
||||||
"bert_path", "GPT_SoVITS/pretrained_models/chinese-roberta-wwm-ext-large"
|
|
||||||
)
|
|
||||||
infer_ttswebui = os.environ.get("infer_ttswebui", 9872)
|
infer_ttswebui = os.environ.get("infer_ttswebui", 9872)
|
||||||
infer_ttswebui = int(infer_ttswebui)
|
infer_ttswebui = int(infer_ttswebui)
|
||||||
is_share = os.environ.get("is_share", "False")
|
is_share = os.environ.get("is_share", "False")
|
||||||
@ -50,21 +29,14 @@ is_share = eval(is_share)
|
|||||||
if "_CUDA_VISIBLE_DEVICES" in os.environ:
|
if "_CUDA_VISIBLE_DEVICES" in os.environ:
|
||||||
os.environ["CUDA_VISIBLE_DEVICES"] = os.environ["_CUDA_VISIBLE_DEVICES"]
|
os.environ["CUDA_VISIBLE_DEVICES"] = os.environ["_CUDA_VISIBLE_DEVICES"]
|
||||||
is_half = eval(os.environ.get("is_half", "True")) and torch.cuda.is_available()
|
is_half = eval(os.environ.get("is_half", "True")) and torch.cuda.is_available()
|
||||||
|
gpt_path = os.environ.get("gpt_path", None)
|
||||||
|
sovits_path = os.environ.get("sovits_path", None)
|
||||||
|
cnhubert_base_path = os.environ.get("cnhubert_base_path", None)
|
||||||
|
bert_path = os.environ.get("bert_path", None)
|
||||||
|
|
||||||
import gradio as gr
|
import gradio as gr
|
||||||
from transformers import AutoModelForMaskedLM, AutoTokenizer
|
from TTS_infer_pack.TTS import TTS, TTS_Config
|
||||||
import numpy as np
|
from TTS_infer_pack.text_segmentation_method import get_method
|
||||||
import librosa
|
|
||||||
from feature_extractor import cnhubert
|
|
||||||
|
|
||||||
cnhubert.cnhubert_base_path = cnhubert_base_path
|
|
||||||
|
|
||||||
from module.models import SynthesizerTrn
|
|
||||||
from AR.models.t2s_lightning_module import Text2SemanticLightningModule
|
|
||||||
from text import cleaned_text_to_sequence
|
|
||||||
from text.cleaner import clean_text
|
|
||||||
from time import time as ttime
|
|
||||||
from module.mel_processing import spectrogram_torch
|
|
||||||
from my_utils import load_audio
|
|
||||||
from tools.i18n.i18n import I18nAuto
|
from tools.i18n.i18n import I18nAuto
|
||||||
|
|
||||||
i18n = I18nAuto()
|
i18n = I18nAuto()
|
||||||
@ -73,131 +45,11 @@ i18n = I18nAuto()
|
|||||||
|
|
||||||
if torch.cuda.is_available():
|
if torch.cuda.is_available():
|
||||||
device = "cuda"
|
device = "cuda"
|
||||||
|
# elif torch.backends.mps.is_available():
|
||||||
|
# device = "mps"
|
||||||
else:
|
else:
|
||||||
device = "cpu"
|
device = "cpu"
|
||||||
|
|
||||||
tokenizer = AutoTokenizer.from_pretrained(bert_path)
|
|
||||||
bert_model = AutoModelForMaskedLM.from_pretrained(bert_path)
|
|
||||||
if is_half == True:
|
|
||||||
bert_model = bert_model.half().to(device)
|
|
||||||
else:
|
|
||||||
bert_model = bert_model.to(device)
|
|
||||||
|
|
||||||
|
|
||||||
def get_bert_feature(text, word2ph):
|
|
||||||
with torch.no_grad():
|
|
||||||
inputs = tokenizer(text, return_tensors="pt")
|
|
||||||
for i in inputs:
|
|
||||||
inputs[i] = inputs[i].to(device)
|
|
||||||
res = bert_model(**inputs, output_hidden_states=True)
|
|
||||||
res = torch.cat(res["hidden_states"][-3:-2], -1)[0].cpu()[1:-1]
|
|
||||||
assert len(word2ph) == len(text)
|
|
||||||
phone_level_feature = []
|
|
||||||
for i in range(len(word2ph)):
|
|
||||||
repeat_feature = res[i].repeat(word2ph[i], 1)
|
|
||||||
phone_level_feature.append(repeat_feature)
|
|
||||||
phone_level_feature = torch.cat(phone_level_feature, dim=0)
|
|
||||||
return phone_level_feature.T
|
|
||||||
|
|
||||||
|
|
||||||
class DictToAttrRecursive(dict):
|
|
||||||
def __init__(self, input_dict):
|
|
||||||
super().__init__(input_dict)
|
|
||||||
for key, value in input_dict.items():
|
|
||||||
if isinstance(value, dict):
|
|
||||||
value = DictToAttrRecursive(value)
|
|
||||||
self[key] = value
|
|
||||||
setattr(self, key, value)
|
|
||||||
|
|
||||||
def __getattr__(self, item):
|
|
||||||
try:
|
|
||||||
return self[item]
|
|
||||||
except KeyError:
|
|
||||||
raise AttributeError(f"Attribute {item} not found")
|
|
||||||
|
|
||||||
def __setattr__(self, key, value):
|
|
||||||
if isinstance(value, dict):
|
|
||||||
value = DictToAttrRecursive(value)
|
|
||||||
super(DictToAttrRecursive, self).__setitem__(key, value)
|
|
||||||
super().__setattr__(key, value)
|
|
||||||
|
|
||||||
def __delattr__(self, item):
|
|
||||||
try:
|
|
||||||
del self[item]
|
|
||||||
except KeyError:
|
|
||||||
raise AttributeError(f"Attribute {item} not found")
|
|
||||||
|
|
||||||
|
|
||||||
ssl_model = cnhubert.get_model()
|
|
||||||
if is_half == True:
|
|
||||||
ssl_model = ssl_model.half().to(device)
|
|
||||||
else:
|
|
||||||
ssl_model = ssl_model.to(device)
|
|
||||||
|
|
||||||
|
|
||||||
def change_sovits_weights(sovits_path):
|
|
||||||
global vq_model, hps
|
|
||||||
dict_s2 = torch.load(sovits_path, map_location="cpu")
|
|
||||||
hps = dict_s2["config"]
|
|
||||||
hps = DictToAttrRecursive(hps)
|
|
||||||
hps.model.semantic_frame_rate = "25hz"
|
|
||||||
vq_model = SynthesizerTrn(
|
|
||||||
hps.data.filter_length // 2 + 1,
|
|
||||||
hps.train.segment_size // hps.data.hop_length,
|
|
||||||
n_speakers=hps.data.n_speakers,
|
|
||||||
**hps.model
|
|
||||||
)
|
|
||||||
if ("pretrained" not in sovits_path):
|
|
||||||
del vq_model.enc_q
|
|
||||||
if is_half == True:
|
|
||||||
vq_model = vq_model.half().to(device)
|
|
||||||
else:
|
|
||||||
vq_model = vq_model.to(device)
|
|
||||||
vq_model.eval()
|
|
||||||
print(vq_model.load_state_dict(dict_s2["weight"], strict=False))
|
|
||||||
with open("./sweight.txt", "w", encoding="utf-8") as f:
|
|
||||||
f.write(sovits_path)
|
|
||||||
|
|
||||||
|
|
||||||
change_sovits_weights(sovits_path)
|
|
||||||
|
|
||||||
|
|
||||||
def change_gpt_weights(gpt_path):
|
|
||||||
global hz, max_sec, t2s_model, config
|
|
||||||
hz = 50
|
|
||||||
dict_s1 = torch.load(gpt_path, map_location="cpu")
|
|
||||||
config = dict_s1["config"]
|
|
||||||
max_sec = config["data"]["max_sec"]
|
|
||||||
t2s_model = Text2SemanticLightningModule(config, "****", is_train=False)
|
|
||||||
t2s_model.load_state_dict(dict_s1["weight"])
|
|
||||||
if is_half == True:
|
|
||||||
t2s_model = t2s_model.half()
|
|
||||||
t2s_model = t2s_model.to(device)
|
|
||||||
t2s_model.eval()
|
|
||||||
total = sum([param.nelement() for param in t2s_model.parameters()])
|
|
||||||
print("Number of parameter: %.2fM" % (total / 1e6))
|
|
||||||
with open("./gweight.txt", "w", encoding="utf-8") as f: f.write(gpt_path)
|
|
||||||
|
|
||||||
|
|
||||||
change_gpt_weights(gpt_path)
|
|
||||||
|
|
||||||
|
|
||||||
def get_spepc(hps, filename):
|
|
||||||
audio = load_audio(filename, int(hps.data.sampling_rate))
|
|
||||||
audio = torch.FloatTensor(audio)
|
|
||||||
audio_norm = audio
|
|
||||||
audio_norm = audio_norm.unsqueeze(0)
|
|
||||||
spec = spectrogram_torch(
|
|
||||||
audio_norm,
|
|
||||||
hps.data.filter_length,
|
|
||||||
hps.data.sampling_rate,
|
|
||||||
hps.data.hop_length,
|
|
||||||
hps.data.win_length,
|
|
||||||
center=False,
|
|
||||||
)
|
|
||||||
return spec
|
|
||||||
|
|
||||||
|
|
||||||
dict_language = {
|
dict_language = {
|
||||||
i18n("中文"): "all_zh",#全部按中文识别
|
i18n("中文"): "all_zh",#全部按中文识别
|
||||||
i18n("英文"): "en",#全部按英文识别#######不变
|
i18n("英文"): "en",#全部按英文识别#######不变
|
||||||
@ -207,314 +59,62 @@ dict_language = {
|
|||||||
i18n("多语种混合"): "auto",#多语种启动切分识别语种
|
i18n("多语种混合"): "auto",#多语种启动切分识别语种
|
||||||
}
|
}
|
||||||
|
|
||||||
|
cut_method = {
|
||||||
|
