缓解了batch_size>1时的复读问题,缓解方法是:在T2S模型中,先对phones进行embedding、对bert_features进行project,再pad到相同长度。

This commit is contained in:
chasonjiang 2024-03-16 21:04:49 +08:00
parent 3c78539c44
commit 864a148d75
2 changed files with 85 additions and 43 deletions

View File

@ -504,18 +504,29 @@ class Text2SemanticDecoder(nn.Module):
def infer_panel_batch_infer_with_flash_attn(
self,
x, #####全部文本token
x_lens,
prompts, ####参考音频token
bert_feature,
x:List[torch.LongTensor], #####全部文本token
x_lens:torch.LongTensor,
prompts:torch.LongTensor, ####参考音频token
bert_feature:List[torch.LongTensor],
top_k: int = -100,
top_p: int = 100,
early_stop_num: int = -1,
temperature: float = 1.0,
):
bert_feature = self.bert_proj(bert_feature.transpose(1, 2))
x = self.ar_text_embedding(x)
# 先对phones进行embedding、对bert_features进行project再pad到相同长度以缓解复读问题。可能还有其他因素导致复读
max_len = 0
for x_item, bert_item in zip(x, bert_feature):
max_len = max(max_len, x_item.shape[0], bert_item.shape[1])
x_list = [self.ar_text_embedding(item) for item in x]
x_list = [F.pad(item,(0,0,0,max_len-item.shape[0]),value=0) if item.shape[0]<max_len else item for item in x_list]
x = torch.stack(x_list, dim=0)
bert_features_list = [self.bert_proj(item.transpose(0, 1)) for item in bert_feature]
bert_features_list = [F.pad(item,(0,0,0,max_len-item.shape[0]), value=0) if item.shape[0]<max_len else item for item in bert_features_list]
bert_feature = torch.stack(bert_features_list, dim=0)
# bert_feature = self.bert_proj(bert_feature.transpose(1, 2))
# x = self.ar_text_embedding(x)
x = x + bert_feature
x = self.ar_text_position(x)
@ -658,17 +669,30 @@ class Text2SemanticDecoder(nn.Module):
def infer_panel_batch_only(
self,
x, #####全部文本token
x_lens,
prompts, ####参考音频token
bert_feature,
x:List[torch.LongTensor], #####全部文本token
x_lens:torch.LongTensor,
prompts:torch.LongTensor, ####参考音频token
bert_feature:List[torch.LongTensor],
top_k: int = -100,
top_p: int = 100,
early_stop_num: int = -1,
temperature: float = 1.0,
):
x = self.ar_text_embedding(x)
x = x + self.bert_proj(bert_feature.transpose(1, 2))
# 先对phones进行embedding、对bert_features进行project再pad到相同长度以缓解复读问题。可能还有其他因素导致复读
max_len = 0
for x_item, bert_item in zip(x, bert_feature):
max_len = max(max_len, x_item.shape[0], bert_item.shape[1])
x_list = [self.ar_text_embedding(item) for item in x]
x_list = [F.pad(item,(0,0,0,max_len-item.shape[0]),value=0) if item.shape[0]<max_len else item for item in x_list]
x = torch.stack(x_list, dim=0)
bert_features_list = [self.bert_proj(item.transpose(0, 1)) for item in bert_feature]
bert_features_list = [F.pad(item,(0,0,0,max_len-item.shape[0]), value=0) if item.shape[0]<max_len else item for item in bert_features_list]
bert_feature = torch.stack(bert_features_list, dim=0)
# bert_feature = self.bert_proj(bert_feature.transpose(1, 2))
# x = self.ar_text_embedding(x)
x = x + bert_feature
x = self.ar_text_position(x)
# AR Decoder

