mirror of
https://github.com/RVC-Boss/GPT-SoVITS.git
synced 2025-10-09 00:10:00 +08:00
Improve the consistency between ONNX and torch
This commit is contained in:
parent
a495540f2a
commit
825588b526
@ -69,7 +69,8 @@ def logits_to_probs(
|
|||||||
def multinomial_sample_one_no_sync(
|
def multinomial_sample_one_no_sync(
|
||||||
probs_sort
|
probs_sort
|
||||||
): # Does multinomial sampling without a cuda synchronization
|
): # Does multinomial sampling without a cuda synchronization
|
||||||
q = torch.randn_like(probs_sort)
|
lambda_ = 1.0
|
||||||
|
q = -torch.log(torch.rand_like(probs_sort)) / lambda_
|
||||||
return torch.argmax(probs_sort / q, dim=-1, keepdim=True).to(dtype=torch.int)
|
return torch.argmax(probs_sort / q, dim=-1, keepdim=True).to(dtype=torch.int)
|
||||||
|
|
||||||
|
|
||||||
@ -152,6 +153,7 @@ class T2SFirstStageDecoder(nn.Module):
|
|||||||
|
|
||||||
xy_dec = self.h(xy_pos, mask=xy_attn_mask, cache=cache)
|
xy_dec = self.h(xy_pos, mask=xy_attn_mask, cache=cache)
|
||||||
logits = self.ar_predict_layer(xy_dec[:, -1])
|
logits = self.ar_predict_layer(xy_dec[:, -1])
|
||||||
|
logits = logits[:, :-1] ###刨除1024终止符号的概率
|
||||||
samples = sample(logits[0], y, top_k=self.top_k, top_p=1.0, repetition_penalty=1.35)[0].unsqueeze(0)
|
samples = sample(logits[0], y, top_k=self.top_k, top_p=1.0, repetition_penalty=1.35)[0].unsqueeze(0)
|
||||||
|
|
||||||
y = torch.concat([y, samples], dim=1)
|
y = torch.concat([y, samples], dim=1)
|
||||||
|
@ -50,10 +50,15 @@ class SinePositionalEmbedding(nn.Module):
|
|||||||
self.div_term = torch.exp(torch.arange(0, self.embedding_dim, 2) * -(math.log(10000.0) / self.embedding_dim))
|
self.div_term = torch.exp(torch.arange(0, self.embedding_dim, 2) * -(math.log(10000.0) / self.embedding_dim))
|
||||||
|
|
||||||
def extend_pe(self, x):
|
def extend_pe(self, x):
|
||||||
position = torch.cumsum(torch.ones_like(x[:,:,0]), dim=1).transpose(0, 1)
|
position = torch.arange(0, x.size(1), dtype=torch.float32).unsqueeze(1)
|
||||||
scpe = (position * self.div_term).unsqueeze(0)
|
div_term = torch.exp(
|
||||||
pe = torch.cat([torch.sin(scpe), torch.cos(scpe)]).permute(1, 2, 0)
|
torch.arange(0, self.embedding_dim, 2, dtype=torch.float32)
|
||||||
pe = pe.contiguous().view(1, -1, self.embedding_dim)
|
* -(math.log(10000.0) / self.embedding_dim)
|
||||||
|
)
|
||||||
|
pe = torch.zeros(x.size(1), self.embedding_dim)
|
||||||
|
pe[:, 0::2] = torch.sin(position * div_term)
|
||||||
|
pe[:, 1::2] = torch.cos(position * div_term)
|
||||||
|
pe = pe.unsqueeze(0)
|
||||||
return pe
|
return pe
|
||||||
|
|
||||||
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
||||||
|
@ -892,7 +892,7 @@ class SynthesizerTrn(nn.Module):
|
|||||||
# self.enc_p.encoder_text.requires_grad_(False)
|
# self.enc_p.encoder_text.requires_grad_(False)
|
||||||
# self.enc_p.mrte.requires_grad_(False)
|
# self.enc_p.mrte.requires_grad_(False)
|
||||||
|
|
||||||
def forward(self, codes, text, refer):
|
def forward(self, codes, text, refer, noise_scale=0.5):
|
||||||
refer_mask = torch.ones_like(refer[:1,:1,:])
|
refer_mask = torch.ones_like(refer[:1,:1,:])
|
||||||
ge = self.ref_enc(refer * refer_mask, refer_mask)
|
ge = self.ref_enc(refer * refer_mask, refer_mask)