i18n("不切"):"cut0",
|
||||||
|
i18n("凑四句一切"): "cut1",
|
||||||
|
i18n("凑50字一切"): "cut2",
|
||||||
|
i18n("按中文句号。切"): "cut3",
|
||||||
|
i18n("按英文句号.切"): "cut4",
|
||||||
|
i18n("按标点符号切"): "cut5",
|
||||||
|
}
|
||||||
|
|
||||||
def clean_text_inf(text, language):
|
tts_config = TTS_Config("GPT_SoVITS/configs/tts_infer.yaml")
|
||||||
phones, word2ph, norm_text = clean_text(text, language)
|
tts_config.device = device
|
||||||
phones = cleaned_text_to_sequence(phones)
|
tts_config.is_half = is_half
|
||||||
return phones, word2ph, norm_text
|
if gpt_path is not None:
|
||||||
|
tts_config.t2s_weights_path = gpt_path
|
||||||
dtype=torch.float16 if is_half == True else torch.float32
|
if sovits_path is not None:
|
||||||
def get_bert_inf(phones, word2ph, norm_text, language):
|
tts_config.vits_weights_path = sovits_path
|
||||||
language=language.replace("all_","")
|
if cnhubert_base_path is not None:
|
||||||
if language == "zh":
|
tts_config.cnhuhbert_base_path = cnhubert_base_path
|
||||||
bert = get_bert_feature(norm_text, word2ph).to(device)#.to(dtype)
|
if bert_path is not None:
|
||||||
else:
|
tts_config.bert_base_path = bert_path
|
||||||
bert = torch.zeros(
|
|
||||||
(1024, len(phones)),
|
|
||||||
dtype=torch.float16 if is_half == True else torch.float32,
|
|
||||||
).to(device)
|
|
||||||
|
|
||||||
return bert
|
|
||||||
|
|
||||||
|
|
||||||
splits = {",", "。", "?", "!", ",", ".", "?", "!", "~", ":", ":", "—", "…", }
|
|
||||||
|
|
||||||
|
|
||||||
def get_first(text):
|
|
||||||
pattern = "[" + "".join(re.escape(sep) for sep in splits) + "]"
|
|
||||||
text = re.split(pattern, text)[0].strip()
|
|
||||||
return text
|
|
||||||
|
|
||||||
|
|
||||||
def get_phones_and_bert(text,language):
|
|
||||||
if language in {"en","all_zh","all_ja"}:
|
|
||||||
language = language.replace("all_","")
|
|
||||||
if language == "en":
|
|
||||||
LangSegment.setfilters(["en"])
|
|
||||||
formattext = " ".join(tmp["text"] for tmp in LangSegment.getTexts(text))
|
|
||||||
else:
|
|
||||||
# 因无法区别中日文汉字,以用户输入为准
|
|
||||||
formattext = text
|
|
||||||
while " " in formattext:
|
|
||||||
formattext = formattext.replace(" ", " ")
|
|
||||||
phones, word2ph, norm_text = clean_text_inf(formattext, language)
|
|
||||||
if language == "zh":
|
|
||||||
bert = get_bert_feature(norm_text, word2ph).to(device)
|
|
||||||
else:
|
|
||||||
bert = torch.zeros(
|
|
||||||
(1024, len(phones)),
|
|
||||||
dtype=torch.float16 if is_half == True else torch.float32,
|
|
||||||
).to(device)
|
|
||||||
elif language in {"zh", "ja","auto"}:
|
|
||||||
textlist=[]
|
|
||||||
langlist=[]
|
|
||||||
LangSegment.setfilters(["zh","ja","en","ko"])
|
|
||||||
if language == "auto":
|
|
||||||
for tmp in LangSegment.getTexts(text):
|
|
||||||
if tmp["lang"] == "ko":
|
|
||||||
langlist.append("zh")
|
|
||||||
textlist.append(tmp["text"])
|
|
||||||
else:
|
|
||||||
langlist.append(tmp["lang"])
|
|
||||||
textlist.append(tmp["text"])
|
|
||||||
else:
|
|
||||||
for tmp in LangSegment.getTexts(text):
|
|
||||||
if tmp["lang"] == "en":
|
|
||||||
langlist.append(tmp["lang"])
|
|
||||||
else:
|
|
||||||
# 因无法区别中日文汉字,以用户输入为准
|
|
||||||
langlist.append(language)
|
|
||||||
textlist.append(tmp["text"])
|
|
||||||
print(textlist)
|
|
||||||
print(langlist)
|
|
||||||
phones_list = []
|
|
||||||
bert_list = []
|
|
||||||
norm_text_list = []
|
|
||||||
for i in range(len(textlist)):
|
|
||||||
lang = langlist[i]
|
|
||||||
phones, word2ph, norm_text = clean_text_inf(textlist[i], lang)
|
|
||||||
bert = get_bert_inf(phones, word2ph, norm_text, lang)
|
|
||||||
phones_list.append(phones)
|
|
||||||
norm_text_list.append(norm_text)
|
|
||||||
bert_list.append(bert)
|
|
||||||
bert = torch.cat(bert_list, dim=1)
|
|
||||||
phones = sum(phones_list, [])
|
|
||||||
norm_text = ''.join(norm_text_list)
|
|
||||||
|
|
||||||
return phones,bert.to(dtype),norm_text
|
|
||||||
|
|
||||||
|
|
||||||
def merge_short_text_in_array(texts, threshold):
|
|
||||||
if (len(texts)) < 2:
|
|
||||||
return texts
|
|
||||||
result = []
|
|
||||||
text = ""
|
|
||||||
for ele in texts:
|
|
||||||
text += ele
|
|
||||||
if len(text) >= threshold:
|
|
||||||
result.append(text)
|
|
||||||
text = ""
|
|
||||||
if (len(text) > 0):
|
|
||||||
if len(result) == 0:
|
|
||||||
result.append(text)
|
|
||||||
else:
|
|
||||||
result[len(result) - 1] += text
|
|
||||||
return result
|
|
||||||
|
|
||||||
def get_tts_wav(ref_wav_path, prompt_text, prompt_language, text, text_language, how_to_cut=i18n("不切"), top_k=20, top_p=0.6, temperature=0.6, ref_free = False):
|
|
||||||
if prompt_text is None or len(prompt_text) == 0:
|
|
||||||
ref_free = True
|
|
||||||
t0 = ttime()
|
|
||||||
prompt_language = dict_language[prompt_language]
|
|
||||||
text_language = dict_language[text_language]
|
|
||||||
if not ref_free:
|
|
||||||
prompt_text = prompt_text.strip("\n")
|
|
||||||
if (prompt_text[-1] not in splits): prompt_text += "。" if prompt_language != "en" else "."
|
|
||||||
print(i18n("实际输入的参考文本:"), prompt_text)
|
|
||||||
text = text.strip("\n")
|
|
||||||
if (text[0] not in splits and len(get_first(text)) < 4): text = "。" + text if text_language != "en" else "." + text
|
|
||||||
|
|
||||||
print(i18n("实际输入的目标文本:"), text)
|
print(tts_config)
|
||||||
zero_wav = np.zeros(
|
tts_pipline = TTS(tts_config)
|
||||||
int(hps.data.sampling_rate * 0.3),
|
gpt_path = tts_config.t2s_weights_path
|
||||||
dtype=np.float16 if is_half == True else np.float32,
|
sovits_path = tts_config.vits_weights_path
|
||||||
)
|
|
||||||
with torch.no_grad():
|
|
||||||
wav16k, sr = librosa.load(ref_wav_path, sr=16000)
|
|
||||||
if (wav16k.shape[0] > 160000 or wav16k.shape[0] < 48000):
|
|
||||||
raise OSError(i18n("参考音频在3~10秒范围外,请更换!"))
|
|
||||||
wav16k = torch.from_numpy(wav16k)
|
|
||||||
zero_wav_torch = torch.from_numpy(zero_wav)
|
|
||||||
if is_half == True:
|
|
||||||
wav16k = wav16k.half().to(device)
|
|
||||||
zero_wav_torch = zero_wav_torch.half().to(device)
|
|
||||||
else:
|
|
||||||
wav16k = wav16k.to(device)
|
|
||||||
zero_wav_torch = zero_wav_torch.to(device)
|
|
||||||
wav16k = torch.cat([wav16k, zero_wav_torch])
|
|
||||||
ssl_content = ssl_model.model(wav16k.unsqueeze(0))[
|
|
||||||
"last_hidden_state"
|
|
||||||
].transpose(
|
|
||||||
1, 2
|
|
||||||
) # .float()
|
|
||||||
codes = vq_model.extract_latent(ssl_content)
|
|
||||||
|
|
||||||
prompt_semantic = codes[0, 0]
|
|
||||||
t1 = ttime()
|
|
||||||
|
|
||||||
if (how_to_cut == i18n("凑四句一切")):
|
|
||||||
text = cut1(text)
|
|
||||||
elif (how_to_cut == i18n("凑50字一切")):
|
|
||||||
text = cut2(text)
|
|
||||||
elif (how_to_cut == i18n("按中文句号。切")):
|
|
||||||
text = cut3(text)
|
|
||||||
elif (how_to_cut == i18n("按英文句号.切")):
|
|
||||||
text = cut4(text)
|
|
||||||
elif (how_to_cut == i18n("按标点符号切")):
|
|
||||||
text = cut5(text)
|
|
||||||
while "\n\n" in text:
|
|
||||||
text = text.replace("\n\n", "\n")
|
|
||||||
print(i18n("实际输入的目标文本(切句后):"), text)
|
|
||||||
texts = text.split("\n")
|
|
||||||
texts = merge_short_text_in_array(texts, 5)
|
|
||||||
audio_opt = []
|
|
||||||
if not ref_free:
|
|
||||||
phones1,bert1,norm_text1=get_phones_and_bert(prompt_text, prompt_language)
|
|
||||||
|
|
||||||
for text in texts:
|
|
||||||
# 解决输入目标文本的空行导致报错的问题
|
|
||||||
if (len(text.strip()) == 0):
|
|
||||||
continue
|
|
||||||
if (text[-1] not in splits): text += "。" if text_language != "en" else "."
