mirror of
https://github.com/RVC-Boss/GPT-SoVITS.git
synced 2025-04-05 19:41:56 +08:00
Add AR Onnx Module
This commit is contained in:
parent
bd68358c3f
commit
7d1e94c8b0
106
GPT_SoVITS/AR/models/t2s_lightning_module_onnx.py
Normal file
106
GPT_SoVITS/AR/models/t2s_lightning_module_onnx.py
Normal file
@ -0,0 +1,106 @@
|
||||
# modified from https://github.com/feng-yufei/shared_debugging_code/blob/main/model/t2s_lightning_module.py
|
||||
import os, sys
|
||||
|
||||
now_dir = os.getcwd()
|
||||
sys.path.append(now_dir)
|
||||
from typing import Dict
|
||||
|
||||
import torch
|
||||
from pytorch_lightning import LightningModule
|
||||
from AR.models.t2s_model_onnx import Text2SemanticDecoder
|
||||
from AR.modules.lr_schedulers import WarmupCosineLRSchedule
|
||||
from AR.modules.optim import ScaledAdam
|
||||
|
||||
|
||||
class Text2SemanticLightningModule(LightningModule):
|
||||
def __init__(self, config, output_dir, is_train=True):
|
||||
super().__init__()
|
||||
self.config = config
|
||||
self.top_k = 3
|
||||
self.model = Text2SemanticDecoder(config=config, top_k=self.top_k)
|
||||
pretrained_s1 = config.get("pretrained_s1")
|
||||
if pretrained_s1 and is_train:
|
||||
# print(self.load_state_dict(torch.load(pretrained_s1,map_location="cpu")["state_dict"]))
|
||||
print(
|
||||
self.load_state_dict(
|
||||
torch.load(pretrained_s1, map_location="cpu")["weight"]
|
||||
)
|
||||
)
|
||||
if is_train:
|
||||
self.automatic_optimization = False
|
||||
self.save_hyperparameters()
|
||||
self.eval_dir = output_dir / "eval"
|
||||
self.eval_dir.mkdir(parents=True, exist_ok=True)
|
||||
|
||||
def training_step(self, batch: Dict, batch_idx: int):
|
||||
opt = self.optimizers()
|
||||
scheduler = self.lr_schedulers()
|
||||
loss, acc = self.model.forward(
|
||||
batch["phoneme_ids"],
|
||||
batch["phoneme_ids_len"],
|
||||
batch["semantic_ids"],
|
||||
batch["semantic_ids_len"],
|
||||
batch["bert_feature"],
|
||||
)
|
||||
self.manual_backward(loss)
|
||||
if batch_idx > 0 and batch_idx % 4 == 0:
|
||||
opt.step()
|
||||
opt.zero_grad()
|
||||
scheduler.step()
|
||||
|
||||
self.log(
|
||||
"total_loss",
|
||||
loss,
|
||||
on_step=True,
|
||||
on_epoch=True,
|
||||
prog_bar=True,
|
||||
sync_dist=True,
|
||||
)
|
||||
self.log(
|
||||
"lr",
|
||||
scheduler.get_last_lr()[0],
|
||||
on_epoch=True,
|
||||
prog_bar=True,
|
||||
sync_dist=True,
|
||||
)
|
||||
self.log(
|
||||
f"top_{self.top_k}_acc",
|
||||
acc,
|
||||
on_step=True,
|
||||
on_epoch=True,
|
||||
prog_bar=True,
|
||||
sync_dist=True,
|
||||
)
|
||||
|
||||
def validation_step(self, batch: Dict, batch_idx: int):
|
||||
return
|
||||
|
||||
def configure_optimizers(self):
|
||||
model_parameters = self.model.parameters()
|
||||
parameters_names = []
|
||||
parameters_names.append(
|
||||
[name_param_pair[0] for name_param_pair in self.model.named_parameters()]
|
||||
)
|
||||
lm_opt = ScaledAdam(
|
||||
model_parameters,
|
||||
lr=0.01,
|
||||
betas=(0.9, 0.95),
|
||||
clipping_scale=2.0,
|
||||
parameters_names=parameters_names,
|
||||
show_dominant_parameters=False,
|
||||
clipping_update_period=1000,
|
||||
)
|
||||
|
||||
return {
|
||||
"optimizer": lm_opt,
|
||||
"lr_scheduler": {
|
||||
"scheduler": WarmupCosineLRSchedule(
|
||||
lm_opt,
|
||||
init_lr=self.config["optimizer"]["lr_init"],
|
||||
peak_lr=self.config["optimizer"]["lr"],
|
||||
end_lr=self.config["optimizer"]["lr_end"],
|
||||
warmup_steps=self.config["optimizer"]["warmup_steps"],
|
||||
total_steps=self.config["optimizer"]["decay_steps"],
|
||||
)
|
||||
},
|
||||
}
|
337
GPT_SoVITS/AR/models/t2s_model_onnx.py
Normal file
337
GPT_SoVITS/AR/models/t2s_model_onnx.py
Normal file
@ -0,0 +1,337 @@
|
||||
# modified from https://github.com/feng-yufei/shared_debugging_code/blob/main/model/t2s_model.py
|
||||
import torch
|
||||
from tqdm import tqdm
|
||||
|
||||
from AR.modules.embedding_onnx import SinePositionalEmbedding
|
||||
from AR.modules.embedding_onnx import TokenEmbedding
|
||||
from AR.modules.transformer_onnx import LayerNorm
|
||||
from AR.modules.transformer_onnx import TransformerEncoder
|
||||
from AR.modules.transformer_onnx import TransformerEncoderLayer
|
||||
from torch import nn
|
||||
from torch.nn import functional as F
|
||||
from torchmetrics.classification import MulticlassAccuracy
|
||||
|
||||
default_config = {
|
||||
"embedding_dim": 512,
|
||||
"hidden_dim": 512,
|
||||
"num_head": 8,
|
||||
"num_layers": 12,
|
||||
"num_codebook": 8,
|
||||
"p_dropout": 0.0,
|
||||
"vocab_size": 1024 + 1,
|
||||
"phoneme_vocab_size": 512,
|
||||
"EOS": 1024,
|
||||
}
|
||||
|
||||
inf_tensor_value = torch.FloatTensor([-float("Inf")]).float()
|
||||
|
||||
def logits_to_probs(
|
||||
logits,
|
||||
previous_tokens = None,
|
||||
temperature: float = 1.0,
|
||||
top_k = None,
|
||||
top_p = None,
|
||||
repetition_penalty: float = 1.0,
|
||||
):
|
||||
previous_tokens = previous_tokens.squeeze()
|
||||
