mirror of
https://github.com/RVC-Boss/GPT-SoVITS.git
synced 2025-10-07 15:19:59 +08:00
Merge branch 'main' into 添加推理页面的引导音频转写功能
This commit is contained in:
commit
79be4a1ee4
7
Docker/download.py
Normal file
7
Docker/download.py
Normal file
@ -0,0 +1,7 @@
|
||||
# Download moda ASR related models
|
||||
from modelscope import snapshot_download
|
||||
model_dir = snapshot_download('damo/speech_paraformer-large_asr_nat-zh-cn-16k-common-vocab8404-pytorch')
|
||||
model_dir = snapshot_download('damo/speech_fsmn_vad_zh-cn-16k-common-pytorch')
|
||||
model_dir = snapshot_download('damo/punc_ct-transformer_zh-cn-common-vocab272727-pytorch')
|
||||
|
||||
|
26
Dockerfile
26
Dockerfile
@ -2,7 +2,7 @@
|
||||
FROM cnstark/pytorch:2.0.1-py3.9.17-cuda11.8.0-ubuntu20.04
|
||||
|
||||
LABEL maintainer="breakstring@hotmail.com"
|
||||
LABEL version="dev-20240123.03"
|
||||
LABEL version="dev-20240127"
|
||||
LABEL description="Docker image for GPT-SoVITS"
|
||||
|
||||
|
||||
@ -18,27 +18,19 @@ RUN apt-get update && \
|
||||
WORKDIR /workspace
|
||||
COPY . /workspace
|
||||
|
||||
# install python packages
|
||||
RUN pip install -r requirements.txt
|
||||
|
||||
# Download models
|
||||
RUN chmod +x /workspace/Docker/download.sh && /workspace/Docker/download.sh
|
||||
|
||||
# 本应该从 requirements.txt 里面安装package,但是由于funasr和modelscope的问题,暂时先在后面手工安装依赖包吧
|
||||
RUN pip install --no-cache-dir torch numpy scipy tensorboard librosa==0.9.2 numba==0.56.4 pytorch-lightning gradio==3.14.0 ffmpeg-python onnxruntime tqdm cn2an pypinyin pyopenjtalk g2p_en chardet transformers jieba psutil PyYAML
|
||||
# 这里强制指定了modelscope和funasr的版本,后面damo_asr的模型让它们自己下载
|
||||
RUN pip install --no-cache-dir modelscope~=1.10.0 torchaudio sentencepiece funasr~=0.8.7
|
||||
# Download moda ASR related
|
||||
RUN python /workspace/Docker/download.py
|
||||
|
||||
# 先屏蔽掉,让容器里自己下载
|
||||
# Clone damo_asr
|
||||
#WORKDIR /workspace/tools/damo_asr/models
|
||||
#RUN git clone --depth 1 https://www.modelscope.cn/iic/speech_paraformer-large_asr_nat-zh-cn-16k-common-vocab8404-pytorch.git speech_paraformer-large_asr_nat-zh-cn-16k-common-vocab8404-pytorch && \
|
||||
# (cd speech_paraformer-large_asr_nat-zh-cn-16k-common-vocab8404-pytorch && git lfs pull)
|
||||
#RUN git clone --depth 1 https://www.modelscope.cn/iic/speech_fsmn_vad_zh-cn-16k-common-pytorch.git speech_fsmn_vad_zh-cn-16k-common-pytorch && \
|
||||
# (cd speech_fsmn_vad_zh-cn-16k-common-pytorch && git lfs pull)
|
||||
#RUN git clone --depth 1 https://www.modelscope.cn/iic/punc_ct-transformer_zh-cn-common-vocab272727-pytorch.git punc_ct-transformer_zh-cn-common-vocab272727-pytorch && \
|
||||
# (cd punc_ct-transformer_zh-cn-common-vocab272727-pytorch && git lfs pull)
|
||||
# Download nltk realted
|
||||
RUN python -m nltk.downloader averaged_perceptron_tagger
|
||||
RUN python -m nltk.downloader cmudict
|
||||
|
||||
#RUN parallel --will-cite -a /workspace/Docker/damo.sha256 "echo -n {} | sha256sum -c"