|
|
||||||
print(i18n("实际输入的目标文本(每句):"), text)
|
|
||||||
phones2,bert2,norm_text2=get_phones_and_bert(text, text_language)
|
|
||||||
print(i18n("前端处理后的文本(每句):"), norm_text2)
|
|
||||||
if not ref_free:
|
|
||||||
bert = torch.cat([bert1, bert2], 1)
|
|
||||||
all_phoneme_ids = torch.LongTensor(phones1+phones2).to(device).unsqueeze(0)
|
|
||||||
else:
|
|
||||||
bert = bert2
|
|
||||||
all_phoneme_ids = torch.LongTensor(phones2).to(device).unsqueeze(0)
|
|
||||||
|
|
||||||
bert = bert.to(device).unsqueeze(0)
|
|
||||||
all_phoneme_len = torch.tensor([all_phoneme_ids.shape[-1]]).to(device)
|
|
||||||
prompt = prompt_semantic.unsqueeze(0).to(device)
|
|
||||||
t2 = ttime()
|
|
||||||
with torch.no_grad():
|
|
||||||
# pred_semantic = t2s_model.model.infer(
|
|
||||||
pred_semantic, idx = t2s_model.model.infer_panel(
|
|
||||||
all_phoneme_ids,
|
|
||||||
all_phoneme_len,
|
|
||||||
None if ref_free else prompt,
|
|
||||||
bert,
|
|
||||||
# prompt_phone_len=ph_offset,
|
|
||||||
top_k=top_k,
|
|
||||||
top_p=top_p,
|
|
||||||
temperature=temperature,
|
|
||||||
early_stop_num=hz * max_sec,
|
|
||||||
)
|
|
||||||
t3 = ttime()
|
|
||||||
# print(pred_semantic.shape,idx)
|
|
||||||
pred_semantic = pred_semantic[:, -idx:].unsqueeze(
|
|
||||||
0
|
|
||||||
) # .unsqueeze(0)#mq要多unsqueeze一次
|
|
||||||
refer = get_spepc(hps, ref_wav_path) # .to(device)
|
|
||||||
if is_half == True:
|
|
||||||
refer = refer.half().to(device)
|
|
||||||
else:
|
|
||||||
refer = refer.to(device)
|
|
||||||
# audio = vq_model.decode(pred_semantic, all_phoneme_ids, refer).detach().cpu().numpy()[0, 0]
|
|
||||||
audio = (
|
|
||||||
vq_model.decode(
|
|
||||||
pred_semantic, torch.LongTensor(phones2).to(device).unsqueeze(0), refer
|
|
||||||
)
|
|
||||||
.detach()
|
|
||||||
.cpu()
|
|
||||||
.numpy()[0, 0]
|
|
||||||
) ###试试重建不带上prompt部分
|
|
||||||
max_audio=np.abs(audio).max()#简单防止16bit爆音
|
|
||||||
if max_audio>1:audio/=max_audio
|
|
||||||
audio_opt.append(audio)
|
|
||||||
audio_opt.append(zero_wav)
|
|
||||||
t4 = ttime()
|
|
||||||
print("%.3f\t%.3f\t%.3f\t%.3f" % (t1 - t0, t2 - t1, t3 - t2, t4 - t3))
|
|
||||||
yield hps.data.sampling_rate, (np.concatenate(audio_opt, 0) * 32768).astype(
|
|
||||||
np.int16
|
|
||||||
)
|
|
||||||
|
|
||||||
|
|
||||||
def split(todo_text):
|
|
||||||
todo_text = todo_text.replace("……", "。").replace("——", ",")
|
|
||||||
if todo_text[-1] not in splits:
|
|
||||||
todo_text += "。"
|
|
||||||
i_split_head = i_split_tail = 0
|
|
||||||
len_text = len(todo_text)
|
|
||||||
todo_texts = []
|
|
||||||
while 1:
|
|
||||||
if i_split_head >= len_text:
|
|
||||||
break # 结尾一定有标点,所以直接跳出即可,最后一段在上次已加入
|
|
||||||
if todo_text[i_split_head] in splits:
|
|
||||||
i_split_head += 1
|
|
||||||
todo_texts.append(todo_text[i_split_tail:i_split_head])
|
|
||||||
i_split_tail = i_split_head
|
|
||||||
else:
|
|
||||||
i_split_head += 1
|
|
||||||
return todo_texts
|
|
||||||
|
|
||||||
|
|
||||||
def cut1(inp):
|
|
||||||
inp = inp.strip("\n")
|
|
||||||
inps = split(inp)
|
|
||||||
split_idx = list(range(0, len(inps), 4))
|
|
||||||
split_idx[-1] = None
|
|
||||||
if len(split_idx) > 1:
|
|
||||||
opts = []
|
|
||||||
for idx in range(len(split_idx) - 1):
|
|
||||||
opts.append("".join(inps[split_idx[idx]: split_idx[idx + 1]]))
|
|
||||||
else:
|
|
||||||
opts = [inp]
|
|
||||||
return "\n".join(opts)
|
|
||||||
|
|
||||||
|
|
||||||
def cut2(inp):
|
|
||||||
inp = inp.strip("\n")
|
|
||||||
inps = split(inp)
|
|
||||||
if len(inps) < 2:
|
|
||||||
return inp
|
|
||||||
opts = []
|
|
||||||
summ = 0
|
|
||||||
tmp_str = ""
|
|
||||||
for i in range(len(inps)):
|
|
||||||
summ += len(inps[i])
|
|
||||||
tmp_str += inps[i]
|
|
||||||
if summ > 50:
|
|
||||||
summ = 0
|
|
||||||
opts.append(tmp_str)
|
|
||||||
tmp_str = ""
|
|
||||||
if tmp_str != "":
|
|
||||||
opts.append(tmp_str)
|
|
||||||
# print(opts)
|
|
||||||
if len(opts) > 1 and len(opts[-1]) < 50: ##如果最后一个太短了,和前一个合一起
|
|
||||||
opts[-2] = opts[-2] + opts[-1]
|
|
||||||
opts = opts[:-1]
|
|
||||||
return "\n".join(opts)
|
|
||||||
|
|
||||||
|
|
||||||
def cut3(inp):
|
|
||||||
inp = inp.strip("\n")
|
|
||||||
return "\n".join(["%s" % item for item in inp.strip("。").split("。")])
|
|
||||||
|
|
||||||
|
|
||||||
def cut4(inp):
|
|
||||||
inp = inp.strip("\n")
|
|
||||||
return "\n".join(["%s" % item for item in inp.strip(".").split(".")])
|
|
||||||
|
|
||||||
|
|
||||||
# contributed by https://github.com/AI-Hobbyist/GPT-SoVITS/blob/main/GPT_SoVITS/inference_webui.py
|
|
||||||
def cut5(inp):
|
|
||||||
# if not re.search(r'[^\w\s]', inp[-1]):
|
|
||||||
# inp += '。'
|
|
||||||
inp = inp.strip("\n")
|
|
||||||
punds = r'[,.;?!、,。?!;:…]'
|
|
||||||
items = re.split(f'({punds})', inp)
|
|
||||||
mergeitems = ["".join(group) for group in zip(items[::2], items[1::2])]
|
|
||||||
# 在句子不存在符号或句尾无符号的时候保证文本完整
|
|
||||||
if len(items)%2 == 1:
|
|
||||||
mergeitems.append(items[-1])
|
|
||||||
opt = "\n".join(mergeitems)
|
|
||||||
return opt
|
|
||||||
|
|
||||||
|
|
||||||
|
def inference(text, text_lang,
|
||||||
|
ref_audio_path, prompt_text,
|
||||||
|
prompt_lang, top_k,
|
||||||
|
top_p, temperature,
|
||||||
|
text_split_method, batch_size,
|
||||||
|
speed_factor, ref_text_free,
|
||||||
|
split_bucket,fragment_interval,
|
||||||
|
seed,
|
||||||
|
):
|
||||||
|
inputs={
|
||||||
|
"text": text,
|
||||||
|
"text_lang": dict_language[text_lang],
|
||||||
|
"ref_audio_path": ref_audio_path,
|
||||||
|
"prompt_text": prompt_text if not ref_text_free else "",
|
||||||
|
"prompt_lang": dict_language[prompt_lang],
|
||||||
|
"top_k": top_k,
|
||||||
|
"top_p": top_p,
|
||||||
|
"temperature": temperature,
|
||||||
|
"text_split_method": cut_method[text_split_method],
|
||||||
|
"batch_size":int(batch_size),
|
||||||
|
"speed_factor":float(speed_factor),
|
||||||
|
"split_bucket":split_bucket,
|
||||||
|
"return_fragment":False,
|
||||||
|
"fragment_interval":fragment_interval,
|
||||||
|
"seed":seed,
|
||||||
|
}
|
||||||
|
|
||||||
|
for item in tts_pipline.run(inputs):
|
||||||
|
yield item
|
||||||
|
|
||||||
def custom_sort_key(s):
|
def custom_sort_key(s):
|
||||||
# 使用正则表达式提取字符串中的数字部分和非数字部分
|
# 使用正则表达式提取字符串中的数字部分和非数字部分
|
||||||
parts = re.split('(\d+)', s)
|
parts = re.split('(\d+)', s)
|
||||||
@ -552,65 +152,103 @@ with gr.Blocks(title="GPT-SoVITS WebUI") as app:
|
|||||||
gr.Markdown(
|
gr.Markdown(
|
||||||
value=i18n("本软件以MIT协议开源, 作者不对软件具备任何控制力, 使用软件者、传播软件导出的声音者自负全责. <br>如不认可该条款, 则不能使用或引用软件包内任何代码和文件. 详见根目录<b>LICENSE</b>.")
|
value=i18n("本软件以MIT协议开源, 作者不对软件具备任何控制力, 使用软件者、传播软件导出的声音者自负全责. <br>如不认可该条款, 则不能使用或引用软件包内任何代码和文件. 详见根目录<b>LICENSE</b>.")