if previous_tokens is not None and repetition_penalty != 1.0:
|
||||
previous_tokens = previous_tokens.long()
|
||||
score = torch.gather(logits, dim=0, index=previous_tokens)
|
||||
score = torch.where(
|
||||
score < 0, score * repetition_penalty, score / repetition_penalty
|
||||
)
|
||||
logits.scatter_(dim=0, index=previous_tokens, src=score)
|
||||
|
||||
if top_p is not None and top_p < 1.0:
|
||||
sorted_logits, sorted_indices = torch.sort(logits, descending=True)
|
||||
cum_probs = torch.cumsum(
|
||||
torch.nn.functional.softmax(sorted_logits, dim=-1), dim=-1
|
||||
)
|
||||
sorted_indices_to_remove = cum_probs > top_p
|
||||
sorted_indices_to_remove[0] = False # keep at least one option
|
||||
indices_to_remove = sorted_indices_to_remove.scatter(
|
||||
dim=0, index=sorted_indices, src=sorted_indices_to_remove
|
||||
)
|
||||
logits = logits.masked_fill(indices_to_remove, -float("Inf"))
|
||||
|
||||
logits = logits / max(temperature, 1e-5)
|
||||
|
||||
if top_k is not None:
|
||||
v, _ = torch.topk(logits, min(top_k, logits.size(-1)))
|
||||
pivot = v.select(-1, -1).unsqueeze(-1)
|
||||
logits = torch.where(logits < pivot, inf_tensor_value, logits)
|
||||
|
||||
probs = torch.nn.functional.softmax(logits, dim=-1)
|
||||
return probs
|
||||
|
||||
|
||||
def multinomial_sample_one_no_sync(
|
||||
probs_sort
|
||||
): # Does multinomial sampling without a cuda synchronization
|
||||
q = torch.randn_like(probs_sort)
|
||||
return torch.argmax(probs_sort / q, dim=-1, keepdim=True).to(dtype=torch.int)
|
||||
|
||||
|
||||
def sample(
|
||||
logits,
|
||||
previous_tokens,
|
||||
**sampling_kwargs,
|
||||
):
|
||||
probs = logits_to_probs(
|
||||
logits=logits, previous_tokens=previous_tokens, **sampling_kwargs
|
||||
)
|
||||
idx_next = multinomial_sample_one_no_sync(probs)
|
||||
return idx_next, probs
|
||||
|
||||
|
||||
class OnnxEncoder(nn.Module):
|
||||
def __init__(self, ar_text_embedding, bert_proj, ar_text_position):
|
||||
super().__init__()
|
||||
self.ar_text_embedding = ar_text_embedding
|
||||
self.bert_proj = bert_proj
|
||||
self.ar_text_position = ar_text_position
|
||||
|
||||
def forward(self, x, bert_feature):
|
||||
x = self.ar_text_embedding(x)
|
||||
x = x + self.bert_proj(bert_feature.transpose(1, 2))
|
||||
return self.ar_text_position(x)
|
||||
|
||||
|
||||
class T2SFirstStageDecoder(nn.Module):
|
||||
def __init__(self, ar_audio_embedding, ar_audio_position, h, ar_predict_layer, loss_fct, ar_accuracy_metric,
|
||||
top_k, early_stop_num, num_layers):
|
||||
super().__init__()
|
||||
self.ar_audio_embedding = ar_audio_embedding
|
||||
self.ar_audio_position = ar_audio_position
|
||||
self.h = h
|
||||
self.ar_predict_layer = ar_predict_layer
|
||||
self.loss_fct = loss_fct
|
||||
self.ar_accuracy_metric = ar_accuracy_metric
|
||||
self.top_k = top_k
|
||||
self.early_stop_num = early_stop_num
|
||||
self.num_layers = num_layers
|
||||
|
||||
def forward(self, x, prompt):
|
||||
y = prompt
|
||||
x_example = x[:,:,0] * 0.0
|
||||
#N, 1, 512
|
||||
cache = {
|
||||
"all_stage": self.num_layers,
|
||||
"k": None,
|
||||
"v": None,
|
||||
"y_emb": None,
|
||||
"first_infer": 1,
|
||||
"stage": 0,
|
||||
}
|
||||
|
||||
y_emb = self.ar_audio_embedding(y)
|
||||
|
||||
cache["y_emb"] = y_emb
|
||||
y_pos = self.ar_audio_position(y_emb)
|
||||
|
||||
xy_pos = torch.concat([x, y_pos], dim=1)
|
||||
|
||||
y_example = y_pos[:,:,0] * 0.0
|
||||
x_attn_mask = torch.matmul(x_example.transpose(0, 1) , x_example).bool()
|
||||
y_attn_mask = torch.ones_like(torch.matmul(y_example.transpose(0, 1), y_example), dtype=torch.int64)
|
||||
y_attn_mask = torch.cumsum(y_attn_mask, dim=1) - torch.cumsum(
|
||||
torch.ones_like(y_example.transpose(0, 1), dtype=torch.int64), dim=0
|
||||
)
|
||||
y_attn_mask = y_attn_mask > 0
|
||||
|
||||
x_y_pad = torch.matmul(x_example.transpose(0, 1), y_example).bool()
|
||||
y_x_pad = torch.matmul(y_example.transpose(0, 1), x_example).bool()
|
||||
x_attn_mask_pad = torch.cat([x_attn_mask, torch.ones_like(x_y_pad)], dim=1)
|
||||
y_attn_mask = torch.cat([y_x_pad, y_attn_mask], dim=1)
|
||||
xy_attn_mask = torch.concat([x_attn_mask_pad, y_attn_mask], dim=0)
|
||||
cache["k"] = torch.matmul(x_attn_mask_pad[0].float().unsqueeze(-1), torch.zeros((1, 512)))\
|
||||
.unsqueeze(1).repeat(self.num_layers, 1, 1, 1)
|
||||
cache["v"] = torch.matmul(x_attn_mask_pad[0].float().unsqueeze(-1), torch.zeros((1, 512)))\
|
||||
.unsqueeze(1).repeat(self.num_layers, 1, 1, 1)
|
||||
|
||||
xy_dec = self.h(xy_pos, mask=xy_attn_mask, cache=cache)
|
||||
logits = self.ar_predict_layer(xy_dec[:, -1])
|
||||
samples = sample(logits[0], y, top_k=self.top_k, top_p=1.0, repetition_penalty=1.35)[0].unsqueeze(0)
|
||||
|
||||
y = torch.concat([y, samples], dim=1)
|
||||
|
||||
return y, cache["k"], cache["v"], cache["y_emb"], x_example
|
||||
|
||||
|
||||
class T2SStageDecoder(nn.Module):
|
||||
