bug修复

This commit is contained in:
Downupanddownup 2024-04-26 14:16:16 +08:00
parent 2880e3a6f8
commit 878fef248a
5 changed files with 114 additions and 12 deletions

View File

@ -289,7 +289,7 @@ def text_similarity_analysis(text_work_space_dir, text_role,
return i18n(text_text_similarity_analysis_info)
def open_text_similarity_analysis(asr_file_path, output_dir, similarity_enlarge_boundary=0.8):
def open_text_similarity_analysis(asr_file_path, output_dir, similarity_enlarge_boundary=0.9):
global p_text_similarity
if p_text_similarity is None:
cmd = f'"{python_exec}" Ref_Audio_Selector/tool/text_comparison/asr_text_process.py '

View File

@ -85,19 +85,15 @@ def generate_audio_files(url_composer, text_list, emotion_list, output_dir_path)
emotion_subdir = os.path.join(output_dir, params.inference_audio_emotion_aggregation_dir)
os.makedirs(emotion_subdir, exist_ok=True)
all_count = len(text_list) * len(emotion_list)
has_generated_count = 0
# 计算笛卡尔积
cartesian_product = list(itertools.product(text_list, emotion_list))
for text, emotion in cartesian_product:
# Generate audio byte stream using the create_audio function
if url_composer.is_emotion():
real_url = url_composer.build_url_with_emotion(text, emotion['emotion'])
else:
real_url = url_composer.build_url_with_ref(text, emotion['ref_path'], emotion['ref_text'])
audio_bytes = inference_audio_from_api(real_url)
emotion_name = emotion['emotion']
text_subdir_text = os.path.join(text_subdir, text)
@ -108,12 +104,28 @@ def generate_audio_files(url_composer, text_list, emotion_list, output_dir_path)
os.makedirs(emotion_subdir_emotion, exist_ok=True)
emotion_subdir_emotion_file_path = os.path.join(emotion_subdir_emotion, text + '.wav')
# 检查是否已经存在对应的音频文件,如果存在则跳过
if os.path.exists(text_subdir_text_file_path) and os.path.exists(emotion_subdir_emotion_file_path):
has_generated_count += 1
print(f"进度: {has_generated_count}/{all_count}")
continue
if url_composer.is_emotion():
real_url = url_composer.build_url_with_emotion(text, emotion['emotion'])
else:
real_url = url_composer.build_url_with_ref(text, emotion['ref_path'], emotion['ref_text'])
audio_bytes = inference_audio_from_api(real_url)
# Write audio bytes to the respective files
with open(text_subdir_text_file_path, 'wb') as f:
f.write(audio_bytes)
with open(emotion_subdir_emotion_file_path, 'wb') as f:
f.write(audio_bytes)
has_generated_count += 1
print(f"进度: {has_generated_count}/{all_count}")
def inference_audio_from_api(url):
# 发起GET请求

View File

@ -142,7 +142,7 @@ def copy_and_move(output_audio_directory, similarity_scores):
for item in similarity_scores:
# 构造新的文件名
base_name = os.path.basename(item['wav_path'])[:-4] # 去掉.wav扩展名
new_name = f"{item['score']}-{base_name}.wav"
new_name = f"{item['score']*10000:04.0f}-{base_name}.wav"
# 新文件的完整路径
new_path = os.path.join(output_audio_directory, new_name)