|
||||||
)
|
)
|
||||||
with gr.Group():
|
|
||||||
|
with gr.Column():
|
||||||
|
# with gr.Group():
|
||||||
gr.Markdown(value=i18n("模型切换"))
|
gr.Markdown(value=i18n("模型切换"))
|
||||||
with gr.Row():
|
with gr.Row():
|
||||||
GPT_dropdown = gr.Dropdown(label=i18n("GPT模型列表"), choices=sorted(GPT_names, key=custom_sort_key), value=gpt_path, interactive=True)
|
GPT_dropdown = gr.Dropdown(label=i18n("GPT模型列表"), choices=sorted(GPT_names, key=custom_sort_key), value=gpt_path, interactive=True)
|
||||||
SoVITS_dropdown = gr.Dropdown(label=i18n("SoVITS模型列表"), choices=sorted(SoVITS_names, key=custom_sort_key), value=sovits_path, interactive=True)
|
SoVITS_dropdown = gr.Dropdown(label=i18n("SoVITS模型列表"), choices=sorted(SoVITS_names, key=custom_sort_key), value=sovits_path, interactive=True)
|
||||||
refresh_button = gr.Button(i18n("刷新模型路径"), variant="primary")
|
refresh_button = gr.Button(i18n("刷新模型路径"), variant="primary")
|
||||||
refresh_button.click(fn=change_choices, inputs=[], outputs=[SoVITS_dropdown, GPT_dropdown])
|
refresh_button.click(fn=change_choices, inputs=[], outputs=[SoVITS_dropdown, GPT_dropdown])
|
||||||
SoVITS_dropdown.change(change_sovits_weights, [SoVITS_dropdown], [])
|
SoVITS_dropdown.change(tts_pipline.init_vits_weights, [SoVITS_dropdown], [])
|
||||||
GPT_dropdown.change(change_gpt_weights, [GPT_dropdown], [])
|
GPT_dropdown.change(tts_pipline.init_t2s_weights, [GPT_dropdown], [])
|
||||||
gr.Markdown(value=i18n("*请上传并填写参考信息"))
|
|
||||||
with gr.Row():
|
with gr.Row():
|
||||||
|
with gr.Column():
|
||||||
|
gr.Markdown(value=i18n("*请上传并填写参考信息"))
|
||||||
inp_ref = gr.Audio(label=i18n("请上传3~10秒内参考音频,超过会报错!"), type="filepath")
|
inp_ref = gr.Audio(label=i18n("请上传3~10秒内参考音频,超过会报错!"), type="filepath")
|
||||||
with gr.Column():
|
prompt_text = gr.Textbox(label=i18n("参考音频的文本"), value="", lines=2)
|
||||||
ref_text_free = gr.Checkbox(label=i18n("开启无参考文本模式。不填参考文本亦相当于开启。"), value=False, interactive=True, show_label=True)
|
with gr.Row():
|
||||||
gr.Markdown(i18n("使用无参考文本模式时建议使用微调的GPT,听不清参考音频说的啥(不晓得写啥)可以开,开启后无视填写的参考文本。"))
|
prompt_language = gr.Dropdown(
|
||||||
prompt_text = gr.Textbox(label=i18n("参考音频的文本"), value="")
|
label=i18n("参考音频的语种"), choices=[i18n("中文"), i18n("英文"), i18n("日文"), i18n("中英混合"), i18n("日英混合"), i18n("多语种混合")], value=i18n("中文")
|
||||||
prompt_language = gr.Dropdown(
|
)
|
||||||
label=i18n("参考音频的语种"), choices=[i18n("中文"), i18n("英文"), i18n("日文"), i18n("中英混合"), i18n("日英混合"), i18n("多语种混合")], value=i18n("中文")
|
with gr.Column():
|
||||||
)
|
ref_text_free = gr.Checkbox(label=i18n("开启无参考文本模式。不填参考文本亦相当于开启。"), value=False, interactive=True, show_label=True)
|
||||||
gr.Markdown(value=i18n("*请填写需要合成的目标文本和语种模式"))
|
gr.Markdown(i18n("使用无参考文本模式时建议使用微调的GPT,听不清参考音频说的啥(不晓得写啥)可以开,开启后无视填写的参考文本。"))
|
||||||
with gr.Row():
|
|
||||||
text = gr.Textbox(label=i18n("需要合成的文本"), value="")
|
with gr.Column():
|
||||||
|
gr.Markdown(value=i18n("*请填写需要合成的目标文本和语种模式"))
|
||||||
|
text = gr.Textbox(label=i18n("需要合成的文本"), value="", lines=16, max_lines=16)
|
||||||
text_language = gr.Dropdown(
|
text_language = gr.Dropdown(
|
||||||
label=i18n("需要合成的语种"), choices=[i18n("中文"), i18n("英文"), i18n("日文"), i18n("中英混合"), i18n("日英混合"), i18n("多语种混合")], value=i18n("中文")
|
label=i18n("需要合成的语种"), choices=[i18n("中文"), i18n("英文"), i18n("日文"), i18n("中英混合"), i18n("日英混合"), i18n("多语种混合")], value=i18n("中文")
|
||||||
)
|
)
|
||||||
how_to_cut = gr.Radio(
|
|
||||||
label=i18n("怎么切"),
|
|
||||||
choices=[i18n("不切"), i18n("凑四句一切"), i18n("凑50字一切"), i18n("按中文句号。切"), i18n("按英文句号.切"), i18n("按标点符号切"), ],
|
with gr.Group():
|
||||||
value=i18n("凑四句一切"),
|
gr.Markdown(value=i18n("推理设置"))
|
||||||
interactive=True,
|
with gr.Row():
|
||||||
)
|
|
||||||
with gr.Row():
|
with gr.Column():
|
||||||
gr.Markdown(value=i18n("gpt采样参数(无参考文本时不要太低):"))
|
batch_size = gr.Slider(minimum=1,maximum=200,step=1,label=i18n("batch_size"),value=20,interactive=True)
|
||||||
|
fragment_interval = gr.Slider(minimum=0.01,maximum=1,step=0.01,label=i18n("分段间隔(秒)"),value=0.3,interactive=True)
|
||||||
|
speed_factor = gr.Slider(minimum=0.25,maximum=4,step=0.05,label="speed_factor",value=1.0,interactive=True)
|
||||||
top_k = gr.Slider(minimum=1,maximum=100,step=1,label=i18n("top_k"),value=5,interactive=True)
|
top_k = gr.Slider(minimum=1,maximum=100,step=1,label=i18n("top_k"),value=5,interactive=True)
|
||||||
top_p = gr.Slider(minimum=0,maximum=1,step=0.05,label=i18n("top_p"),value=1,interactive=True)
|
top_p = gr.Slider(minimum=0,maximum=1,step=0.05,label=i18n("top_p"),value=1,interactive=True)
|
||||||
temperature = gr.Slider(minimum=0,maximum=1,step=0.05,label=i18n("temperature"),value=1,interactive=True)
|
temperature = gr.Slider(minimum=0,maximum=1,step=0.05,label=i18n("temperature"),value=1,interactive=True)
|
||||||
inference_button = gr.Button(i18n("合成语音"), variant="primary")
|
with gr.Column():
|
||||||
output = gr.Audio(label=i18n("输出的语音"))
|
how_to_cut = gr.Radio(
|
||||||
|
label=i18n("怎么切"),
|
||||||
|
choices=[i18n("不切"), i18n("凑四句一切"), i18n("凑50字一切"), i18n("按中文句号。切"), i18n("按英文句号.切"), i18n("按标点符号切"), ],
|
||||||
|
value=i18n("凑四句一切"),
|
||||||
|
interactive=True,
|
||||||
|
)
|
||||||
|
with gr.Row():
|
||||||
|
split_bucket = gr.Checkbox(label=i18n("数据分桶(可能会降低一点计算量,选就对了)"), value=True, interactive=True, show_label=True)
|
||||||
|
seed = gr.Number(label=i18n("随机种子"),value=-1)
|
||||||
|
# with gr.Column():
|
||||||
|
output = gr.Audio(label=i18n("输出的语音"))
|
||||||
|
with gr.Row():
|
||||||
|
inference_button = gr.Button(i18n("合成语音"), variant="primary")
|
||||||
|
stop_infer = gr.Button(i18n("终止合成"), variant="primary")
|
||||||
|
|
||||||
|
|
||||||
inference_button.click(
|
inference_button.click(
|
||||||
get_tts_wav,
|
inference,
|
||||||
[inp_ref, prompt_text, prompt_language, text, text_language, how_to_cut, top_k, top_p, temperature, ref_text_free],
|
[
|
||||||
|
text,text_language, inp_ref,
|
||||||
|
prompt_text, prompt_language,
|
||||||
|
top_k, top_p, temperature,
|
||||||
|
how_to_cut, batch_size,
|
||||||
|
speed_factor, ref_text_free,
|
||||||
|
split_bucket,fragment_interval,
|
||||||
|
seed
|
||||||
|
],
|
||||||
[output],
|
[output],
|
||||||
)
|
)
|
||||||
|
stop_infer.click(tts_pipline.stop, [], [])
|
||||||
|
|
||||||
|
with gr.Group():
|
||||||
gr.Markdown(value=i18n("文本切分工具。太长的文本合成出来效果不一定好,所以太长建议先切。合成会根据文本的换行分开合成再拼起来。"))
|
gr.Markdown(value=i18n("文本切分工具。太长的文本合成出来效果不一定好,所以太长建议先切。合成会根据文本的换行分开合成再拼起来。"))
|
||||||
with gr.Row():
|
with gr.Row():
|
||||||
text_inp = gr.Textbox(label=i18n("需要合成的切分前文本"), value="")
|
text_inp = gr.Textbox(label=i18n("需要合成的切分前文本"), value="", lines=4)
|
||||||
button1 = gr.Button(i18n("凑四句一切"), variant="primary")
|
with gr.Column():
|
||||||
button2 = gr.Button(i18n("凑50字一切"), variant="primary")
|
_how_to_cut = gr.Radio(
|
||||||
button3 = gr.Button(i18n("按中文句号。切"), variant="primary")
|
label=i18n("怎么切"),
|
||||||
button4 = gr.Button(i18n("按英文句号.切"), variant="primary")
|
choices=[i18n("不切"), i18n("凑四句一切"), i18n("凑50字一切"), i18n("按中文句号。切"), i18n("按英文句号.切"), i18n("按标点符号切"), ],
|
||||||
button5 = gr.Button(i18n("按标点符号切"), variant="primary")
|
value=i18n("凑四句一切"),
|
||||||
text_opt = gr.Textbox(label=i18n("切分后文本"), value="")
|
interactive=True,
|
||||||
button1.click(cut1, [text_inp], [text_opt])
|
)
|
||||||
button2.click(cut2, [text_inp], [text_opt])
|
cut_text= gr.Button(i18n("切分"), variant="primary")
|
||||||
button3.click(cut3, [text_inp], [text_opt])
|
|
||||||
button4.click(cut4, [text_inp], [text_opt])
|
def to_cut(text_inp, how_to_cut):
|
||||||
button5.click(cut5, [text_inp], [text_opt])
|
if len(text_inp.strip()) == 0 or text_inp==[]:
|
||||||
|
return ""
|
||||||
|
method = get_method(cut_method[how_to_cut])
|
||||||
|
return method(text_inp)
|
||||||
|
|
||||||
|