def __init__(self, ar_audio_embedding, ar_audio_position, h, ar_predict_layer, loss_fct, ar_accuracy_metric,
|
||||
top_k, early_stop_num, num_layers):
|
||||
super().__init__()
|
||||
self.ar_audio_embedding = ar_audio_embedding
|
||||
self.ar_audio_position = ar_audio_position
|
||||
self.h = h
|
||||
self.ar_predict_layer = ar_predict_layer
|
||||
self.loss_fct = loss_fct
|
||||
self.ar_accuracy_metric = ar_accuracy_metric
|
||||
self.top_k = top_k
|
||||
self.early_stop_num = early_stop_num
|
||||
self.num_layers = num_layers
|
||||
|
||||
def forward(self, y, k, v, y_emb, x_example):
|
||||
cache = {
|
||||
"all_stage": self.num_layers,
|
||||
"k": torch.nn.functional.pad(k, (0, 0, 0, 0, 0, 1)),
|
||||
"v": torch.nn.functional.pad(v, (0, 0, 0, 0, 0, 1)),
|
||||
"y_emb": y_emb,
|
||||
"first_infer": 0,
|
||||
"stage": 0,
|
||||
}
|
||||
|
||||
y_emb = torch.cat(
|
||||
[cache["y_emb"], self.ar_audio_embedding(y[:, -1:])], 1
|
||||
)
|
||||
cache["y_emb"] = y_emb
|
||||
y_pos = self.ar_audio_position(y_emb)
|
||||
|
||||
xy_pos = y_pos[:, -1:]
|
||||
|
||||
y_example = y_pos[:,:,0] * 0.0
|
||||
|
||||
xy_attn_mask = torch.cat([x_example, y_example], dim=1)
|
||||
xy_attn_mask = torch.zeros_like(xy_attn_mask, dtype=torch.bool)
|
||||
|
||||
xy_dec = self.h(xy_pos, mask=xy_attn_mask, cache=cache)
|
||||
logits = self.ar_predict_layer(xy_dec[:, -1])
|
||||
samples = sample(logits[0], y, top_k=self.top_k, top_p=1.0, repetition_penalty=1.35)[0].unsqueeze(0)
|
||||
|
||||
y = torch.concat([y, samples], dim=1)
|
||||
|
||||
return y, cache["k"], cache["v"], cache["y_emb"], logits, samples
|
||||
|
||||
|
||||
class Text2SemanticDecoder(nn.Module):
|
||||
def __init__(self, config, norm_first=False, top_k=3):
|
||||
super(Text2SemanticDecoder, self).__init__()
|
||||
self.model_dim = config["model"]["hidden_dim"]
|
||||
self.embedding_dim = config["model"]["embedding_dim"]
|
||||
self.num_head = config["model"]["head"]
|
||||
self.num_layers = config["model"]["n_layer"]
|
||||
self.norm_first = norm_first
|
||||
self.vocab_size = config["model"]["vocab_size"]
|
||||
self.phoneme_vocab_size = config["model"]["phoneme_vocab_size"]
|
||||
self.p_dropout = float(config["model"]["dropout"])
|
||||
self.EOS = config["model"]["EOS"]
|
||||
self.norm_first = norm_first
|
||||
assert self.EOS == self.vocab_size - 1
|
||||
self.bert_proj = nn.Linear(1024, self.embedding_dim)
|
||||
self.ar_text_embedding = TokenEmbedding(self.embedding_dim, self.phoneme_vocab_size, self.p_dropout)
|
||||
self.ar_text_position = SinePositionalEmbedding(self.embedding_dim, dropout=0.1, scale=False, alpha=True)
|
||||
self.ar_audio_embedding = TokenEmbedding(self.embedding_dim, self.vocab_size, self.p_dropout)
|
||||
self.ar_audio_position = SinePositionalEmbedding(self.embedding_dim, dropout=0.1, scale=False, alpha=True)
|
||||
self.h = TransformerEncoder(
|
||||
TransformerEncoderLayer(
|
||||
d_model=self.model_dim,
|
||||
nhead=self.num_head,
|
||||
dim_feedforward=self.model_dim * 4,
|
||||
dropout=0.1,
|
||||
batch_first=True,
|
||||
norm_first=norm_first,
|
||||
),
|
||||
num_layers=self.num_layers,
|
||||
norm=LayerNorm(self.model_dim) if norm_first else None,
|
||||
)
|
||||
self.ar_predict_layer = nn.Linear(self.model_dim, self.vocab_size, bias=False)
|
||||
self.loss_fct = nn.CrossEntropyLoss(reduction="sum")
|
||||
self.ar_accuracy_metric = MulticlassAccuracy(
|
||||
self.vocab_size,
|
||||
top_k=top_k,
|
||||
average="micro",
|
||||
multidim_average="global",
|
||||
ignore_index=self.EOS,
|
||||
)
|
||||
self.top_k = torch.LongTensor([1])
|
||||
self.early_stop_num = torch.LongTensor([-1])
|
||||
|
||||
def init_onnx(self):
|
||||
self.onnx_encoder = OnnxEncoder(self.ar_text_embedding, self.bert_proj, self.ar_text_position)
|
||||
self.first_stage_decoder = T2SFirstStageDecoder(self.ar_audio_embedding, self.ar_audio_position, self.h,
|
||||
self.ar_predict_layer, self.loss_fct, self.ar_accuracy_metric, self.top_k, self.early_stop_num,
|
||||
self.num_layers)
|
||||
self.stage_decoder = T2SStageDecoder(self.ar_audio_embedding, self.ar_audio_position, self.h,
|
||||
self.ar_predict_layer, self.loss_fct, self.ar_accuracy_metric, self.top_k, self.early_stop_num,
|
||||
self.num_layers)
|
||||
|
||||
def forward(self, x, prompts, bert_feature):
|
||||
early_stop_num = self.early_stop_num
|
||||
prefix_len = prompts.shape[1]
|
||||
|
||||
x = self.onnx_encoder(x, bert_feature)
|
||||
y, k, v, y_emb, stage, x_example = self.first_stage_decoder(x, prompts)
|
||||
|
||||
stop = False
|
||||
for idx in range(1, 1500):
|
||||
enco = self.stage_decoder(y, k, v, y_emb, stage, x_example)
|
||||
y, k, v, y_emb, stage, logits, samples = enco
|
||||
if early_stop_num != -1 and (y.shape[1] - prefix_len) > early_stop_num:
|
||||
stop = True
|
||||
if torch.argmax(logits, dim=-1)[0] == self.EOS or samples[0, 0] == self.EOS:
|
||||
stop = True
|
||||
if stop:
|
||||
break
|
||||
y[0, -1] = 0
|
||||
return y, idx
|
||||
|
||||
def infer(self, x, prompts, bert_feature):