View File

@ -33,10 +33,16 @@ def parse_asr_file(file_path):
return output
@timeit_decorator
def calculate_similarity_and_append_to_list(input_list, boundary):
all_count = len(input_list)
has_been_processed_count = 0
for item in input_list:
_, similarity_score = text_comparison.calculate_result(item['original_text'], item['asr_text'], boundary)
original_score, similarity_score = text_comparison.calculate_result(item['original_text'], item['asr_text'], boundary)
item['similarity_score'] = similarity_score
item['original_score'] = original_score
has_been_processed_count += 1
print(f'进度:{has_been_processed_count}/{all_count}')
return input_list
@ -79,13 +85,27 @@ def group_and_sort_by_field(data, group_by_field):
def format_list_to_text(data_list, output_filename):
with open(output_filename, 'w', encoding='utf-8') as output_file:
output_file.write('放大后的相似度分值|原始分值|ASR文本|原文文本\n')
for key, items in data_list:
# 写入情绪标题
output_file.write(key + '\n')
# 写入每条记录
for item in items:
formatted_line = f"{item['similarity_score']}|{item['original_text']}|{item['asr_text']}\n"
formatted_line = f"{item['similarity_score']}|{item['original_score']}|{item['asr_text']}|{item['original_text']}\n"
output_file.write(formatted_line)
def format_list_to_emotion(data_list, output_filename):
with open(output_filename, 'w', encoding='utf-8') as output_file:
output_file.write('放大后的相似度分值|原始分值|ASR文本|情绪类型\n')
for key, items in data_list:
# 写入情绪标题
output_file.write(key + '\n')
# 写入每条记录
for item in items:
formatted_line = f"{item['similarity_score']}|{item['original_score']}|{item['asr_text']}|{item['emotion']}\n"
output_file.write(formatted_line)
@ -113,7 +133,7 @@ def process(asr_file_path, output_dir, similarity_enlarge_boundary):
original_text_detail_list = group_and_sort_by_field(records, 'original_text')
original_text_detail_file = os.path.join(output_dir, f'{params.text_similarity_by_text_detail_filename}.txt')
format_list_to_text(original_text_detail_list, original_text_detail_file)
format_list_to_emotion(original_text_detail_list, original_text_detail_file)
print('文本相似度分析完成。')

View File

@ -51,3 +51,73 @@ def calculate_result(t1, t2, boundary):
return similarity_score2, adjusted_similarity_score2
def print_result(t1, t2, boundary):
print(f't2: {t2}')
# 计算并打印相似度
similarity_score2 = calculate_similarity(t1, t2)
print(f"两句话的相似度为: {similarity_score2:.4f}")
# 调整相似度
adjusted_similarity_score2 = adjusted_similarity(similarity_score2, boundary)
print(f"调整后的相似度为: {adjusted_similarity_score2:.4f}")
def test(boundary):
# 原始文本
text1 = "这是第一个句子"
list = """
这是第一个句子
这是第二个句子
那么这是第三个表达
当前呈现的是第四个句子
接下来我们有第五句话
在此展示第六条陈述
继续下去这是第七个短句
不容忽视的是第八个表述
顺延着序列这是第九句
此处列举的是第十个说法
进入新的篇章这是第十一个句子
下一段内容即为第十二个句子
显而易见这是第十三个叙述
渐进地我们来到第十四句话
向下滚动您会看到第十五个表达
此刻呈现在眼前的是第十六个句子
它们中的一个第十七个句子在此
如同链条般连接这是第十八个断言
按照顺序排列接下来是第十九个话语
逐一列举这是第二十个陈述句
结构相似本例给出第二十一个实例句
这是最初的陈述句
首先表达的是这一个句子
第一句内容即为此处所示
这是起始的叙述段落
开篇所展示的第一句话就是这个
明媚的阳光洒满大地
窗外飘落粉色樱花瓣
笔尖轻触纸面思绪万千
深夜的月光如水般静谧
穿越丛林的小径蜿蜒曲折
浅酌清茶品味人生百态
破晓时分雄鸡一唱天下白
草原上奔驰的骏马无拘无束
秋叶纷飞描绘季节更替画卷
寒冬雪夜炉火旁围坐共话家常
kszdRjYXw
pfsMgTlVHnB
uQaGxIbWz
ZtqNhPmKcOe
jfyrXsStVUo
wDiEgLkZbn
yhNvAfUmqC
TpKjxMrWgs
eBzHUaFJtYd
oQnXcVSiPkL
00000
"""
list2 = list.strip().split('\n')
for item in list2:
print_result(text1, item, boundary)
if __name__ == '__main__':
test(0.9)