mirror of
https://github.com/RVC-Boss/GPT-SoVITS.git
synced 2025-04-05 19:41:56 +08:00
bug修复
This commit is contained in:
parent
2880e3a6f8
commit
878fef248a
@ -289,7 +289,7 @@ def text_similarity_analysis(text_work_space_dir, text_role,
|
||||
return i18n(text_text_similarity_analysis_info)
|
||||
|
||||
|
||||
def open_text_similarity_analysis(asr_file_path, output_dir, similarity_enlarge_boundary=0.8):
|
||||
def open_text_similarity_analysis(asr_file_path, output_dir, similarity_enlarge_boundary=0.9):
|
||||
global p_text_similarity
|
||||
if p_text_similarity is None:
|
||||
cmd = f'"{python_exec}" Ref_Audio_Selector/tool/text_comparison/asr_text_process.py '
|
||||
|
@ -85,19 +85,15 @@ def generate_audio_files(url_composer, text_list, emotion_list, output_dir_path)
|
||||
emotion_subdir = os.path.join(output_dir, params.inference_audio_emotion_aggregation_dir)
|
||||
os.makedirs(emotion_subdir, exist_ok=True)
|
||||
|
||||
all_count = len(text_list) * len(emotion_list)
|
||||
has_generated_count = 0
|
||||
|
||||
# 计算笛卡尔积
|
||||
cartesian_product = list(itertools.product(text_list, emotion_list))
|
||||
|
||||
for text, emotion in cartesian_product:
|
||||
# Generate audio byte stream using the create_audio function
|
||||
|
||||
if url_composer.is_emotion():
|
||||
real_url = url_composer.build_url_with_emotion(text, emotion['emotion'])
|
||||
else:
|
||||
real_url = url_composer.build_url_with_ref(text, emotion['ref_path'], emotion['ref_text'])
|
||||
|
||||
audio_bytes = inference_audio_from_api(real_url)
|
||||
|
||||
emotion_name = emotion['emotion']
|
||||
|
||||
text_subdir_text = os.path.join(text_subdir, text)
|
||||
@ -108,12 +104,28 @@ def generate_audio_files(url_composer, text_list, emotion_list, output_dir_path)
|
||||
os.makedirs(emotion_subdir_emotion, exist_ok=True)
|
||||
emotion_subdir_emotion_file_path = os.path.join(emotion_subdir_emotion, text + '.wav')
|
||||
|
||||
# 检查是否已经存在对应的音频文件,如果存在则跳过
|
||||
if os.path.exists(text_subdir_text_file_path) and os.path.exists(emotion_subdir_emotion_file_path):
|
||||
has_generated_count += 1
|
||||
print(f"进度: {has_generated_count}/{all_count}")
|
||||
continue
|
||||
|
||||
if url_composer.is_emotion():
|
||||
real_url = url_composer.build_url_with_emotion(text, emotion['emotion'])
|
||||
else:
|
||||
real_url = url_composer.build_url_with_ref(text, emotion['ref_path'], emotion['ref_text'])
|
||||
|
||||
audio_bytes = inference_audio_from_api(real_url)
|
||||
|
||||
# Write audio bytes to the respective files
|
||||
with open(text_subdir_text_file_path, 'wb') as f:
|
||||
f.write(audio_bytes)
|
||||
with open(emotion_subdir_emotion_file_path, 'wb') as f:
|
||||
f.write(audio_bytes)
|
||||
|
||||
has_generated_count += 1
|
||||
print(f"进度: {has_generated_count}/{all_count}")
|
||||
|
||||
|
||||
def inference_audio_from_api(url):
|
||||
# 发起GET请求
|
||||
|
@ -142,7 +142,7 @@ def copy_and_move(output_audio_directory, similarity_scores):
|
||||
for item in similarity_scores:
|
||||
# 构造新的文件名
|
||||
base_name = os.path.basename(item['wav_path'])[:-4] # 去掉.wav扩展名
|
||||
new_name = f"{item['score']}-{base_name}.wav"
|
||||
new_name = f"{item['score']*10000:04.0f}-{base_name}.wav"
|
||||
|
||||
# 新文件的完整路径
|
||||
new_path = os.path.join(output_audio_directory, new_name)
|
||||
|
@ -33,10 +33,16 @@ def parse_asr_file(file_path):
|
||||
return output
|
||||
|
||||
|
||||
@timeit_decorator
|
||||
def calculate_similarity_and_append_to_list(input_list, boundary):
|
||||
all_count = len(input_list)
|
||||
has_been_processed_count = 0
|
||||
for item in input_list:
|
||||
_, similarity_score = text_comparison.calculate_result(item['original_text'], item['asr_text'], boundary)
|
||||
original_score, similarity_score = text_comparison.calculate_result(item['original_text'], item['asr_text'], boundary)