|
||||||
|
|
||||||
@ -905,7 +905,7 @@ class SynthesizerTrn(nn.Module):
|
|||||||
quantized, text, ge
|
quantized, text, ge
|
||||||
)
|
)
|
||||||
|
|
||||||
z_p = m_p + torch.randn_like(m_p) * torch.exp(logs_p)
|
z_p = m_p + torch.randn_like(m_p) * torch.exp(logs_p) * noise_scale
|
||||||
|
|
||||||
z = self.flow(z_p, y_mask, g=ge, reverse=True)
|
z = self.flow(z_p, y_mask, g=ge, reverse=True)
|
||||||
|
|
||||||
|
@ -4,7 +4,7 @@ import torch
|
|||||||
import torchaudio
|
import torchaudio
|
||||||
from torch import nn
|
from torch import nn
|
||||||
from feature_extractor import cnhubert
|
from feature_extractor import cnhubert
|
||||||
cnhubert_base_path = "pretrained_models/chinese-hubert-base"
|
cnhubert_base_path = "GPT_SoVITS/pretrained_models/chinese-hubert-base"
|
||||||
cnhubert.cnhubert_base_path=cnhubert_base_path
|
cnhubert.cnhubert_base_path=cnhubert_base_path
|
||||||
ssl_model = cnhubert.get_model()
|
ssl_model = cnhubert.get_model()
|
||||||
from text import cleaned_text_to_sequence
|
from text import cleaned_text_to_sequence
|
||||||
@ -266,6 +266,22 @@ class SSLModel(nn.Module):
|
|||||||
def forward(self, ref_audio_16k):
|
def forward(self, ref_audio_16k):
|
||||||
return self.ssl.model(ref_audio_16k)["last_hidden_state"].transpose(1, 2)
|
return self.ssl.model(ref_audio_16k)["last_hidden_state"].transpose(1, 2)
|
||||||
|
|
||||||
|
def export(self, ref_audio_16k, project_name):
|
||||||
|
self.ssl.model.eval()
|
||||||
|
torch.onnx.export(
|
||||||
|
self,
|
||||||
|
(ref_audio_16k),
|
||||||
|
f"onnx/{project_name}/{project_name}_cnhubert.onnx",
|
||||||
|
input_names=["ref_audio_16k"],
|
||||||
|
output_names=["last_hidden_state"],
|
||||||
|
dynamic_axes={
|
||||||
|
"ref_audio_16k": {1 : "text_length"},
|
||||||
|
"last_hidden_state": {2 : "pred_length"}
|
||||||
|
},
|
||||||
|
opset_version=17,
|
||||||
|
verbose=False
|
||||||
|
)
|
||||||
|
|
||||||
|
|
||||||
def export(vits_path, gpt_path, project_name):
|
def export(vits_path, gpt_path, project_name):
|
||||||
vits = VitsModel(vits_path)
|
vits = VitsModel(vits_path)
|
||||||
@ -300,6 +316,7 @@ def export(vits_path, gpt_path, project_name):
|
|||||||
|
|
||||||
soundfile.write("out.wav", a, vits.hps.data.sampling_rate)
|
soundfile.write("out.wav", a, vits.hps.data.sampling_rate)
|
||||||
|
|
||||||
|
ssl.export(ref_audio_16k, project_name)
|
||||||
gpt_sovits.export(ref_seq, text_seq, ref_bert, text_bert, ref_audio_sr, ssl_content, project_name)
|
gpt_sovits.export(ref_seq, text_seq, ref_bert, text_bert, ref_audio_sr, ssl_content, project_name)
|
||||||
|
|
||||||
MoeVSConf = {
|
MoeVSConf = {
|
||||||
@ -326,8 +343,8 @@ if __name__ == "__main__":
|
|||||||
except:
|
except:
|
||||||
pass
|
pass
|
||||||
|
|
||||||
gpt_path = "GPT_weights/nahida-e25.ckpt"
|
gpt_path = "GPT_SoVITS/pretrained_models/s1bert25hz-2kh-longer-epoch=68e-step=50232.ckpt"
|
||||||
vits_path = "SoVITS_weights/nahida_e30_s3930.pth"
|
vits_path = "GPT_SoVITS/pretrained_models/s2G488k.pth"
|
||||||
exp_path = "nahida"
|
exp_path = "nahida"
|
||||||
export(vits_path, gpt_path, exp_path)
|
export(vits_path, gpt_path, exp_path)
|
||||||
|
|
||||||
|
Loading…
x
Reference in New Issue
Block a user