|
||||
|
||||
#WORKDIR /workspace
|
||||
|
||||
EXPOSE 9870
|
||||
EXPOSE 9871
|
||||
|
@ -41,7 +41,7 @@ class Text2SemanticDataModule(LightningDataModule):
|
||||
# pad_val=self.config['data']['pad_val'])
|
||||
|
||||
def train_dataloader(self):
|
||||
batch_size = self.config["train"]["batch_size"]
|
||||
batch_size = max(min(self.config["train"]["batch_size"],len(self._train_dataset)//4),1)#防止不保存
|
||||
sampler = DistributedBucketSampler(self._train_dataset, batch_size=batch_size)
|
||||
return DataLoader(
|
||||
self._train_dataset,
|
||||
|
@ -283,17 +283,26 @@ def nonen_get_bert_inf(text, language):
|
||||
|
||||
return bert
|
||||
|
||||
#i18n("不切"),i18n("凑五句一切"),i18n("凑50字一切"),i18n("按中文句号。切"),i18n("按英文句号.切")
|
||||
splits = {",","。","?","!",",",".","?","!","~",":",":","—","…",}
|
||||
def get_first(text):
|
||||
pattern = "[" + "".join(re.escape(sep) for sep in splits) + "]"
|
||||
text = re.split(pattern, text)[0].strip()
|
||||
return text
|
||||
|
||||
def get_tts_wav(ref_wav_path, prompt_text, prompt_language, text, text_language,how_to_cut=i18n("不切")):
|
||||
t0 = ttime()
|
||||
prompt_text = prompt_text.strip("\n")
|
||||
prompt_language, text = prompt_language, text.strip("\n")
|
||||
if(prompt_text[-1]not in splits):prompt_text+="。"if prompt_text!="en"else "."
|
||||
text = text.strip("\n")
|
||||
if(len(get_first(text))<4):text+="。"if text!="en"else "."
|
||||
zero_wav = np.zeros(
|
||||
int(hps.data.sampling_rate * 0.3),
|
||||
dtype=np.float16 if is_half == True else np.float32,
|
||||
)
|
||||
with torch.no_grad():
|
||||
wav16k, sr = librosa.load(ref_wav_path, sr=16000)
|
||||
if(wav16k.shape[0]>160000 or wav16k.shape[0]<48000):
|
||||
raise OSError(i18n("参考音频在3~10秒范围外,请更换!"))
|
||||
wav16k = torch.from_numpy(wav16k)
|
||||
zero_wav_torch = torch.from_numpy(zero_wav)
|
||||
if is_half == True:
|
||||
@ -318,7 +327,7 @@ def get_tts_wav(ref_wav_path, prompt_text, prompt_language, text, text_language,
|
||||
phones1, word2ph1, norm_text1 = clean_text_inf(prompt_text, prompt_language)
|
||||
else:
|
||||
phones1, word2ph1, norm_text1 = nonen_clean_text_inf(prompt_text, prompt_language)
|
||||
if(how_to_cut==i18n("凑五句一切")):text=cut1(text)
|
||||
if(how_to_cut==i18n("凑四句一切")):text=cut1(text)
|
||||
elif(how_to_cut==i18n("凑50字一切")):text=cut2(text)
|
||||
elif(how_to_cut==i18n("按中文句号。切")):text=cut3(text)
|
||||
elif(how_to_cut==i18n("按英文句号.切")):text=cut4(text)
|
||||
@ -390,24 +399,6 @@ def get_tts_wav(ref_wav_path, prompt_text, prompt_language, text, text_language,
|
||||
np.int16
|
||||
)
|
||||
|
||||
|
||||
splits = {
|
||||
",",
|
||||
"。",
|
||||
"?",
|
||||
"!",
|
||||
",",
|
||||
".",
|
||||
"?",
|
||||
"!",
|
||||
"~",
|
||||
":",
|
||||
":",
|
||||
"—",
|
||||
"…",
|
||||
} # 不考虑省略号
|
||||
|
||||
|
||||
def split(todo_text):
|
||||
todo_text = todo_text.replace("……", "。").replace("——", ",")
|
||||
if todo_text[-1] not in splits:
|
||||
@ -430,7 +421,7 @@ def split(todo_text):
|
||||