|
||||
top_k = self.top_k
|
||||
early_stop_num = self.early_stop_num
|
||||
|
||||
x = self.onnx_encoder(x, bert_feature)
|
||||
|
||||
y = prompts
|
||||
prefix_len = y.shape[1]
|
||||
x_len = x.shape[1]
|
||||
x_example = x[:,:,0] * 0.0
|
||||
x_attn_mask = torch.matmul(x_example.transpose(0, 1), x_example)
|
||||
x_attn_mask = torch.zeros_like(x_attn_mask, dtype=torch.bool)
|
||||
|
||||
stop = False
|
||||
cache = {
|
||||
"all_stage": self.num_layers,
|
||||
"k": [None] * self.num_layers,
|
||||
"v": [None] * self.num_layers,
|
||||
"y_emb": None,
|
||||
"first_infer": 1,
|
||||
"stage": 0,
|
||||
}
|
||||
for idx in range(1500):
|
||||
if cache["first_infer"] == 1:
|
||||
y_emb = self.ar_audio_embedding(y)
|
||||
else:
|
||||
y_emb = torch.cat(
|
||||
[cache["y_emb"], self.ar_audio_embedding(y[:, -1:])], 1
|
||||
)
|
||||
cache["y_emb"] = y_emb
|
||||
y_pos = self.ar_audio_position(y_emb)
|
||||
if cache["first_infer"] == 1:
|
||||
xy_pos = torch.concat([x, y_pos], dim=1)
|
||||
else:
|
||||
xy_pos = y_pos[:, -1:]
|
||||
y_len = y_pos.shape[1]
|
||||
if cache["first_infer"] == 1:
|
||||
x_attn_mask_pad = F.pad(x_attn_mask, (0, y_len), value=True)
|
||||
y_attn_mask = F.pad(
|
||||
torch.triu(torch.ones(y_len, y_len, dtype=torch.bool), diagonal=1),
|
||||
(x_len, 0), value=False
|
||||
)
|
||||
xy_attn_mask = torch.concat([x_attn_mask_pad, y_attn_mask], dim=0)
|
||||
else:
|
||||
xy_attn_mask = torch.zeros((1, x_len + y_len), dtype=torch.bool)
|
||||
xy_dec = self.h(xy_pos, mask=xy_attn_mask, cache=cache)
|
||||
logits = self.ar_predict_layer(xy_dec[:, -1])
|
||||
samples = sample(logits[0], y, top_k=top_k, top_p=1.0, repetition_penalty=1.35)[0].unsqueeze(0)
|
||||
if early_stop_num != -1 and (y.shape[1] - prefix_len) > early_stop_num:
|
||||
stop = True
|
||||
if torch.argmax(logits, dim=-1)[0] == self.EOS or samples[0, 0] == self.EOS:
|
||||
stop = True
|
||||
if stop:
|
||||
if prompts.shape[1] == y.shape[1]:
|
||||
y = torch.concat([y, torch.zeros_like(samples)], dim=1)
|
||||
break
|
||||
y = torch.concat([y, samples], dim=1)
|
||||
cache["first_infer"] = 0
|
||||
return y, idx
|
178
GPT_SoVITS/AR/modules/activation_onnx.py
Normal file
178
GPT_SoVITS/AR/modules/activation_onnx.py
Normal file
@ -0,0 +1,178 @@
|
||||
# modified from https://github.com/lifeiteng/vall-e/blob/main/valle/modules/activation.py
|
||||
from typing import Optional
|
||||
from typing import Tuple
|
||||
import torch
|
||||
from torch import Tensor
|
||||
from torch.nn import Linear
|
||||
from torch.nn import Module
|
||||
from torch.nn.init import constant_
|
||||
from torch.nn.init import xavier_normal_
|
||||
from torch.nn.init import xavier_uniform_
|
||||
from torch.nn.modules.linear import NonDynamicallyQuantizableLinear
|
||||
from torch.nn.parameter import Parameter
|
||||
|
||||
from torch.nn import functional as F
|
||||
from AR.modules.patched_mha_with_cache_onnx import multi_head_attention_forward_patched
|
||||
|
||||
|
||||
class MultiheadAttention(Module):
|
||||
__constants__ = ["batch_first"]
|
||||
bias_k: Optional[torch.Tensor]
|
||||
bias_v: Optional[torch.Tensor]
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
embed_dim,
|
||||
num_heads,
|
||||
dropout=0.0,
|
||||
bias=True,
|
||||
add_bias_kv=False,
|
||||
add_zero_attn=False,
|
||||
kdim=None,
|
||||
vdim=None,
|
||||
batch_first=False,
|
||||
linear1_cls=Linear,
|
||||
linear2_cls=Linear,
|
||||
device=None,
|
||||
dtype=None,
|
||||
) -> None:
|
||||
factory_kwargs = {"device": device, "dtype": dtype}
|
||||
super(MultiheadAttention, self).__init__()
|
||||
self.embed_dim = embed_dim
|
||||
self.kdim = kdim if kdim is not None else embed_dim
|
||||
self.vdim = vdim if vdim is not None else embed_dim
|
||||
self._qkv_same_embed_dim = self.kdim == embed_dim and self.vdim == embed_dim
|
||||
|
||||
self.num_heads = num_heads
|
||||
self.dropout = dropout
|
||||
self.batch_first = batch_first
|
||||
self.head_dim = embed_dim // num_heads
|
||||
assert (
|
||||
self.head_dim * num_heads == self.embed_dim
|
||||
), "embed_dim must be divisible by num_heads"
|
||||
|
||||
if add_bias_kv:
|
||||
self.bias_k = Parameter(torch.empty((1, 1, embed_dim), **factory_kwargs))
|
||||
self.bias_v = Parameter(torch.empty((1, 1, embed_dim), **factory_kwargs))
|
||||
else:
|
||||
self.bias_k = self.bias_v = None
|
||||
|
||||
if linear1_cls == Linear:
|
||||
if not self._qkv_same_embed_dim:
|
||||
self.q_proj_weight = Parameter(
|
||||
torch.empty((embed_dim, embed_dim), **factory_kwargs)
|
||||
)
|
||||
self.k_proj_weight = Parameter(
|
||||
torch.empty((embed_dim, self.kdim), **factory_kwargs)
|
||||
)
|
||||
self.v_proj_weight = Parameter(
|
||||
torch.empty((embed_dim, self.vdim), **factory_kwargs)
|
||||
)
|
||||
self.register_parameter("in_proj_weight", None)
|
||||
else:
|
||||
self.in_proj_weight = Parameter(
|
||||
torch.empty((3 * embed_dim, embed_dim), **factory_kwargs)
|
||||
)
|
||||