text_opt = gr.Textbox(label=i18n("切分后文本"), value="", lines=4)
|
||||||
|
cut_text.click(to_cut, [text_inp, _how_to_cut], [text_opt])
|
||||||
gr.Markdown(value=i18n("后续将支持转音素、手工修改音素、语音合成分步执行。"))
|
gr.Markdown(value=i18n("后续将支持转音素、手工修改音素、语音合成分步执行。"))
|
||||||
|
|
||||||
app.queue(concurrency_count=511, max_size=1022).launch(
|
app.queue(concurrency_count=511, max_size=1022).launch(
|
||||||
|
622
GPT_SoVITS/inference_webui_old.py
Normal file
622
GPT_SoVITS/inference_webui_old.py
Normal file
@ -0,0 +1,622 @@
|
|||||||
|
'''
|
||||||
|
按中英混合识别
|
||||||
|
按日英混合识别
|
||||||
|
多语种启动切分识别语种
|
||||||
|
全部按中文识别
|
||||||
|
全部按英文识别
|
||||||
|
全部按日文识别
|
||||||
|
'''
|
||||||
|
import os, re, logging
|
||||||
|
import LangSegment
|
||||||
|
logging.getLogger("markdown_it").setLevel(logging.ERROR)
|
||||||
|
logging.getLogger("urllib3").setLevel(logging.ERROR)
|
||||||
|
logging.getLogger("httpcore").setLevel(logging.ERROR)
|
||||||
|
logging.getLogger("httpx").setLevel(logging.ERROR)
|
||||||
|
logging.getLogger("asyncio").setLevel(logging.ERROR)
|
||||||
|
logging.getLogger("charset_normalizer").setLevel(logging.ERROR)
|
||||||
|
logging.getLogger("torchaudio._extension").setLevel(logging.ERROR)
|
||||||
|
import pdb
|
||||||
|
import torch
|
||||||
|
|
||||||
|
if os.path.exists("./gweight.txt"):
|
||||||
|
with open("./gweight.txt", 'r', encoding="utf-8") as file:
|
||||||
|
gweight_data = file.read()
|
||||||
|
gpt_path = os.environ.get(
|
||||||
|
"gpt_path", gweight_data)
|
||||||
|
else:
|
||||||
|
gpt_path = os.environ.get(
|
||||||
|
"gpt_path", "GPT_SoVITS/pretrained_models/s1bert25hz-2kh-longer-epoch=68e-step=50232.ckpt")
|
||||||
|
|
||||||
|
if os.path.exists("./sweight.txt"):
|
||||||
|
with open("./sweight.txt", 'r', encoding="utf-8") as file:
|
||||||
|
sweight_data = file.read()
|
||||||
|
sovits_path = os.environ.get("sovits_path", sweight_data)
|
||||||
|
else:
|
||||||
|
sovits_path = os.environ.get("sovits_path", "GPT_SoVITS/pretrained_models/s2G488k.pth")
|
||||||
|
# gpt_path = os.environ.get(
|
||||||
|
# "gpt_path", "pretrained_models/s1bert25hz-2kh-longer-epoch=68e-step=50232.ckpt"
|
||||||
|
# )
|
||||||
|
# sovits_path = os.environ.get("sovits_path", "pretrained_models/s2G488k.pth")
|
||||||
|
cnhubert_base_path = os.environ.get(
|
||||||
|
"cnhubert_base_path", "GPT_SoVITS/pretrained_models/chinese-hubert-base"
|
||||||
|
)
|
||||||
|
bert_path = os.environ.get(
|
||||||
|
"bert_path", "GPT_SoVITS/pretrained_models/chinese-roberta-wwm-ext-large"
|
||||||
|
)
|
||||||
|
infer_ttswebui = os.environ.get("infer_ttswebui", 9872)
|
||||||
|
infer_ttswebui = int(infer_ttswebui)
|
||||||
|
is_share = os.environ.get("is_share", "False")
|
||||||
|
is_share = eval(is_share)
|
||||||
|
if "_CUDA_VISIBLE_DEVICES" in os.environ:
|
||||||
|
os.environ["CUDA_VISIBLE_DEVICES"] = os.environ["_CUDA_VISIBLE_DEVICES"]
|
||||||
|
is_half = eval(os.environ.get("is_half", "True")) and not torch.backends.mps.is_available()
|
||||||
|
import gradio as gr
|
||||||
|
from transformers import AutoModelForMaskedLM, AutoTokenizer
|
||||||
|
import numpy as np
|
||||||
|
import librosa
|
||||||
|
from feature_extractor import cnhubert
|
||||||
|
|
||||||
|
cnhubert.cnhubert_base_path = cnhubert_base_path
|
||||||
|
|
||||||
|
from module.models import SynthesizerTrn
|
||||||
|
from AR.models.t2s_lightning_module import Text2SemanticLightningModule
|
||||||
|
from text import cleaned_text_to_sequence
|
||||||
|
from text.cleaner import clean_text
|
||||||
|
from time import time as ttime
|
||||||
|
from module.mel_processing import spectrogram_torch
|
||||||
|
from my_utils import load_audio
|
||||||
|
from tools.i18n.i18n import I18nAuto
|
||||||
|
|
||||||
|
i18n = I18nAuto()
|
||||||
|
|
||||||
|
os.environ['PYTORCH_ENABLE_MPS_FALLBACK'] = '1' # 确保直接启动推理UI时也能够设置。
|
||||||
|
|
||||||
|
if torch.cuda.is_available():
|
||||||
|
device = "cuda"
|
||||||
|
else:
|
||||||
|
device = "cpu"
|
||||||
|
|
||||||
|
tokenizer = AutoTokenizer.from_pretrained(bert_path)
|
||||||
|
bert_model = AutoModelForMaskedLM.from_pretrained(bert_path)
|
||||||
|
if is_half == True:
|
||||||
|
bert_model = bert_model.half().to(device)
|
||||||
|
else:
|
||||||
|
bert_model = bert_model.to(device)
|
||||||
|
|
||||||
|
|
||||||
|
def get_bert_feature(text, word2ph):
|
||||||
|
with torch.no_grad():
|
||||||
|
inputs = tokenizer(text, return_tensors="pt")
|
||||||
|
for i in inputs:
|
||||||
|
inputs[i] = inputs[i].to(device)
|
||||||
|
res = bert_model(**inputs, output_hidden_states=True)
|
||||||
|
res = torch.cat(res["hidden_states"][-3:-2], -1)[0].cpu()[1:-1]
|
||||||
|
assert len(word2ph) == len(text)
|
||||||
|
phone_level_feature = []
|
||||||
|
for i in range(len(word2ph)):
|
||||||
|
repeat_feature = res[i].repeat(word2ph[i], 1)
|
||||||
|
phone_level_feature.append(repeat_feature)
|
||||||
|
phone_level_feature = torch.cat(phone_level_feature, dim=0)
|
||||||
|
return phone_level_feature.T
|
||||||
|
|
||||||
|
|
||||||
|
class DictToAttrRecursive(dict):
|
||||||
|
def __init__(self, input_dict):
|
||||||
|
super().__init__(input_dict)
|
||||||
|
for key, value in input_dict.items():
|
||||||
|
if isinstance(value, dict):
|
||||||
|
value = DictToAttrRecursive(value)
|
||||||
|
self[key] = value
|
||||||
|
setattr(self, key, value)
|
||||||
|
|
||||||
|
def __getattr__(self, item):
|
||||||
|
try:
|
||||||
|
return self[item]
|
||||||
|
except KeyError:
|
||||||
|
raise AttributeError(f"Attribute {item} not found")
|
||||||
|
|
||||||
|
def __setattr__(self, key, value):
|
||||||
|
if isinstance(value, dict):
|
||||||
|
value = DictToAttrRecursive(value)
|
||||||
|
super(DictToAttrRecursive, self).__setitem__(key, value)
|
||||||
|
super().__setattr__(key, value)
|
||||||
|
|
||||||
|
def __delattr__(self, item):
|
||||||
|
try:
|
||||||
|
del self[item]
|
||||||
|
except KeyError:
|
||||||
|
raise AttributeError(f"Attribute {item} not found")
|
||||||
|
|
||||||
|
|
||||||
|
ssl_model = cnhubert.get_model()
|
||||||
|
if is_half == True:
|
||||||
|
ssl_model = ssl_model.half().to(device)
|
||||||
|
else:
|
||||||
|
ssl_model = ssl_model.to(device)
|
||||||
|
|
||||||
|
|
||||||
|
def change_sovits_weights(sovits_path):
|
||||||
|
global vq_model, hps
|
||||||
|
dict_s2 = torch.load(sovits_path, map_location="cpu")
|
||||||
|
hps = dict_s2["config"]
|
||||||
|
hps = DictToAttrRecursive(hps)
|
||||||
|
hps.model.semantic_frame_rate = "25hz"
|
||||||
|
vq_model = SynthesizerTrn(
|
||||||
|
hps.data.filter_length // 2 + 1,
|
||||||
|
hps.train.segment_size // hps.data.hop_length,
|
||||||
|
n_speakers=hps.data.n_speakers,
|
||||||
|
**hps.model
|
||||||
|
)
|
||||||
|
if ("pretrained" not in sovits_path):
|
||||||
|
del vq_model.enc_q
|
||||||
|
if is_half == True:
|
||||||
|
vq_model = vq_model.half().to(device)
|
||||||
|
else:
|
||||||
|
vq_model = vq_model.to(device)
|
||||||
|
vq_model.eval()
|
||||||
|
print(vq_model.load_state_dict(dict_s2["weight"], strict=False))
|
||||||
|
with open("./sweight.txt", "w", encoding="utf-8") as f:
|
||||||
|
f.write(sovits_path)
|
||||||
|
|
||||||
|
|
||||||
|
change_sovits_weights(sovits_path)
|
||||||
|
|
||||||
|
|
||||||
|
def change_gpt_weights(gpt_path):
|
||||||
|
global hz, max_sec, t2s_model, config
|
||||||
|
hz = 50
|
||||||
|
dict_s1 = torch.load(gpt_path, map_location="cpu")
|
||||||
|
config = dict_s1["config"]
|
||||||
|
max_sec = config["data"]["max_sec"]
|
||||||
|
t2s_model = Text2SemanticLightningModule(config, "****", is_train=False)
|
||||||
|
t2s_model.load_state_dict(dict_s1["weight"])
|
||||||
|
if is_half == True:
|
||||||
|
t2s_model = t2s_model.half()
|
||||||
|
t2s_model = t2s_model.to(device)
|
||||||
|
t2s_model.eval()
|
||||||
|
total = sum([param.nelement() for param in t2s_model.parameters()])