def cut1(inp):
|
||||
inp = inp.strip("\n")
|
||||
inps = split(inp)
|
||||
split_idx = list(range(0, len(inps), 5))
|
||||
split_idx = list(range(0, len(inps), 4))
|
||||
split_idx[-1] = None
|
||||
if len(split_idx) > 1:
|
||||
opts = []
|
||||
@ -444,7 +435,6 @@ def cut1(inp):
|
||||
def cut2(inp):
|
||||
inp = inp.strip("\n")
|
||||
inps = split(inp)
|
||||
# print(inps)
|
||||
if len(inps) < 2:
|
||||
return inp
|
||||
opts = []
|
||||
@ -517,6 +507,7 @@ with gr.Blocks(title="GPT-SoVITS WebUI") as app:
|
||||
with gr.Row():
|
||||
inp_ref = gr.Audio(label=i18n("请上传参考音频"), type="filepath")
|
||||
whisper_button = gr.Button(i18n("faster_whisper转写音频内容到文本"))
|
||||
inp_ref = gr.Audio(label=i18n("请上传3~10秒内参考音频,超过会报错!"), type="filepath")
|
||||
prompt_text = gr.Textbox(label=i18n("参考音频的文本"), value="")
|
||||
prompt_language = gr.Dropdown(
|
||||
label=i18n("参考音频的语种"),choices=[i18n("中文"),i18n("英文"),i18n("日文")],value=i18n("中文")
|
||||
@ -530,7 +521,7 @@ with gr.Blocks(title="GPT-SoVITS WebUI") as app:
|
||||
)
|
||||
how_to_cut = gr.Radio(
|
||||
label=i18n("怎么切"),
|
||||
choices=[i18n("不切"),i18n("凑五句一切"),i18n("凑50字一切"),i18n("按中文句号。切"),i18n("按英文句号.切"),],
|
||||
choices=[i18n("不切"),i18n("凑四句一切"),i18n("凑50字一切"),i18n("按中文句号。切"),i18n("按英文句号.切"),],
|
||||
value=i18n("凑50字一切"),
|
||||
interactive=True,
|
||||
)
|
||||
@ -546,7 +537,7 @@ with gr.Blocks(title="GPT-SoVITS WebUI") as app:
|
||||
gr.Markdown(value=i18n("文本切分工具。太长的文本合成出来效果不一定好,所以太长建议先切。合成会根据文本的换行分开合成再拼起来。"))
|
||||
with gr.Row():
|
||||
text_inp = gr.Textbox(label=i18n("需要合成的切分前文本"),value="")
|
||||
button1 = gr.Button(i18n("凑五句一切"), variant="primary")
|
||||
button1 = gr.Button(i18n("凑四句一切"), variant="primary")
|
||||
button2 = gr.Button(i18n("凑50字一切"), variant="primary")
|
||||
button3 = gr.Button(i18n("按中文句号。切"), variant="primary")
|
||||
button4 = gr.Button(i18n("按英文句号.切"), variant="primary")
|
||||
|
@ -44,9 +44,8 @@ class my_model_ckpt(ModelCheckpoint):
|
||||
self.config = config
|
||||
|
||||
def on_train_epoch_end(self, trainer, pl_module):
|
||||
if not self._should_skip_saving_checkpoint(
|
||||
trainer
|
||||
) and self._should_save_on_train_epoch_end(trainer):
|
||||
# if not self._should_skip_saving_checkpoint(trainer) and self._should_save_on_train_epoch_end(trainer):
|
||||
if self._should_save_on_train_epoch_end(trainer):
|
||||
monitor_candidates = self._monitor_candidates(trainer)
|
||||
if (
|
||||
self._every_n_epochs >= 1
|
||||
|
@ -123,6 +123,7 @@ For UVR5 (Vocals/Accompaniment Separation & Reverberation Removal, additionally)
|
||||
|
||||
#### docker-compose.yaml configuration
|
||||
|
||||
0. Regarding image tags: Due to rapid updates in the codebase and the slow process of packaging and testing images, please check [Docker Hub](https://hub.docker.com/r/breakstring/gpt-sovits) for the currently packaged latest images and select as per your situation, or alternatively, build locally using a Dockerfile according to your own needs.