|
||||
item['similarity_score'] = similarity_score
|
||||
item['original_score'] = original_score
|
||||
has_been_processed_count += 1
|
||||
print(f'进度:{has_been_processed_count}/{all_count}')
|
||||
|
||||
return input_list
|
||||
|
||||
@ -79,13 +85,27 @@ def group_and_sort_by_field(data, group_by_field):
|
||||
|
||||
def format_list_to_text(data_list, output_filename):
|
||||
with open(output_filename, 'w', encoding='utf-8') as output_file:
|
||||
output_file.write('放大后的相似度分值|原始分值|ASR文本|原文文本\n')
|
||||
for key, items in data_list:
|
||||
# 写入情绪标题
|
||||
output_file.write(key + '\n')
|
||||
|
||||
# 写入每条记录
|
||||
for item in items:
|
||||
formatted_line = f"{item['similarity_score']}|{item['original_text']}|{item['asr_text']}\n"
|
||||
formatted_line = f"{item['similarity_score']}|{item['original_score']}|{item['asr_text']}|{item['original_text']}\n"
|
||||
output_file.write(formatted_line)
|
||||
|
||||
|
||||
def format_list_to_emotion(data_list, output_filename):
|
||||
with open(output_filename, 'w', encoding='utf-8') as output_file:
|
||||
output_file.write('放大后的相似度分值|原始分值|ASR文本|情绪类型\n')
|
||||
for key, items in data_list:
|
||||
# 写入情绪标题
|
||||
output_file.write(key + '\n')
|
||||
|
||||
# 写入每条记录
|
||||
for item in items:
|
||||
formatted_line = f"{item['similarity_score']}|{item['original_score']}|{item['asr_text']}|{item['emotion']}\n"
|
||||
output_file.write(formatted_line)
|
||||
|
||||
|
||||
@ -113,7 +133,7 @@ def process(asr_file_path, output_dir, similarity_enlarge_boundary):
|
||||
original_text_detail_list = group_and_sort_by_field(records, 'original_text')
|
||||
|
||||
original_text_detail_file = os.path.join(output_dir, f'{params.text_similarity_by_text_detail_filename}.txt')
|
||||
format_list_to_text(original_text_detail_list, original_text_detail_file)
|
||||
format_list_to_emotion(original_text_detail_list, original_text_detail_file)
|
||||
|
||||
print('文本相似度分析完成。')
|
||||
|
||||
|
@ -51,3 +51,73 @@ def calculate_result(t1, t2, boundary):
|
||||
return similarity_score2, adjusted_similarity_score2
|
||||
|
||||
|
||||
def print_result(t1, t2, boundary):
|
||||
print(f't2: {t2}')
|
||||
# 计算并打印相似度
|
||||
similarity_score2 = calculate_similarity(t1, t2)
|
||||
print(f"两句话的相似度为: {similarity_score2:.4f}")
|
||||
|
||||
# 调整相似度
|
||||
adjusted_similarity_score2 = adjusted_similarity(similarity_score2, boundary)
|
||||
print(f"调整后的相似度为: {adjusted_similarity_score2:.4f}")
|
||||
|
||||
|
||||
def test(boundary):
|
||||
# 原始文本
|
||||
text1 = "这是第一个句子"
|
||||
list = """
|
||||
这是第一个句子
|
||||
这是第二个句子。
|
||||
那么,这是第三个表达。
|
||||
当前呈现的是第四个句子。
|
||||
接下来,我们有第五句话。
|
||||
在此,展示第六条陈述。
|
||||
继续下去,这是第七个短句。
|
||||
不容忽视的是第八个表述。
|
||||
顺延着序列,这是第九句。
|
||||
此处列举的是第十个说法。
|
||||
进入新的篇章,这是第十一个句子。
|
||||
下一段内容即为第十二个句子。
|
||||
显而易见,这是第十三个叙述。
|
||||
渐进地,我们来到第十四句话。
|
||||
向下滚动,您会看到第十五个表达。
|
||||
此刻,呈现在眼前的是第十六个句子。
|
||||
它们中的一个——第十七个句子在此。
|
||||
如同链条般连接,这是第十八个断言。
|
||||
按照顺序排列,接下来是第十九个话语。
|
||||
逐一列举,这是第二十个陈述句。
|
||||
结构相似,本例给出第二十一个实例句。
|
||||
这是最初的陈述句。
|
||||
首先表达的是这一个句子。
|
||||
第一句内容即为此处所示。
|
||||
这是起始的叙述段落。
|
||||
开篇所展示的第一句话就是这个。
|
||||
明媚的阳光洒满大地
|
||||
窗外飘落粉色樱花瓣
|
||||
笔尖轻触纸面思绪万千
|
||||
深夜的月光如水般静谧
|
||||
穿越丛林的小径蜿蜒曲折
|
||||
浅酌清茶品味人生百态
|
||||
破晓时分雄鸡一唱天下白
|
||||
草原上奔驰的骏马无拘无束
|
||||
秋叶纷飞描绘季节更替画卷
|
||||
寒冬雪夜炉火旁围坐共话家常
|
||||
kszdRjYXw
|
||||
pfsMgTlVHnB
|
||||
uQaGxIbWz
|
||||
ZtqNhPmKcOe
|
||||
jfyrXsStVUo
|
||||
wDiEgLkZbn
|
||||
yhNvAfUmqC
|
||||
TpKjxMrWgs
|
||||
eBzHUaFJtYd
|
||||
oQnXcVSiPkL
|
||||
00000
|
||||
"""
|
||||
list2 = list.strip().split('\n')
|
||||
for item in list2:
|
||||
print_result(text1, item, boundary)
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
test(0.9)
|
||||
|
Loading…
x
Reference in New Issue
Block a user