|
||||||
|
print("Number of parameter: %.2fM" % (total / 1e6))
|
||||||
|
with open("./gweight.txt", "w", encoding="utf-8") as f: f.write(gpt_path)
|
||||||
|
|
||||||
|
|
||||||
|
change_gpt_weights(gpt_path)
|
||||||
|
|
||||||
|
|
||||||
|
def get_spepc(hps, filename):
|
||||||
|
audio = load_audio(filename, int(hps.data.sampling_rate))
|
||||||
|
audio = torch.FloatTensor(audio)
|
||||||
|
audio_norm = audio
|
||||||
|
audio_norm = audio_norm.unsqueeze(0)
|
||||||
|
spec = spectrogram_torch(
|
||||||
|
audio_norm,
|
||||||
|
hps.data.filter_length,
|
||||||
|
hps.data.sampling_rate,
|
||||||
|
hps.data.hop_length,
|
||||||
|
hps.data.win_length,
|
||||||
|
center=False,
|
||||||
|
)
|
||||||
|
return spec
|
||||||
|
|
||||||
|
|
||||||
|
dict_language = {
|
||||||
|
i18n("中文"): "all_zh",#全部按中文识别
|
||||||
|
i18n("英文"): "en",#全部按英文识别#######不变
|
||||||
|
i18n("日文"): "all_ja",#全部按日文识别
|
||||||
|
i18n("中英混合"): "zh",#按中英混合识别####不变
|
||||||
|
i18n("日英混合"): "ja",#按日英混合识别####不变
|
||||||
|
i18n("多语种混合"): "auto",#多语种启动切分识别语种
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
def clean_text_inf(text, language):
|
||||||
|
phones, word2ph, norm_text = clean_text(text, language)
|
||||||
|
phones = cleaned_text_to_sequence(phones)
|
||||||
|
return phones, word2ph, norm_text
|
||||||
|
|
||||||
|
dtype=torch.float16 if is_half == True else torch.float32
|
||||||
|
def get_bert_inf(phones, word2ph, norm_text, language):
|
||||||
|
language=language.replace("all_","")
|
||||||
|
if language == "zh":
|
||||||
|
bert = get_bert_feature(norm_text, word2ph).to(device)#.to(dtype)
|
||||||
|
else:
|
||||||
|
bert = torch.zeros(
|
||||||
|
(1024, len(phones)),
|
||||||
|
dtype=torch.float16 if is_half == True else torch.float32,
|
||||||
|
).to(device)
|
||||||
|
|
||||||
|
return bert
|
||||||
|
|
||||||
|
|
||||||
|
splits = {",", "。", "?", "!", ",", ".", "?", "!", "~", ":", ":", "—", "…", }
|
||||||
|
|
||||||
|
|
||||||
|
def get_first(text):
|
||||||
|
pattern = "[" + "".join(re.escape(sep) for sep in splits) + "]"
|
||||||
|
text = re.split(pattern, text)[0].strip()
|
||||||
|
return text
|
||||||
|
|
||||||
|
|
||||||
|
def get_phones_and_bert(text,language):
|
||||||
|
if language in {"en","all_zh","all_ja"}:
|
||||||
|
language = language.replace("all_","")
|
||||||
|
if language == "en":
|
||||||
|
LangSegment.setfilters(["en"])
|
||||||
|
formattext = " ".join(tmp["text"] for tmp in LangSegment.getTexts(text))
|
||||||
|
else:
|
||||||
|
# 因无法区别中日文汉字,以用户输入为准
|
||||||
|
formattext = text
|
||||||
|
while " " in formattext:
|
||||||
|
formattext = formattext.replace(" ", " ")
|
||||||
|
phones, word2ph, norm_text = clean_text_inf(formattext, language)
|
||||||
|
if language == "zh":
|
||||||
|
bert = get_bert_feature(norm_text, word2ph).to(device)
|
||||||
|
else:
|
||||||
|
bert = torch.zeros(
|
||||||
|
(1024, len(phones)),
|
||||||
|
dtype=torch.float16 if is_half == True else torch.float32,
|
||||||
|
).to(device)
|
||||||
|
elif language in {"zh", "ja","auto"}:
|
||||||
|
textlist=[]
|
||||||
|
langlist=[]
|
||||||
|
LangSegment.setfilters(["zh","ja","en","ko"])
|
||||||
|
if language == "auto":
|
||||||
|
for tmp in LangSegment.getTexts(text):
|
||||||
|
if tmp["lang"] == "ko":
|
||||||
|
langlist.append("zh")
|
||||||
|
textlist.append(tmp["text"])
|
||||||
|
else:
|
||||||
|
langlist.append(tmp["lang"])
|
||||||
|
textlist.append(tmp["text"])
|
||||||
|
else:
|
||||||
|
for tmp in LangSegment.getTexts(text):
|
||||||
|
if tmp["lang"] == "en":
|
||||||
|
langlist.append(tmp["lang"])
|
||||||
|
else:
|
||||||
|
# 因无法区别中日文汉字,以用户输入为准
|
||||||
|
langlist.append(language)
|
||||||
|
textlist.append(tmp["text"])
|
||||||
|
print(textlist)
|
||||||
|
print(langlist)
|
||||||
|
phones_list = []
|
||||||
|
bert_list = []
|
||||||
|
norm_text_list = []
|
||||||
|
for i in range(len(textlist)):
|
||||||
|
lang = langlist[i]
|
||||||
|
phones, word2ph, norm_text = clean_text_inf(textlist[i], lang)
|
||||||
|
bert = get_bert_inf(phones, word2ph, norm_text, lang)
|
||||||
|
phones_list.append(phones)
|
||||||
|
norm_text_list.append(norm_text)
|
||||||
|
bert_list.append(bert)
|
||||||
|
bert = torch.cat(bert_list, dim=1)
|
||||||
|
phones = sum(phones_list, [])
|
||||||
|
norm_text = ''.join(norm_text_list)
|
||||||
|
|
||||||
|
return phones,bert.to(dtype),norm_text
|
||||||
|
|
||||||
|
|
||||||
|
def merge_short_text_in_array(texts, threshold):
|
||||||
|
if (len(texts)) < 2:
|
||||||
|
return texts
|
||||||
|
result = []
|
||||||
|
text = ""
|
||||||
|
for ele in texts:
|
||||||
|
text += ele
|
||||||
|
if len(text) >= threshold:
|
||||||
|
result.append(text)
|
||||||
|
text = ""
|
||||||
|
if (len(text) > 0):
|
||||||
|
if len(result) == 0:
|
||||||
|
result.append(text)
|
||||||
|
else:
|
||||||
|
result[len(result) - 1] += text
|
||||||
|
return result
|
||||||
|
|
||||||
|
def get_tts_wav(ref_wav_path, prompt_text, prompt_language, text, text_language, how_to_cut=i18n("不切"), top_k=20, top_p=0.6, temperature=0.6, ref_free = False):
|
||||||
|
if prompt_text is None or len(prompt_text) == 0:
|
||||||
|
ref_free = True
|
||||||
|
t0 = ttime()
|
||||||
|
prompt_language = dict_language[prompt_language]
|
||||||
|
text_language = dict_language[text_language]
|
||||||
|
if not ref_free:
|
||||||
|
prompt_text = prompt_text.strip("\n")
|
||||||
|
if (prompt_text[-1] not in splits): prompt_text += "。" if prompt_language != "en" else "."
|
||||||
|
print(i18n("实际输入的参考文本:"), prompt_text)
|
||||||
|
text = text.strip("\n")
|
||||||
|
if (text[0] not in splits and len(get_first(text)) < 4): text = "。" + text if text_language != "en" else "." + text
|
||||||
|
|
||||||
|
print(i18n("实际输入的目标文本:"), text)
|
||||||
|
zero_wav = np.zeros(
|
||||||
|
int(hps.data.sampling_rate * 0.3),
|
||||||
|
dtype=np.float16 if is_half == True else np.float32,
|
||||||
|
)
|
||||||
|
with torch.no_grad():
|
||||||
|
wav16k, sr = librosa.load(ref_wav_path, sr=16000)
|
||||||
|
if (wav16k.shape[0] > 160000 or wav16k.shape[0] < 48000):
|
||||||
|
raise OSError(i18n("参考音频在3~10秒范围外,请更换!"))
|
||||||
|
wav16k = torch.from_numpy(wav16k)
|
||||||
|
zero_wav_torch = torch.from_numpy(zero_wav)
|
||||||
|
if is_half == True:
|
||||||
|
wav16k = wav16k.half().to(device)
|
||||||
|
zero_wav_torch = zero_wav_torch.half().to(device)
|
||||||
|
else:
|
||||||
|
wav16k = wav16k.to(device)
|
||||||
|
zero_wav_torch = zero_wav_torch.to(device)
|
||||||
|
wav16k = torch.cat([wav16k, zero_wav_torch])
|
||||||
|
ssl_content = ssl_model.model(wav16k.unsqueeze(0))[
|
||||||
|
"last_hidden_state"
|
||||||
|
].transpose(
|
||||||
|
1, 2
|
||||||
|
) # .float()
|
||||||
|
codes = vq_model.extract_latent(ssl_content)
|
||||||
|
|
||||||
|
prompt_semantic = codes[0, 0]
|
||||||
|
t1 = ttime()
|
||||||
|
|
||||||
|
if (how_to_cut == i18n("凑四句一切")):
|
||||||
|
text = cut1(text)
|
||||||
|
elif (how_to_cut == i18n("凑50字一切")):
|
||||||
|
text = cut2(text)
|
||||||
|
elif (how_to_cut == i18n("按中文句号。切")):
|
||||||
|
text = cut3(text)
|
||||||
|
elif (how_to_cut == i18n("按英文句号.切")):
|
||||||
|
text = cut4(text)
|
||||||
|
elif (how_to_cut == i18n("按标点符号切")):
|
||||||
|
text = cut5(text)
|
||||||
|
while "\n\n" in text:
|
||||||
|
text = text.replace("\n\n", "\n")
|
||||||
|
print(i18n("实际输入的目标文本(切句后):"), text)
|
||||||
|
texts = text.split("\n")
|
||||||
|
texts = merge_short_text_in_array(texts, 5)
|
||||||
|
audio_opt = []
|
||||||
|
if not ref_free:
|
||||||
|
phones1,bert1,norm_text1=get_phones_and_bert(prompt_text, prompt_language)
|
||||||
|
|
||||||
|
for text in texts:
|
||||||
|
# 解决输入目标文本的空行导致报错的问题
|
||||||
|
if (len(text.strip()) == 0):
|
||||||
|
continue
|
||||||
|
if (text[-1] not in splits): text += "。" if text_language != "en" else "."
