diff --git a/GPT_SoVITS/feature_extractor/cnhubert.py b/GPT_SoVITS/feature_extractor/cnhubert.py index 3ad90b9..d7e380b 100644 --- a/GPT_SoVITS/feature_extractor/cnhubert.py +++ b/GPT_SoVITS/feature_extractor/cnhubert.py @@ -4,6 +4,7 @@ import librosa import torch import torch.nn.functional as F import soundfile as sf +import os from transformers import logging as tf_logging tf_logging.set_verbosity_error() @@ -24,9 +25,11 @@ cnhubert_base_path = None class CNHubert(nn.Module): def __init__(self): super().__init__() - self.model = HubertModel.from_pretrained(cnhubert_base_path) + if os.path.exists(cnhubert_base_path):... + else:raise FileNotFoundError(cnhubert_base_path) + self.model = HubertModel.from_pretrained(cnhubert_base_path, local_files_only=True) self.feature_extractor = Wav2Vec2FeatureExtractor.from_pretrained( - cnhubert_base_path + cnhubert_base_path, local_files_only=True ) def forward(self, x): diff --git a/GPT_SoVITS/inference_webui.py b/GPT_SoVITS/inference_webui.py index 9218b0d..c59544a 100644 --- a/GPT_SoVITS/inference_webui.py +++ b/GPT_SoVITS/inference_webui.py @@ -389,6 +389,10 @@ def merge_short_text_in_array(texts, threshold): cache= {} def get_tts_wav(ref_wav_path, prompt_text, prompt_language, text, text_language, how_to_cut=i18n("不切"), top_k=20, top_p=0.6, temperature=0.6, ref_free = False,speed=1,if_freeze=False): global cache + if ref_wav_path:pass + else:gr.Warning(i18n('请上传参考音频')) + if text:pass + else:gr.Warning(i18n('请填入推理文本')) t = [] if prompt_text is None or len(prompt_text) == 0: ref_free = True @@ -413,6 +417,7 @@ def get_tts_wav(ref_wav_path, prompt_text, prompt_language, text, text_language, with torch.no_grad(): wav16k, sr = librosa.load(ref_wav_path, sr=16000) if (wav16k.shape[0] > 160000 or wav16k.shape[0] < 48000): + gr.Warning(i18n("参考音频在3~10秒范围外,请更换!")) raise OSError(i18n("参考音频在3~10秒范围外,请更换!")) wav16k = torch.from_numpy(wav16k) zero_wav_torch = torch.from_numpy(zero_wav) diff --git a/GPT_SoVITS/prepare_datasets/1-get-text.py b/GPT_SoVITS/prepare_datasets/1-get-text.py index 7e18310..a1049b3 100644 --- a/GPT_SoVITS/prepare_datasets/1-get-text.py +++ b/GPT_SoVITS/prepare_datasets/1-get-text.py @@ -54,6 +54,8 @@ if os.path.exists(txt_path) == False: # device = "mps" else: device = "cpu" + if os.path.exists(bert_pretrained_dir):... + else:raise FileNotFoundError(bert_pretrained_dir) tokenizer = AutoTokenizer.from_pretrained(bert_pretrained_dir) bert_model = AutoModelForMaskedLM.from_pretrained(bert_pretrained_dir) if is_half == True: diff --git a/GPT_SoVITS/prepare_datasets/3-get-semantic.py b/GPT_SoVITS/prepare_datasets/3-get-semantic.py index 6adece6..842a4dc 100644 --- a/GPT_SoVITS/prepare_datasets/3-get-semantic.py +++ b/GPT_SoVITS/prepare_datasets/3-get-semantic.py @@ -34,6 +34,8 @@ logging.getLogger("numba").setLevel(logging.WARNING) # os.environ["CUDA_VISIBLE_DEVICES"]=sys.argv[5] # opt_dir="/data/docker/liujing04/gpt-vits/fine_tune_dataset/%s"%exp_name +if os.path.exists(pretrained_s2G):... +else:raise FileNotFoundError(pretrained_s2G) hubert_dir = "%s/4-cnhubert" % (opt_dir) semantic_path = "%s/6-name2semantic-%s.tsv" % (opt_dir, i_part) diff --git a/webui.py b/webui.py index afe11b5..2a7b5d3 100644 --- a/webui.py +++ b/webui.py @@ -48,7 +48,6 @@ from tools import my_utils import traceback import shutil import pdb -import gradio as gr from subprocess import Popen import signal from config import python_exec,infer_device,is_half,exp_root,webui_port_main,webui_port_infer_tts,webui_port_uvr5,webui_port_subfix,is_share @@ -63,7 +62,9 @@ from scipy.io import wavfile from tools.my_utils import load_audio from multiprocessing import cpu_count # os.environ['PYTORCH_ENABLE_MPS_FALLBACK'] = '1' # 当遇到mps不支持的步骤时使用cpu - +import gradio.analytics as analytics +analytics.version_check = lambda:None +import gradio as gr n_cpu=cpu_count() ngpu = torch.cuda.device_count() @@ -248,6 +249,7 @@ def open_asr(asr_inp_dir, asr_opt_dir, asr_model, asr_model_size, asr_lang, asr_ if(p_asr==None): asr_inp_dir=my_utils.clean_path(asr_inp_dir) asr_opt_dir=my_utils.clean_path(asr_opt_dir) + check_for_exists([asr_inp_dir]) cmd = f'"{python_exec}" tools/asr/{asr_dict[asr_model]["path"]}' cmd += f' -i "{asr_inp_dir}"' cmd += f' -o "{asr_opt_dir}"' @@ -278,6 +280,7 @@ def open_denoise(denoise_inp_dir, denoise_opt_dir): if(p_denoise==None): denoise_inp_dir=my_utils.clean_path(denoise_inp_dir) denoise_opt_dir=my_utils.clean_path(denoise_opt_dir) + check_for_exists([denoise_inp_dir]) cmd = '"%s" tools/cmd-denoise.py -i "%s" -o "%s" -p %s'%(python_exec,denoise_inp_dir,denoise_opt_dir,"float16"if is_half==True else "float32") yield "语音降噪任务开启:%s"%cmd, {"__type__":"update","visible":False}, {"__type__":"update","visible":True}, {"__type__":"update"}, {"__type__":"update"} @@ -306,6 +309,7 @@ def open1Ba(batch_size,total_epoch,exp_name,text_low_lr_rate,if_save_latest,if_s data=json.loads(data) s2_dir="%s/%s"%(exp_root,exp_name) os.makedirs("%s/logs_s2"%(s2_dir),exist_ok=True) + check_for_exists([s2_dir],is_train=True) if(is_half==False): data["train"]["fp16_run"]=False batch_size=max(1,batch_size//2) @@ -322,6 +326,7 @@ def open1Ba(batch_size,total_epoch,exp_name,text_low_lr_rate,if_save_latest,if_s data["data"]["exp_dir"]=data["s2_ckpt_dir"]=s2_dir data["save_weight_dir"]=SoVITS_weight_root[-int(version[-1])+2] data["name"]=exp_name + data["version"]=version tmp_config_path="%s/tmp_s2.json"%tmp with open(tmp_config_path,"w")as f:f.write(json.dumps(data)) @@ -351,6 +356,7 @@ def open1Bb(batch_size,total_epoch,exp_name,if_dpo,if_save_latest,if_save_every_ data=yaml.load(data, Loader=yaml.FullLoader) s1_dir="%s/%s"%(exp_root,exp_name) os.makedirs("%s/logs_s1"%(s1_dir),exist_ok=True) + check_for_exists([s1_dir],is_train=True) if(is_half==False): data["train"]["precision"]="32" batch_size = max(1, batch_size // 2) @@ -395,13 +401,14 @@ def open_slice(inp,opt_root,threshold,min_length,min_interval,hop_size,max_sil_k global ps_slice inp = my_utils.clean_path(inp) opt_root = my_utils.clean_path(opt_root) + check_for_exists([inp]) if(os.path.exists(inp)==False): - yield "输入路径不存在", {"__type__":"update","visible":True}, {"__type__":"update","visible":False}, {"__type__": "update"}, {"__type__": "update"} + yield "输入路径不存在", {"__type__":"update","visible":True}, {"__type__":"update","visible":False}, {"__type__": "update"}, {"__type__": "update"}, {"__type__": "update"} return if os.path.isfile(inp):n_parts=1 elif os.path.isdir(inp):pass else: - yield "输入路径存在但既不是文件也不是文件夹", {"__type__":"update","visible":True}, {"__type__":"update","visible":False}, {"__type__": "update"}, {"__type__": "update"} + yield "输入路径存在但既不是文件也不是文件夹", {"__type__":"update","visible":True}, {"__type__":"update","visible":False}, {"__type__": "update"}, {"__type__": "update"}, {"__type__": "update"} return if (ps_slice == []): for i_part in range(n_parts): @@ -433,6 +440,7 @@ def open1a(inp_text,inp_wav_dir,exp_name,gpu_numbers,bert_pretrained_dir): global ps1a inp_text = my_utils.clean_path(inp_text) inp_wav_dir = my_utils.clean_path(inp_wav_dir) + check_for_exists([inp_text,inp_wav_dir]) if (ps1a == []): opt_dir="%s/%s"%(exp_root,exp_name) config={ @@ -494,6 +502,7 @@ def open1b(inp_text,inp_wav_dir,exp_name,gpu_numbers,ssl_pretrained_dir): global ps1b inp_text = my_utils.clean_path(inp_text) inp_wav_dir = my_utils.clean_path(inp_wav_dir) + check_for_exists([inp_text,inp_wav_dir]) if (ps1b == []): config={ "inp_text":inp_text, @@ -541,6 +550,7 @@ ps1c=[] def open1c(inp_text,exp_name,gpu_numbers,pretrained_s2G_path): global ps1c inp_text = my_utils.clean_path(inp_text) + check_for_exists([inp_text]) if (ps1c == []): opt_dir="%s/%s"%(exp_root,exp_name) config={ @@ -599,6 +609,7 @@ def open1abc(inp_text,inp_wav_dir,exp_name,gpu_numbers1a,gpu_numbers1Ba,gpu_numb global ps1abc inp_text = my_utils.clean_path(inp_text) inp_wav_dir = my_utils.clean_path(inp_wav_dir) + check_for_exists([inp_text,inp_wav_dir]) if (ps1abc == []): opt_dir="%s/%s"%(exp_root,exp_name) try: @@ -730,11 +741,39 @@ def switch_version(version_): os.environ['version']=version_ global version version = version_ + if pretrained_sovits_name[-int(version[-1])+2] !='' and pretrained_gpt_name[-int(version[-1])+2] !='':... + else: + gr.Warning(i18n(f'未下载{version.upper()}模型')) + return {'__type__':'update', 'value':pretrained_sovits_name[-int(version[-1])+2]}, {'__type__':'update', 'value':pretrained_sovits_name[-int(version[-1])+2].replace("s2G","s2D")}, {'__type__':'update', 'value':pretrained_gpt_name[-int(version[-1])+2]}, {'__type__':'update', 'value':pretrained_gpt_name[-int(version[-1])+2]}, {'__type__':'update', 'value':pretrained_sovits_name[-int(version[-1])+2]} + +def check_for_exists(file_list=[],is_train=False): + _=[] + if is_train == True and file_list: + file_list.append(os.path.join(file_list[0],'2-name2text.txt')) + file_list.append(os.path.join(file_list[0],'3-bert')) + file_list.append(os.path.join(file_list[0],'4-cnhubert')) + file_list.append(os.path.join(file_list[0],'5-wav32k')) + file_list.append(os.path.join(file_list[0],'6-name2semantic.tsv')) + for file in file_list: + if os.path.exists(file):pass + else:_.append(file) + if _: + if is_train: + for i in _: + if i != '': + gr.Warning(i) + gr.Warning(i18n('以下文件或文件夹不存在:')) + else: + if len(_) == 1: + if _[0]: + gr.Warning(i) + gr.Warning(i18n('文件或文件夹不存在:')) + else: + for i in _: + if i != '': + gr.Warning(i) + gr.Warning(i18n('以下文件或文件夹不存在:')) - if len(pretrained_gpt_name) > 1 and len(pretrained_sovits_name) > 1: - return {'__type__':'update', 'value':pretrained_sovits_name[-int(version[-1])+2]}, {'__type__':'update', 'value':pretrained_sovits_name[-int(version[-1])+2].replace("s2G","s2D")}, {'__type__':'update', 'value':pretrained_gpt_name[-int(version[-1])+2]}, {'__type__':'update', 'value':pretrained_gpt_name[-int(version[-1])+2]}, {'__type__':'update', 'value':pretrained_sovits_name[-int(version[-1])+2]} - else: - raise gr.Error(i18n(f'未下载{version.upper()}模型')) from text.g2pw import G2PWPinyin