self.register_parameter("q_proj_weight", None)
|
||||
self.register_parameter("k_proj_weight", None)
|
||||
self.register_parameter("v_proj_weight", None)
|
||||
|
||||
if bias:
|
||||
self.in_proj_bias = Parameter(
|
||||
torch.empty(3 * embed_dim, **factory_kwargs)
|
||||
)
|
||||
else:
|
||||
self.register_parameter("in_proj_bias", None)
|
||||
self.out_proj = NonDynamicallyQuantizableLinear(
|
||||
embed_dim, embed_dim, bias=bias, **factory_kwargs
|
||||
)
|
||||
|
||||
self._reset_parameters()
|
||||
else:
|
||||
if not self._qkv_same_embed_dim:
|
||||
raise NotImplementedError
|
||||
else:
|
||||
self.in_proj_linear = linear1_cls(
|
||||
embed_dim, 3 * embed_dim, bias=bias, **factory_kwargs
|
||||
)
|
||||
self.in_proj_weight = self.in_proj_linear.weight
|
||||
|
||||
self.register_parameter("q_proj_weight", None)
|
||||
self.register_parameter("k_proj_weight", None)
|
||||
self.register_parameter("v_proj_weight", None)
|
||||
|
||||
if bias:
|
||||
self.in_proj_bias = self.in_proj_linear.bias
|
||||
else:
|
||||
self.register_parameter("in_proj_bias", None)
|
||||
|
||||
self.out_proj = linear2_cls(
|
||||
embed_dim, embed_dim, bias=bias, **factory_kwargs
|
||||
)
|
||||
|
||||
if self.bias_k is not None:
|
||||
xavier_normal_(self.bias_k)
|
||||
if self.bias_v is not None:
|
||||
xavier_normal_(self.bias_v)
|
||||
|
||||
self.add_zero_attn = add_zero_attn
|
||||
|
||||
def _reset_parameters(self):
|
||||
if self._qkv_same_embed_dim:
|
||||
xavier_uniform_(self.in_proj_weight)
|
||||
else:
|
||||
xavier_uniform_(self.q_proj_weight)
|
||||
xavier_uniform_(self.k_proj_weight)
|
||||
xavier_uniform_(self.v_proj_weight)
|
||||
|
||||
if self.in_proj_bias is not None:
|
||||
constant_(self.in_proj_bias, 0.0)
|
||||
constant_(self.out_proj.bias, 0.0)
|
||||
|
||||
if self.bias_k is not None:
|
||||
xavier_normal_(self.bias_k)
|
||||
if self.bias_v is not None:
|
||||
xavier_normal_(self.bias_v)
|
||||
|
||||
def __setstate__(self, state):
|
||||
# Support loading old MultiheadAttention checkpoints generated by v1.1.0
|
||||
if "_qkv_same_embed_dim" not in state:
|
||||
state["_qkv_same_embed_dim"] = True
|
||||
|
||||
super(MultiheadAttention, self).__setstate__(state)
|
||||
|
||||
def forward(
|
||||
self,
|
||||
query: Tensor,
|
||||
key: Tensor,
|
||||
value: Tensor,
|
||||
key_padding_mask: Optional[Tensor] = None,
|
||||
need_weights: bool = True,
|
||||
attn_mask: Optional[Tensor] = None,
|
||||
average_attn_weights: bool = True,
|
||||
cache=None,
|
||||
) -> Tuple[Tensor, Optional[Tensor]]:
|
||||
any_nested = query.is_nested or key.is_nested or value.is_nested
|
||||
query = key = value = query.transpose(1, 0)
|
||||
attn_output = multi_head_attention_forward_patched(
|
||||
query,
|
||||
key,
|
||||
value,
|
||||
self.embed_dim,
|
||||
self.num_heads,
|
||||
self.in_proj_weight,
|
||||
self.in_proj_bias,
|
||||
self.bias_k,
|
||||
self.bias_v,
|
||||
self.add_zero_attn,
|
||||
self.dropout,
|
||||
self.out_proj.weight,
|
||||
self.out_proj.bias,
|
||||
training=self.training,
|
||||
key_padding_mask=key_padding_mask,
|
||||
need_weights=need_weights,
|
||||
attn_mask=attn_mask,
|
||||
average_attn_weights=average_attn_weights,
|
||||
cache=cache,
|
||||
)
|
||||
return attn_output.transpose(1, 0)
|
63
GPT_SoVITS/AR/modules/embedding_onnx.py
Normal file
63
GPT_SoVITS/AR/modules/embedding_onnx.py
Normal file
@ -0,0 +1,63 @@
|
||||
# modified from https://github.com/lifeiteng/vall-e/blob/main/valle/modules/embedding.py
|
||||
import math
|
||||
|
||||
import torch
|
||||
from torch import nn
|
||||
|
||||
|
||||
class TokenEmbedding(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
embedding_dim: int,
|
||||
vocab_size: int,
|
||||
dropout: float = 0.0,
|
||||
):
|
||||
super().__init__()
|
||||
|
||||
self.vocab_size = vocab_size
|
||||
self.embedding_dim = embedding_dim
|
||||
|
||||
self.dropout = torch.nn.Dropout(p=dropout)
|
||||
self.word_embeddings = nn.Embedding(self.vocab_size, self.embedding_dim)
|
||||
|
||||
@property
|
||||
def weight(self) -> torch.Tensor:
|
||||
return self.word_embeddings.weight
|
||||
|
||||
def embedding(self, index: int) -> torch.Tensor:
|
||||
return self.word_embeddings.weight[index : index + 1]
|
||||
|
||||
def forward(self, x: torch.Tensor):
|
||||
x = self.word_embeddings(x)
|
||||
x = self.dropout(x)
|
||||
return x
|
||||
|
||||
|
||||
class SinePositionalEmbedding(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
embedding_dim: int,
|
||||
dropout: float = 0.0,
|
||||
scale: bool = False,
|
||||
alpha: bool = False,
|
||||
):
|
||||
super().__init__()
|
||||
self.embedding_dim = embedding_dim
|
||||
self.x_scale = math.sqrt(embedding_dim) if scale else 1.0
|
||||
self.alpha = nn.Parameter(torch.ones(1), requires_grad=alpha)
|
||||
self.dropout = torch.nn.Dropout(p=dropout)
|
||||
self.reverse = False
|
||||
self.div_term = torch.exp(torch.arange(0, self.embedding_dim, 2) * -(math.log(10000.0) / self.embedding_dim))