|
||||||
|
print(i18n("实际输入的目标文本(每句):"), text)
|
||||||
|
phones2,bert2,norm_text2=get_phones_and_bert(text, text_language)
|
||||||
|
print(i18n("前端处理后的文本(每句):"), norm_text2)
|
||||||
|
if not ref_free:
|
||||||
|
bert = torch.cat([bert1, bert2], 1)
|
||||||
|
all_phoneme_ids = torch.LongTensor(phones1+phones2).to(device).unsqueeze(0)
|
||||||
|
else:
|
||||||
|
bert = bert2
|
||||||
|
all_phoneme_ids = torch.LongTensor(phones2).to(device).unsqueeze(0)
|
||||||
|
|
||||||
|
bert = bert.to(device).unsqueeze(0)
|
||||||
|
all_phoneme_len = torch.tensor([all_phoneme_ids.shape[-1]]).to(device)
|
||||||
|
prompt = prompt_semantic.unsqueeze(0).to(device)
|
||||||
|
t2 = ttime()
|
||||||
|
with torch.no_grad():
|
||||||
|
# pred_semantic = t2s_model.model.infer(
|
||||||
|
pred_semantic, idx = t2s_model.model.infer_panel(
|
||||||
|
all_phoneme_ids,
|
||||||
|
all_phoneme_len,
|
||||||
|
None if ref_free else prompt,
|
||||||
|
bert,
|
||||||
|
# prompt_phone_len=ph_offset,
|
||||||
|
top_k=top_k,
|
||||||
|
top_p=top_p,
|
||||||
|
temperature=temperature,
|
||||||
|
early_stop_num=hz * max_sec,
|
||||||
|
)
|
||||||
|
t3 = ttime()
|
||||||
|
# print(pred_semantic.shape,idx)
|
||||||
|
pred_semantic = pred_semantic[:, -idx:].unsqueeze(
|
||||||
|
0
|
||||||
|
) # .unsqueeze(0)#mq要多unsqueeze一次
|
||||||
|
refer = get_spepc(hps, ref_wav_path) # .to(device)
|
||||||
|
if is_half == True:
|
||||||
|
refer = refer.half().to(device)
|
||||||
|
else:
|
||||||
|
refer = refer.to(device)
|
||||||
|
# audio = vq_model.decode(pred_semantic, all_phoneme_ids, refer).detach().cpu().numpy()[0, 0]
|
||||||
|
audio = (
|
||||||
|
vq_model.decode(
|
||||||
|
pred_semantic, torch.LongTensor(phones2).to(device).unsqueeze(0), refer
|
||||||
|
)
|
||||||
|
.detach()
|
||||||
|
.cpu()
|
||||||
|
.numpy()[0, 0]
|
||||||
|
) ###试试重建不带上prompt部分
|
||||||
|
max_audio=np.abs(audio).max()#简单防止16bit爆音
|
||||||
|
if max_audio>1:audio/=max_audio
|
||||||
|
audio_opt.append(audio)
|
||||||
|
audio_opt.append(zero_wav)
|
||||||
|
t4 = ttime()
|
||||||
|
print("%.3f\t%.3f\t%.3f\t%.3f" % (t1 - t0, t2 - t1, t3 - t2, t4 - t3))
|
||||||
|
yield hps.data.sampling_rate, (np.concatenate(audio_opt, 0) * 32768).astype(
|
||||||
|
np.int16
|
||||||
|
)
|
||||||
|
|
||||||
|
|
||||||
|
def split(todo_text):
|
||||||
|
todo_text = todo_text.replace("……", "。").replace("——", ",")
|
||||||
|
if todo_text[-1] not in splits:
|
||||||
|
todo_text += "。"
|
||||||
|
i_split_head = i_split_tail = 0
|
||||||
|
len_text = len(todo_text)
|
||||||
|
todo_texts = []
|
||||||
|
while 1:
|
||||||
|
if i_split_head >= len_text:
|
||||||
|
break # 结尾一定有标点,所以直接跳出即可,最后一段在上次已加入
|
||||||
|
if todo_text[i_split_head] in splits:
|
||||||
|
i_split_head += 1
|
||||||
|
todo_texts.append(todo_text[i_split_tail:i_split_head])
|
||||||
|
i_split_tail = i_split_head
|
||||||
|
else:
|
||||||
|
i_split_head += 1
|
||||||
|
return todo_texts
|
||||||
|
|
||||||
|
|
||||||
|
def cut1(inp):
|
||||||
|
inp = inp.strip("\n")
|
||||||
|
inps = split(inp)
|
||||||
|
split_idx = list(range(0, len(inps), 4))
|
||||||
|
split_idx[-1] = None
|
||||||
|
if len(split_idx) > 1:
|
||||||
|
opts = []
|
||||||
|
for idx in range(len(split_idx) - 1):
|
||||||
|
opts.append("".join(inps[split_idx[idx]: split_idx[idx + 1]]))
|
||||||
|
else:
|
||||||
|
opts = [inp]
|
||||||
|
return "\n".join(opts)
|
||||||
|
|
||||||
|
|
||||||
|
def cut2(inp):
|
||||||
|
inp = inp.strip("\n")
|
||||||
|
inps = split(inp)
|
||||||
|
if len(inps) < 2:
|
||||||
|
return inp
|
||||||
|
opts = []
|
||||||
|
summ = 0
|
||||||
|
tmp_str = ""
|
||||||
|
for i in range(len(inps)):
|
||||||
|
summ += len(inps[i])
|
||||||
|
tmp_str += inps[i]
|
||||||
|
if summ > 50:
|
||||||
|
summ = 0
|
||||||
|
opts.append(tmp_str)
|
||||||
|
tmp_str = ""
|
||||||
|
if tmp_str != "":
|
||||||
|
opts.append(tmp_str)
|
||||||
|
# print(opts)
|
||||||
|
if len(opts) > 1 and len(opts[-1]) < 50: ##如果最后一个太短了,和前一个合一起
|
||||||
|
opts[-2] = opts[-2] + opts[-1]
|
||||||
|
opts = opts[:-1]
|
||||||
|
return "\n".join(opts)
|
||||||
|
|
||||||
|
|
||||||
|
def cut3(inp):
|
||||||
|
inp = inp.strip("\n")
|
||||||
|
return "\n".join(["%s" % item for item in inp.strip("。").split("。")])
|
||||||
|
|
||||||
|
|
||||||
|
def cut4(inp):
|
||||||
|
inp = inp.strip("\n")
|
||||||
|
return "\n".join(["%s" % item for item in inp.strip(".").split(".")])
|
||||||
|
|
||||||
|
|
||||||
|
# contributed by https://github.com/AI-Hobbyist/GPT-SoVITS/blob/main/GPT_SoVITS/inference_webui.py
|
||||||
|
def cut5(inp):
|
||||||
|
# if not re.search(r'[^\w\s]', inp[-1]):
|
||||||
|
# inp += '。'
|
||||||
|
inp = inp.strip("\n")
|
||||||
|
punds = r'[,.;?!、,。?!;:…]'
|
||||||
|
items = re.split(f'({punds})', inp)
|
||||||
|
mergeitems = ["".join(group) for group in zip(items[::2], items[1::2])]
|
||||||
|
# 在句子不存在符号或句尾无符号的时候保证文本完整
|
||||||
|
if len(items)%2 == 1:
|
||||||
|
mergeitems.append(items[-1])
|
||||||
|
opt = "\n".join(mergeitems)
|
||||||
|
return opt
|
||||||
|
|
||||||
|
|
||||||
|
def custom_sort_key(s):
|
||||||
|
# 使用正则表达式提取字符串中的数字部分和非数字部分
|
||||||
|
parts = re.split('(\d+)', s)
|
||||||
|
# 将数字部分转换为整数,非数字部分保持不变
|
||||||
|
parts = [int(part) if part.isdigit() else part for part in parts]
|
||||||
|
return parts
|
||||||
|
|
||||||
|
|
||||||
|
def change_choices():
|
||||||
|
SoVITS_names, GPT_names = get_weights_names()
|
||||||
|
return {"choices": sorted(SoVITS_names, key=custom_sort_key), "__type__": "update"}, {"choices": sorted(GPT_names, key=custom_sort_key), "__type__": "update"}
|
||||||
|
|
||||||
|
|
||||||
|
pretrained_sovits_name = "GPT_SoVITS/pretrained_models/s2G488k.pth"
|
||||||
|
pretrained_gpt_name = "GPT_SoVITS/pretrained_models/s1bert25hz-2kh-longer-epoch=68e-step=50232.ckpt"
|
||||||
|
SoVITS_weight_root = "SoVITS_weights"
|
||||||
|
GPT_weight_root = "GPT_weights"
|
||||||
|
os.makedirs(SoVITS_weight_root, exist_ok=True)
|
||||||
|
os.makedirs(GPT_weight_root, exist_ok=True)
|
||||||
|
|
||||||
|
|
||||||
|
def get_weights_names():
|
||||||
|
SoVITS_names = [pretrained_sovits_name]
|
||||||
|
for name in os.listdir(SoVITS_weight_root):
|
||||||
|
if name.endswith(".pth"): SoVITS_names.append("%s/%s" % (SoVITS_weight_root, name))
|
||||||
|
GPT_names = [pretrained_gpt_name]
|
||||||
|
for name in os.listdir(GPT_weight_root):
|
||||||
|
if name.endswith(".ckpt"): GPT_names.append("%s/%s" % (GPT_weight_root, name))
|
||||||
|
return SoVITS_names, GPT_names
|
||||||
|
|
||||||
|
|
||||||
|
SoVITS_names, GPT_names = get_weights_names()
|
||||||
|
|
||||||
|
with gr.Blocks(title="GPT-SoVITS WebUI") as app:
|
||||||
|
gr.Markdown(
|
||||||
|
value=i18n("本软件以MIT协议开源, 作者不对软件具备任何控制力, 使用软件者、传播软件导出的声音者自负全责. <br>如不认可该条款, 则不能使用或引用软件包内任何代码和文件. 详见根目录<b>LICENSE</b>.")
