From 97f304c2bfa5bb185726588b3b9b44a0f797ae13 Mon Sep 17 00:00:00 2001 From: KamioRinn Date: Wed, 20 Mar 2024 02:49:58 +0800 Subject: [PATCH] Adjust normalize and g2p logic --- GPT_SoVITS/text/english.py | 105 +++++++++++++++++++++++++++++-------- 1 file changed, 84 insertions(+), 21 deletions(-) diff --git a/GPT_SoVITS/text/english.py b/GPT_SoVITS/text/english.py index 09e20bd..077d33c 100644 --- a/GPT_SoVITS/text/english.py +++ b/GPT_SoVITS/text/english.py @@ -8,6 +8,13 @@ from string import punctuation from text import symbols +import unicodedata +from builtins import str as unicode +from g2p_en.expand import normalize_numbers +from nltk.tokenize import TweetTokenizer +word_tokenize = TweetTokenizer().tokenize +from nltk import pos_tag + current_file_path = os.path.dirname(__file__) CMU_DICT_PATH = os.path.join(current_file_path, "cmudict.rep") CMU_DICT_FAST_PATH = os.path.join(current_file_path, "cmudict-fast.rep") @@ -188,9 +195,6 @@ def get_dict(): return g2p_dict -eng_dict = get_dict() - - def text_normalize(text): # todo: eng text normalize # 适配中文及 g2p_en 标点 @@ -204,6 +208,16 @@ def text_normalize(text): for p, r in rep_map.items(): text = re.sub(p, r, text) + # 来自 g2p_en 文本格式化处理 + # 增加大写兼容 + text = unicode(text) + text = normalize_numbers(text) + text = ''.join(char for char in unicodedata.normalize('NFD', text) + if unicodedata.category(char) != 'Mn') # Strip accents + text = re.sub("[^ A-Za-z'.,?!\-]", "", text) + text = re.sub(r"(?i)i\.e\.", "that is", text) + text = re.sub(r"(?i)e\.g\.", "for example", text) + return text @@ -220,30 +234,85 @@ class en_G2p(G2p): for word in ["AE", "AI", "AR", "IOS", "HUD", "OS"]: del self.cmu[word.lower()] - # "A" 落单不读 "AH0" 读 "EY1" - self.cmu['a'] = [['EY1']] + + def __call__(self, text): + # tokenization + words = word_tokenize(text) + tokens = pos_tag(words) # tuples of (word, tag) + + # steps + prons = [] + for o_word, pos in tokens: + # 还原 g2p_en 小写操作逻辑 + word = o_word.lower() + + if re.search("[a-z]", word) is None: + pron = [word] + # 先把单字母推出去 + elif len(word) == 1: + # 单读 A 发音修正, 这里需要原格式 o_word 判断大写 + if o_word == "A": + pron = ['EY1'] + else: + pron = self.cmu[word][0] + # g2p_en 原版多音字处理 + elif word in self.homograph2features: # Check homograph + pron1, pron2, pos1 = self.homograph2features[word] + if pos.startswith(pos1): + pron = pron1 + else: + pron = pron2 + else: + # 递归查找预测 + pron = self.qryword(word) + + prons.extend(pron) + prons.extend([" "]) + + return prons[:-1] - def predict(self, word): - # 小写 oov 长度小于等于 3 直接读字母 + def qryword(self, word): + # 查字典, 单字母除外 + if len(word) > 1 and word in self.cmu: # lookup CMU dict + return self.cmu[word][0] + + # oov 长度小于等于 3 直接读字母 if (len(word) <= 3): - return [phone for w in word for phone in self(w)] + phones = [] + for w in word: + # 单读 A 发音修正, 此处不存在大写的情况 + if w == "a": + phones.extend(['EY1']) + else: + phones.extend(self.cmu[w][0]) + return phones # 尝试分离所有格 if re.match(r"^([a-z]+)('s)$", word): - phone = self(word[:-2]) - phone.extend(['Z']) - return phone + phones = self.qryword(word[:-2]) + # P T K F TH HH 无声辅音结尾 's 发 ['S'] + if phones[-1] in ['P', 'T', 'K', 'F', 'TH', 'HH']: + phones.extend(['S']) + # S Z SH ZH CH JH 擦声结尾 's 发 ['IH1', 'Z'] 或 ['AH0', 'Z'] + elif phones[-1] in ['S', 'Z', 'SH', 'ZH', 'CH', 'JH']: + phones.extend(['AH0', 'Z']) + # B D G DH V M N NG L R W Y 有声辅音结尾 's 发 ['Z'] + # AH0 AH1 AH2 EY0 EY1 EY2 AE0 AE1 AE2 EH0 EH1 EH2 OW0 OW1 OW2 UH0 UH1 UH2 IY0 IY1 IY2 AA0 AA1 AA2 AO0 AO1 AO2 + # ER ER0 ER1 ER2 UW0 UW1 UW2 AY0 AY1 AY2 AW0 AW1 AW2 OY0 OY1 OY2 IH IH0 IH1 IH2 元音结尾 's 发 ['Z'] + else: + phones.extend(['Z']) + return phones # 尝试进行分词,应对复合词 comps = wordsegment.segment(word.lower()) # 无法分词的送回去预测 if len(comps)==1: - return super().predict(word) + return self.predict(word) # 可以分词的递归处理 - return [phone for comp in comps for phone in self(comp)] + return [phone for comp in comps for phone in self.qryword(comp)] _g2p = en_G2p() @@ -258,12 +327,6 @@ def g2p(text): if __name__ == "__main__": - # print(get_dict()) print(g2p("hello")) - print(g2p("In this; paper, we propose 1 DSPGAN, a GAN-based universal vocoder.")) - # all_phones = set() - # for k, syllables in eng_dict.items(): - # for group in syllables: - # for ph in group: - # all_phones.add(ph) - # print(all_phones) + print(g2p(text_normalize("e.g. I used openai's AI tool to draw a picture."))) + print(g2p(text_normalize("In this; paper, we propose 1 DSPGAN, a GAN-based universal vocoder."))) \ No newline at end of file