|
||||
|
||||
def extend_pe(self, x):
|
||||
position = torch.cumsum(torch.ones_like(x[:,:,0]), dim=1).transpose(0, 1)
|
||||
scpe = (position * self.div_term).unsqueeze(0)
|
||||
pe = torch.cat([torch.sin(scpe), torch.cos(scpe)]).permute(1, 2, 0)
|
||||
pe = pe.contiguous().view(1, -1, self.embedding_dim)
|
||||
return pe
|
||||
|
||||
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
||||
pe = self.extend_pe(x)
|
||||
output = x.unsqueeze(-1) if x.ndim == 2 else x
|
||||
output = output * self.x_scale + self.alpha * pe
|
||||
return self.dropout(output)
|
92
GPT_SoVITS/AR/modules/patched_mha_with_cache_onnx.py
Normal file
92
GPT_SoVITS/AR/modules/patched_mha_with_cache_onnx.py
Normal file
@ -0,0 +1,92 @@
|
||||
from torch.nn.functional import *
|
||||
from torch.nn.functional import (
|
||||
_mha_shape_check,
|
||||
_canonical_mask,
|
||||
_none_or_dtype,
|
||||
_in_projection_packed,
|
||||
)
|
||||
|
||||
def multi_head_attention_forward_patched(
|
||||
query,
|
||||
key,
|
||||
value,
|
||||
embed_dim_to_check: int,
|
||||
num_heads: int,
|
||||
in_proj_weight,
|
||||
in_proj_bias: Optional[Tensor],
|
||||
bias_k: Optional[Tensor],
|
||||
bias_v: Optional[Tensor],
|
||||
add_zero_attn: bool,
|
||||
dropout_p: float,
|
||||
out_proj_weight: Tensor,
|
||||
out_proj_bias: Optional[Tensor],
|
||||
training: bool = True,
|
||||
key_padding_mask: Optional[Tensor] = None,
|
||||
need_weights: bool = True,
|
||||
attn_mask: Optional[Tensor] = None,
|
||||
use_separate_proj_weight: bool = False,
|
||||
q_proj_weight: Optional[Tensor] = None,
|
||||
k_proj_weight: Optional[Tensor] = None,
|
||||
v_proj_weight: Optional[Tensor] = None,
|
||||
static_k: Optional[Tensor] = None,
|
||||
static_v: Optional[Tensor] = None,
|
||||
average_attn_weights: bool = True,
|
||||
is_causal: bool = False,
|
||||
cache=None,
|
||||
) -> Tuple[Tensor, Optional[Tensor]]:
|
||||
|
||||
# set up shape vars
|
||||
_, _, embed_dim = query.shape
|
||||
attn_mask = _canonical_mask(
|
||||
mask=attn_mask,
|
||||
mask_name="attn_mask",
|
||||
other_type=None,
|
||||
other_name="",
|
||||
target_type=query.dtype,
|
||||
check_other=False,
|
||||
)
|
||||
head_dim = embed_dim // num_heads
|
||||
|
||||
proj_qkv = linear(query, in_proj_weight, in_proj_bias)
|
||||
proj_qkv = proj_qkv.unflatten(-1, (3, query.size(-1))).unsqueeze(0).transpose(0, -2).squeeze(-2).contiguous()
|
||||
q, k, v = proj_qkv[0], proj_qkv[1], proj_qkv[2]
|
||||
|
||||
if cache["first_infer"] == 1:
|
||||
cache["k"][cache["stage"]] = k
|
||||
cache["v"][cache["stage"]] = v
|
||||
else:
|
||||
cache["k"][cache["stage"]] = torch.cat([cache["k"][cache["stage"]][:-1], k], 0)
|
||||
cache["v"][cache["stage"]] = torch.cat([cache["v"][cache["stage"]][:-1], v], 0)
|
||||
k = cache["k"][cache["stage"]]
|
||||
v = cache["v"][cache["stage"]]
|
||||
cache["stage"] = (cache["stage"] + 1) % cache["all_stage"]
|
||||
|
||||
attn_mask = _canonical_mask(
|
||||
mask=attn_mask,
|
||||
mask_name="attn_mask",
|
||||
other_type=None,
|
||||
other_name="",
|
||||
target_type=q.dtype,
|
||||
check_other=False,
|
||||
)
|
||||
attn_mask = attn_mask.unsqueeze(0)
|
||||
|
||||
q = q.view(-1, num_heads, head_dim).transpose(0, 1)
|
||||
k = k.view(-1, num_heads, head_dim).transpose(0, 1)
|
||||
v = v.view(-1, num_heads, head_dim).transpose(0, 1)
|
||||
|
||||
dropout_p = 0.0
|
||||
attn_mask = attn_mask.unsqueeze(0)
|
||||
q = q.view(num_heads, -1, head_dim).unsqueeze(0)
|
||||
k = k.view(num_heads, -1, head_dim).unsqueeze(0)
|
||||
v = v.view(num_heads, -1, head_dim).unsqueeze(0)
|
||||
attn_output = scaled_dot_product_attention(
|
||||
q, k, v, attn_mask, dropout_p, is_causal
|
||||
)
|
||||
attn_output = (
|
||||
attn_output.permute(2, 0, 1, 3).contiguous().view(-1, embed_dim)
|
||||
)
|
||||
attn_output = linear(attn_output, out_proj_weight, out_proj_bias)
|
||||
attn_output = attn_output.view(-1, 1, attn_output.size(1))
|
||||
|
||||
return attn_output
|
292
GPT_SoVITS/AR/modules/transformer_onnx.py
Normal file
292
GPT_SoVITS/AR/modules/transformer_onnx.py
Normal file
@ -0,0 +1,292 @@
|
||||
# modified from https://github.com/lifeiteng/vall-e/blob/main/valle/modules/transformer.py
|
||||
import copy
|
||||
import numbers
|
||||
from functools import partial
|
||||
from typing import Any
|
||||
from typing import Callable
|
||||
from typing import List
|
||||
from typing import Optional
|
||||
from typing import Tuple
|
||||
from typing import Union
|
||||
|
||||
import torch
|
||||
from AR.modules.activation_onnx import MultiheadAttention
|
||||
from AR.modules.scaling import BalancedDoubleSwish
|
||||
from torch import nn
|
||||
from torch import Tensor
|
||||
from torch.nn import functional as F
|
||||
|
||||
_shape_t = Union[int, List[int], torch.Size]
|
||||
|
||||
|
||||
class LayerNorm(nn.Module):
|
||||
__constants__ = ["normalized_shape", "eps", "elementwise_affine"]
|
||||
normalized_shape: Tuple[int, ...]