|
||||||
|
)
|
||||||
|
with gr.Group():
|
||||||
|
gr.Markdown(value=i18n("模型切换"))
|
||||||
|
with gr.Row():
|
||||||
|
GPT_dropdown = gr.Dropdown(label=i18n("GPT模型列表"), choices=sorted(GPT_names, key=custom_sort_key), value=gpt_path, interactive=True)
|
||||||
|
SoVITS_dropdown = gr.Dropdown(label=i18n("SoVITS模型列表"), choices=sorted(SoVITS_names, key=custom_sort_key), value=sovits_path, interactive=True)
|
||||||
|
refresh_button = gr.Button(i18n("刷新模型路径"), variant="primary")
|
||||||
|
refresh_button.click(fn=change_choices, inputs=[], outputs=[SoVITS_dropdown, GPT_dropdown])
|
||||||
|
SoVITS_dropdown.change(change_sovits_weights, [SoVITS_dropdown], [])
|
||||||
|
GPT_dropdown.change(change_gpt_weights, [GPT_dropdown], [])
|
||||||
|
gr.Markdown(value=i18n("*请上传并填写参考信息"))
|
||||||
|
with gr.Row():
|
||||||
|
inp_ref = gr.Audio(label=i18n("请上传3~10秒内参考音频,超过会报错!"), type="filepath")
|
||||||
|
with gr.Column():
|
||||||
|
ref_text_free = gr.Checkbox(label=i18n("开启无参考文本模式。不填参考文本亦相当于开启。"), value=False, interactive=True, show_label=True)
|
||||||
|
gr.Markdown(i18n("使用无参考文本模式时建议使用微调的GPT,听不清参考音频说的啥(不晓得写啥)可以开,开启后无视填写的参考文本。"))
|
||||||
|
prompt_text = gr.Textbox(label=i18n("参考音频的文本"), value="")
|
||||||
|
prompt_language = gr.Dropdown(
|
||||||
|
label=i18n("参考音频的语种"), choices=[i18n("中文"), i18n("英文"), i18n("日文"), i18n("中英混合"), i18n("日英混合"), i18n("多语种混合")], value=i18n("中文")
|
||||||
|
)
|
||||||
|
gr.Markdown(value=i18n("*请填写需要合成的目标文本和语种模式"))
|
||||||
|
with gr.Row():
|
||||||
|
text = gr.Textbox(label=i18n("需要合成的文本"), value="")
|
||||||
|
text_language = gr.Dropdown(
|
||||||
|
label=i18n("需要合成的语种"), choices=[i18n("中文"), i18n("英文"), i18n("日文"), i18n("中英混合"), i18n("日英混合"), i18n("多语种混合")], value=i18n("中文")
|
||||||
|
)
|
||||||
|
how_to_cut = gr.Radio(
|
||||||
|
label=i18n("怎么切"),
|
||||||
|
choices=[i18n("不切"), i18n("凑四句一切"), i18n("凑50字一切"), i18n("按中文句号。切"), i18n("按英文句号.切"), i18n("按标点符号切"), ],
|
||||||
|
value=i18n("凑四句一切"),
|
||||||
|
interactive=True,
|
||||||
|
)
|
||||||
|
with gr.Row():
|
||||||
|
gr.Markdown(value=i18n("gpt采样参数(无参考文本时不要太低):"))
|
||||||
|
top_k = gr.Slider(minimum=1,maximum=100,step=1,label=i18n("top_k"),value=5,interactive=True)
|
||||||
|
top_p = gr.Slider(minimum=0,maximum=1,step=0.05,label=i18n("top_p"),value=1,interactive=True)
|
||||||
|
temperature = gr.Slider(minimum=0,maximum=1,step=0.05,label=i18n("temperature"),value=1,interactive=True)
|
||||||
|
inference_button = gr.Button(i18n("合成语音"), variant="primary")
|
||||||
|
output = gr.Audio(label=i18n("输出的语音"))
|
||||||
|
|
||||||
|
inference_button.click(
|
||||||
|
get_tts_wav,
|
||||||
|
[inp_ref, prompt_text, prompt_language, text, text_language, how_to_cut, top_k, top_p, temperature, ref_text_free],
|
||||||
|
[output],
|
||||||
|
)
|
||||||
|
|
||||||
|
gr.Markdown(value=i18n("文本切分工具。太长的文本合成出来效果不一定好,所以太长建议先切。合成会根据文本的换行分开合成再拼起来。"))
|
||||||
|
with gr.Row():
|
||||||
|
text_inp = gr.Textbox(label=i18n("需要合成的切分前文本"), value="")
|
||||||
|
button1 = gr.Button(i18n("凑四句一切"), variant="primary")
|
||||||
|
button2 = gr.Button(i18n("凑50字一切"), variant="primary")
|
||||||
|
button3 = gr.Button(i18n("按中文句号。切"), variant="primary")
|
||||||
|
button4 = gr.Button(i18n("按英文句号.切"), variant="primary")
|
||||||
|
button5 = gr.Button(i18n("按标点符号切"), variant="primary")
|
||||||
|
text_opt = gr.Textbox(label=i18n("切分后文本"), value="")
|
||||||
|
button1.click(cut1, [text_inp], [text_opt])
|
||||||
|
button2.click(cut2, [text_inp], [text_opt])
|
||||||
|
button3.click(cut3, [text_inp], [text_opt])
|
||||||
|
button4.click(cut4, [text_inp], [text_opt])
|
||||||
|
button5.click(cut5, [text_inp], [text_opt])
|
||||||
|
gr.Markdown(value=i18n("后续将支持转音素、手工修改音素、语音合成分步执行。"))
|
||||||
|
|
||||||
|
app.queue(concurrency_count=511, max_size=1022).launch(
|
||||||
|
server_name="0.0.0.0",
|
||||||
|
inbrowser=True,
|
||||||
|
share=is_share,
|
||||||
|
server_port=infer_ttswebui,
|
||||||
|
quiet=True,
|
||||||
|
)
|
@ -1,5 +1,6 @@
|
|||||||
import copy
|
import copy
|
||||||
import math
|
import math
|
||||||
|
from typing import List
|
||||||
import torch
|
import torch
|
||||||
from torch import nn
|
from torch import nn
|
||||||
from torch.nn import functional as F
|
from torch.nn import functional as F
|
||||||
@ -986,6 +987,55 @@ class SynthesizerTrn(nn.Module):
|
|||||||
|
|
||||||
o = self.dec((z * y_mask)[:, :, :], g=ge)
|
o = self.dec((z * y_mask)[:, :, :], g=ge)
|
||||||
return o
|
return o
|
||||||
|
|
||||||
|
|
||||||
|
@torch.no_grad()
|
||||||
|
def batched_decode(self, codes, y_lengths, text, text_lengths, refer, noise_scale=0.5):
|
||||||
|
ge = None
|
||||||
|
if refer is not None:
|
||||||
|
refer_lengths = torch.LongTensor([refer.size(2)]).to(refer.device)
|
||||||
|
refer_mask = torch.unsqueeze(
|
||||||
|
commons.sequence_mask(refer_lengths, refer.size(2)), 1
|
||||||
|
).to(refer.dtype)
|
||||||
|
ge = self.ref_enc(refer * refer_mask, refer_mask)
|
||||||
|
|
||||||
|
# y_mask = torch.unsqueeze(commons.sequence_mask(y_lengths, codes.size(2)), 1).to(
|
||||||
|
# codes.dtype
|
||||||
|
# )
|
||||||
|
y_lengths = (y_lengths * 2).long().to(codes.device)
|
||||||
|
text_lengths = text_lengths.long().to(text.device)
|
||||||
|
# y_lengths = torch.LongTensor([codes.size(2) * 2]).to(codes.device)
|
||||||
|
# text_lengths = torch.LongTensor([text.size(-1)]).to(text.device)
|
||||||
|
|
||||||
|
# 假设padding之后再decode没有问题, 影响未知,但听起来好像没问题?
|
||||||
|
quantized = self.quantizer.decode(codes)
|
||||||
|
if self.semantic_frame_rate == "25hz":
|
||||||
|
quantized = F.interpolate(
|
||||||
|
quantized, size=int(quantized.shape[-1] * 2), mode="nearest"
|
||||||
|
)
|
||||||
|
|
||||||
|
x, m_p, logs_p, y_mask = self.enc_p(
|
||||||
|
quantized, y_lengths, text, text_lengths, ge
|
||||||
|
)
|
||||||
|
z_p = m_p + torch.randn_like(m_p) * torch.exp(logs_p) * noise_scale
|
||||||
|
|
||||||
|
z = self.flow(z_p, y_mask, g=ge, reverse=True)
|
||||||
|
z_masked = (z * y_mask)[:, :, :]
|
||||||
|
|
||||||
|
# 串行。把padding部分去掉再decode
|
||||||
|
o_list:List[torch.Tensor] = []
|
||||||
|
for i in range(z_masked.shape[0]):
|
||||||
|
z_slice = z_masked[i, :, :y_lengths[i]].unsqueeze(0)
|
||||||
|
o = self.dec(z_slice, g=ge)[0, 0, :].detach()
|
||||||
|
o_list.append(o)
|
||||||
|
|
||||||
|
# 并行(会有问题)。先decode,再把padding的部分去掉
|
||||||
|
# o = self.dec(z_masked, g=ge)
|
||||||
|
# upsample_rate = int(math.prod(self.upsample_rates))
|
||||||
|
# o_lengths = y_lengths*upsample_rate
|
||||||
|
# o_list = [o[i, 0, :idx].detach() for i, idx in enumerate(o_lengths)]
|
||||||
|
|
||||||
|
return o_list
|
||||||
|
|
||||||
def extract_latent(self, x):
|
def extract_latent(self, x):
|
||||||
ssl = self.ssl_proj(x)
|
ssl = self.ssl_proj(x)
|
||||||
|
Loading…
x
Reference in New Issue
Block a user