View File

@ -55,6 +55,7 @@ def set_seed(seed:int):
seed = int(seed)
seed = seed if seed != -1 else random.randrange(1 << 32)
print(f"Set seed to {seed}")
os.environ['PYTHONHASHSEED'] = str(seed)
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
@ -428,7 +429,14 @@ class TTS:
batch = torch.stack(padded_sequences)
return batch
def to_batch(self, data:list, prompt_data:dict=None, batch_size:int=5, threshold:float=0.75, split_bucket:bool=True):
def to_batch(self, data:list,
prompt_data:dict=None,
batch_size:int=5,
threshold:float=0.75,
split_bucket:bool=True,
device:torch.device=torch.device("cpu"),
precison:torch.dtype=torch.float32,
):
_data:list = []
index_and_len_list = []
@ -480,14 +488,14 @@ class TTS:
for item in item_list:
if prompt_data is not None:
all_bert_features = torch.cat([prompt_data["bert_features"], item["bert_features"]], 1)\
.to(dtype=self.precison)
all_phones = torch.LongTensor(prompt_data["phones"]+item["phones"])
phones = torch.LongTensor(item["phones"])
.to(dtype=precison, device=device)
all_phones = torch.LongTensor(prompt_data["phones"]+item["phones"]).to(device)
phones = torch.LongTensor(item["phones"]).to(device)
# norm_text = prompt_data["norm_text"]+item["norm_text"]
else:
all_bert_features = item["bert_features"]\
.to(dtype=self.precison)
phones = torch.LongTensor(item["phones"])
.to(dtype=precison, device=device)
phones = torch.LongTensor(item["phones"]).to(device)
all_phones = phones
# norm_text = item["norm_text"]
@ -502,19 +510,33 @@ class TTS:
norm_text_batch.append(item["norm_text"])
phones_batch = phones_list
max_len = max(bert_max_len, phones_max_len)
all_phones_batch = all_phones_list
all_bert_features_batch = all_bert_features_list
# max_len = max(bert_max_len, phones_max_len)
# phones_batch = self.batch_sequences(phones_list, axis=0, pad_value=0, max_length=max_len)
all_phones_batch = self.batch_sequences(all_phones_list, axis=0, pad_value=0, max_length=max_len)
#### 直接对phones和bert_features进行pad会增大复读概率。
# all_phones_batch = self.batch_sequences(all_phones_list, axis=0, pad_value=0, max_length=max_len)
# all_bert_features_batch = all_bert_features_list
all_bert_features_batch = torch.zeros(len(item_list), 1024, max_len, dtype=self.precison)
for idx, item in enumerate(all_bert_features_list):
all_bert_features_batch[idx, :, : item.shape[-1]] = item
# all_bert_features_batch = torch.zeros(len(item_list), 1024, max_len, dtype=precison, device=device)
# for idx, item in enumerate(all_bert_features_list):
# all_bert_features_batch[idx, :, : item.shape[-1]] = item
# #### 先对phones进行embedding、对bert_features进行project再pad到相同长度以缓解复读问题。可能还有其他因素导致复读
# all_phones_list = [self.t2s_model.model.ar_text_embedding(item.to(self.t2s_model.device)) for item in all_phones_list]
# all_phones_list = [F.pad(item,(0,0,0,max_len-item.shape[0]),value=0) for item in all_phones_list]
# all_phones_batch = torch.stack(all_phones_list, dim=0)
# all_bert_features_list = [self.t2s_model.model.bert_proj(item.to(self.t2s_model.device).transpose(0, 1)) for item in all_bert_features_list]
# all_bert_features_list = [F.pad(item,(0,0,0,max_len-item.shape[0]), value=0) for item in all_bert_features_list]
# all_bert_features_batch = torch.stack(all_bert_features_list, dim=0)
batch = {
"phones": phones_batch,
"phones_len": torch.LongTensor(phones_len_list),
"phones_len": torch.LongTensor(phones_len_list).to(device),
"all_phones": all_phones_batch,
"all_phones_len": torch.LongTensor(all_phones_len_list),
"all_phones_len": torch.LongTensor(all_phones_len_list).to(device),
"all_bert_features": all_bert_features_batch,
"norm_text": norm_text_batch
}
@ -658,7 +680,9 @@ class TTS:
prompt_data=self.prompt_cache if not no_prompt_text else None,
batch_size=batch_size,
threshold=batch_threshold,
split_bucket=split_bucket
split_bucket=split_bucket,
device=self.configs.device,
precison=self.precison
)
else:
print(i18n("############ 切分文本 ############"))
@ -688,7 +712,9 @@ class TTS:
prompt_data=self.prompt_cache if not no_prompt_text else None,
batch_size=batch_size,
threshold=batch_threshold,
split_bucket=False
split_bucket=False,
device=self.configs.device,
precison=self.precison
)
return batch[0]
@ -706,26 +732,18 @@ class TTS:
if item is None:
continue
batch_phones = item["phones"]
batch_phones_len = item["phones_len"]
all_phoneme_ids = item["all_phones"]
all_phoneme_lens = item["all_phones_len"]
all_bert_features = item["all_bert_features"]
norm_text = item["norm_text"]
# batch_phones = batch_phones.to(self.configs.device)
batch_phones_len = batch_phones_len.to(self.configs.device)
all_phoneme_ids = all_phoneme_ids.to(self.configs.device)
all_phoneme_lens = all_phoneme_lens.to(self.configs.device)
all_bert_features = all_bert_features.to(self.configs.device)
if self.configs.is_half:
all_bert_features = all_bert_features.half()
batch_phones:List[torch.LongTensor] = item["phones"]
batch_phones_len:torch.LongTensor = item["phones_len"]
all_phoneme_ids:List[torch.LongTensor] = item["all_phones"]
all_phoneme_lens:torch.LongTensor = item["all_phones_len"]
all_bert_features:List[torch.LongTensor] = item["all_bert_features"]
norm_text:str = item["norm_text"]
print(i18n("前端处理后的文本(每句):"), norm_text)
if no_prompt_text :
prompt = None
else:
prompt = self.prompt_cache["prompt_semantic"].expand(all_phoneme_ids.shape[0], -1).to(self.configs.device)
prompt = self.prompt_cache["prompt_semantic"].expand(len(all_phoneme_ids), -1).to(self.configs.device)
with torch.no_grad():
pred_semantic_list, idx_list = self.t2s_model.model.infer_panel(