|
||||
eps: float
|
||||
elementwise_affine: bool
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
normalized_shape: _shape_t,
|
||||
eps: float = 1e-5,
|
||||
elementwise_affine: bool = True,
|
||||
device=None,
|
||||
dtype=None,
|
||||
) -> None:
|
||||
factory_kwargs = {"device": device, "dtype": dtype}
|
||||
super(LayerNorm, self).__init__()
|
||||
if isinstance(normalized_shape, numbers.Integral):
|
||||
# mypy error: incompatible types in assignment
|
||||
normalized_shape = (normalized_shape,) # type: ignore[assignment]
|
||||
self.normalized_shape = tuple(normalized_shape) # type: ignore[arg-type]
|
||||
self.eps = eps
|
||||
self.elementwise_affine = elementwise_affine
|
||||
if self.elementwise_affine:
|
||||
self.weight = nn.Parameter(
|
||||
torch.empty(self.normalized_shape, **factory_kwargs)
|
||||
)
|
||||
self.bias = nn.Parameter(
|
||||
torch.empty(self.normalized_shape, **factory_kwargs)
|
||||
)
|
||||
else:
|
||||
self.register_parameter("weight", None)
|
||||
self.register_parameter("bias", None)
|
||||
|
||||
self.reset_parameters()
|
||||
|
||||
def reset_parameters(self) -> None:
|
||||
if self.elementwise_affine:
|
||||
nn.init.ones_(self.weight)
|
||||
nn.init.zeros_(self.bias)
|
||||
|
||||
def forward(self, input: Tensor, embedding: Any = None) -> Tensor:
|
||||
if isinstance(input, tuple):
|
||||
input, embedding = input
|
||||
return (
|
||||
F.layer_norm(
|
||||
input,
|
||||
self.normalized_shape,
|
||||
self.weight,
|
||||
self.bias,
|
||||
self.eps,
|
||||
),
|
||||
embedding,
|
||||
)
|
||||
|
||||
assert embedding is None
|
||||
return F.layer_norm(
|
||||
input, self.normalized_shape, self.weight, self.bias, self.eps
|
||||
)
|
||||
|
||||
def extra_repr(self) -> str:
|
||||
return (
|
||||
"{normalized_shape}, eps={eps}, "
|
||||
"elementwise_affine={elementwise_affine}".format(**self.__dict__)
|
||||
)
|
||||
|
||||
|
||||
class IdentityNorm(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
d_model: int,
|
||||
eps: float = 1e-5,
|
||||
device=None,
|
||||
dtype=None,
|
||||
) -> None:
|
||||
super(IdentityNorm, self).__init__()
|
||||
|
||||
def forward(self, input: Tensor, embedding: Any = None) -> Tensor:
|
||||
if isinstance(input, tuple):
|
||||
return input
|
||||
|
||||
assert embedding is None
|
||||
return input
|
||||
|
||||
|
||||
class TransformerEncoder(nn.Module):
|
||||
r"""TransformerEncoder is a stack of N encoder layers. Users can build the
|
||||
BERT(https://arxiv.org/abs/1810.04805) model with corresponding parameters.
|
||||
|
||||
Args:
|
||||
encoder_layer: an instance of the TransformerEncoderLayer() class (required).
|
||||
num_layers: the number of sub-encoder-layers in the encoder (required).
|
||||
norm: the layer normalization component (optional).
|
||||
enable_nested_tensor: if True, input will automatically convert to nested tensor
|
||||
(and convert back on output). This will improve the overall performance of
|
||||
TransformerEncoder when padding rate is high. Default: ``True`` (enabled).
|
||||
|
||||
Examples::
|
||||
>>> encoder_layer = TransformerEncoderLayer(d_model=512, nhead=8)
|
||||
>>> transformer_encoder = TransformerEncoder(encoder_layer, num_layers=6)
|
||||
>>> src = torch.rand(10, 32, 512)
|
||||
>>> out = transformer_encoder(src)
|
||||
"""
|
||||
__constants__ = ["norm"]
|
||||
|
||||
def __init__(self, encoder_layer, num_layers, norm=None):
|
||||
super(TransformerEncoder, self).__init__()
|
||||
self.layers = _get_clones(encoder_layer, num_layers)
|
||||
self.num_layers = num_layers
|
||||
self.norm = norm
|
||||
|
||||
def forward(
|
||||
self,
|
||||
src: Tensor,
|
||||
mask: Optional[Tensor] = None,
|
||||
src_key_padding_mask: Optional[Tensor] = None,
|
||||
return_layer_states: bool = False,
|
||||
cache=None,
|
||||
) -> Tensor:
|
||||
output = src
|
||||
for mod in self.layers:
|
||||
output = mod(
|
||||
output,
|
||||
src_mask=mask,
|
||||
src_key_padding_mask=src_key_padding_mask,
|
||||
cache=cache,
|
||||
)
|
||||
|
||||
if self.norm is not None:
|
||||
output = self.norm(output)
|
||||
|
||||
return output
|
||||
|
||||
|
||||
class TransformerEncoderLayer(nn.Module):
|
||||
__constants__ = ["batch_first", "norm_first"]
|
||||
def __init__(
|
||||
self,
|
||||
d_model: int,
|
||||
nhead: int,
|
||||
dim_feedforward: int = 2048,
|
||||
dropout: float = 0.1,
|
||||
activation: Union[str, Callable[[Tensor], Tensor]] = F.relu,
|
||||
batch_first: bool = False,
|
||||
norm_first: bool = False,
|
||||
device=None,
|
||||
dtype=None,
|
||||
linear1_self_attention_cls: nn.Module = nn.Linear,
|
||||
linear2_self_attention_cls: nn.Module = nn.Linear,
|
||||
linear1_feedforward_cls: nn.Module = nn.Linear,
|
||||
linear2_feedforward_cls: nn.Module = nn.Linear,
|
||||
layer_norm_cls: nn.Module = LayerNorm,
|
||||
layer_norm_eps: float = 1e-5,
|
||||
adaptive_layer_norm=False,
|
||||
) -> None:
|
||||
factory_kwargs = {"device": device, "dtype": dtype}
|
||||
super(TransformerEncoderLayer, self).__init__()
|
||||
self.self_attn = MultiheadAttention(
|
||||
d_model, # 512 16
|
||||
nhead,
|
||||
dropout=dropout,
|
||||
batch_first=batch_first,
|
||||
linear1_cls=linear1_self_attention_cls,
|
||||
linear2_cls=linear2_self_attention_cls,
|
||||
**factory_kwargs,
|
||||
)
|
||||
self.linear1 = linear1_feedforward_cls(
|
||||
d_model, dim_feedforward, **factory_kwargs
|
||||
)
|
||||
self.dropout = nn.Dropout(dropout)
|
||||
self.linear2 = linear2_feedforward_cls(
|
||||
dim_feedforward, d_model, **factory_kwargs
|
||||
)
|
||||
self.norm_first = norm_first
|
||||
self.dropout1 = nn.Dropout(dropout)
|
||||
self.dropout2 = nn.Dropout(dropout)
|
||||
if isinstance(activation, str):
|
||||
activation = _get_activation_fn(activation)
|
||||
elif isinstance(activation, partial):
|
||||
activation = activation(d_model)
|
||||
elif activation == BalancedDoubleSwish:
|
||||
activation = BalancedDoubleSwish(d_model)
|
||||
self.activation = activation
|
||||
|
||||
norm1 = layer_norm_cls(d_model, eps=layer_norm_eps, **factory_kwargs)
|
||||
if layer_norm_cls == IdentityNorm:
|
||||
norm2 = BalancedBasicNorm(d_model, eps=layer_norm_eps, **factory_kwargs)
|
||||
else:
|
||||
norm2 = layer_norm_cls(d_model, eps=layer_norm_eps, **factory_kwargs)
|
||||
|
||||
if adaptive_layer_norm:
|
||||
self.norm1 = AdaptiveLayerNorm(d_model, norm1)
|
||||
self.norm2 = AdaptiveLayerNorm(d_model, norm2)
|
||||
else:
|
||||
self.norm1 = norm1
|
||||
self.norm2 = norm2
|
||||
|
||||
def __setstate__(self, state):
|
||||
super(TransformerEncoderLayer, self).__setstate__(state)
|
||||
if not hasattr(self, "activation"):
|
||||
self.activation = F.relu
|
||||
|
||||
def forward(
|
||||
self,
|
||||
src: Tensor,
|
||||
src_mask: Optional[Tensor] = None,
|
||||
src_key_padding_mask: Optional[Tensor] = None,
|
||||
cache=None,
|
||||
) -> Tensor:
|
||||
x = src
|
||||
stage_embedding = None
|
||||
x = self.norm1(
|
||||
x + self._sa_block(x, src_mask, src_key_padding_mask, cache=cache),
|
||||
stage_embedding,
|
||||
)
|
||||
x = self.norm2(x + self._ff_block(x), stage_embedding)
|
||||
|
||||
return x
|
||||
|
||||
def _sa_block(
|
||||
self,
|
||||
x: Tensor,
|
||||
attn_mask: Optional[Tensor],
|
||||
key_padding_mask: Optional[Tensor],
|
||||
cache=None,
|
||||
) -> Tensor:
|
||||
x = self.self_attn(
|
||||
x,
|
||||
x,
|
||||
x,
|
||||
attn_mask=attn_mask,
|
||||
key_padding_mask=key_padding_mask,
|
||||
need_weights=False,
|
||||
cache=cache,
|
||||
)
|
||||
return self.dropout1(x)
|
||||
|
||||
def _ff_block(self, x: Tensor) -> Tensor:
|
||||
x = self.linear2(self.dropout(self.activation(self.linear1(x))))
|
||||
return self.dropout2(x)
|
||||
|
||||
|
||||
class AdaptiveLayerNorm(nn.Module):
|
||||
r"""Adaptive Layer Normalization"""
|
||||
|
||||
def __init__(self, d_model, norm) -> None:
|
||||
super(AdaptiveLayerNorm, self).__init__()
|
||||
self.project_layer = nn.Linear(d_model, 2 * d_model)
|
||||
self.norm = norm
|
||||
self.d_model = d_model
|
||||
self.eps = self.norm.eps
|
||||
|
||||
def forward(self, input: Tensor, embedding: Tensor = None) -> Tensor:
|
||||
if isinstance(input, tuple):
|
||||
input, embedding = input
|
||||
weight, bias = torch.split(
|
||||
self.project_layer(embedding),
|
||||
split_size_or_sections=self.d_model,
|
||||
dim=-1,
|
||||
)
|
||||
return (weight * self.norm(input) + bias, embedding)
|
||||
|
||||
weight, bias = torch.split(
|
||||
self.project_layer(embedding),
|
||||
split_size_or_sections=self.d_model,
|
||||
dim=-1,
|
||||
)
|
||||
return weight * self.norm(input) + bias
|
||||
|
||||
|
||||
def _get_clones(module, N):
|
||||
return nn.ModuleList([copy.deepcopy(module) for i in range(N)])
|
Loading…
x
Reference in New Issue
Block a user