|
||||
1. Environment Variables:
|
||||
- is_half: Controls half-precision/double-precision. This is typically the cause if the content under the directories 4-cnhubert/5-wav32k is not generated correctly during the "SSL extracting" step. Adjust to True or False based on your actual situation.
|
||||
|
||||
@ -140,7 +141,7 @@ docker compose -f "docker-compose.yaml" up -d
|
||||
|
||||
As above, modify the corresponding parameters based on your actual situation, then run the following command:
|
||||
```
|
||||
docker run --rm -it --gpus=all --env=is_half=False --volume=G:\GPT-SoVITS-DockerTest\output:/workspace/output --volume=G:\GPT-SoVITS-DockerTest\logs:/workspace/logs --volume=G:\GPT-SoVITS-DockerTest\SoVITS_weights:/workspace/SoVITS_weights --workdir=/workspace -p 9870:9870 -p 9871:9871 -p 9872:9872 -p 9873:9873 -p 9874:9874 --shm-size="16G" -d breakstring/gpt-sovits:dev-20240123.03
|
||||
docker run --rm -it --gpus=all --env=is_half=False --volume=G:\GPT-SoVITS-DockerTest\output:/workspace/output --volume=G:\GPT-SoVITS-DockerTest\logs:/workspace/logs --volume=G:\GPT-SoVITS-DockerTest\SoVITS_weights:/workspace/SoVITS_weights --workdir=/workspace -p 9870:9870 -p 9871:9871 -p 9872:9872 -p 9873:9873 -p 9874:9874 --shm-size="16G" -d breakstring/gpt-sovits:xxxxx
|
||||
```
|
||||
|
||||
|
||||
|
@ -2,7 +2,7 @@ version: '3.8'
|
||||
|
||||
services:
|
||||
gpt-sovits:
|
||||
image: breakstring/gpt-sovits:dev-20240123.03
|
||||
image: breakstring/gpt-sovits:xxxxx # please change the image name and tag base your environment
|
||||
container_name: gpt-sovits-container
|
||||
environment:
|
||||
- is_half=False
|
||||
|
@ -110,7 +110,7 @@ brew install ffmpeg
|
||||
### 在 Docker 中使用
|
||||
|
||||
#### docker-compose.yaml 设置
|
||||
|
||||
0. image的标签:由于代码库更新很快,镜像的打包和测试又很慢,所以请自行在 [Docker Hub](https://hub.docker.com/r/breakstring/gpt-sovits) 查看当前打包好的最新的镜像并根据自己的情况选用,或者在本地根据您自己的需求通过Dockerfile进行构建。
|
||||
1. 环境变量:
|
||||
- is_half: 半精度/双精度控制。在进行 "SSL extracting" 步骤时如果无法正确生成 4-cnhubert/5-wav32k 目录下的内容时,一般都是它引起的,可以根据实际情况来调整为True或者False。
|
||||
|
||||
@ -129,7 +129,7 @@ docker compose -f "docker-compose.yaml" up -d
|
||||
|
||||
同上,根据您自己的实际情况修改对应的参数,然后运行如下命令:
|
||||
```
|
||||
docker run --rm -it --gpus=all --env=is_half=False --volume=G:\GPT-SoVITS-DockerTest\output:/workspace/output --volume=G:\GPT-SoVITS-DockerTest\logs:/workspace/logs --volume=G:\GPT-SoVITS-DockerTest\SoVITS_weights:/workspace/SoVITS_weights --workdir=/workspace -p 9870:9870 -p 9871:9871 -p 9872:9872 -p 9873:9873 -p 9874:9874 --shm-size="16G" -d breakstring/gpt-sovits:dev-20240123.03
|
||||
docker run --rm -it --gpus=all --env=is_half=False --volume=G:\GPT-SoVITS-DockerTest\output:/workspace/output --volume=G:\GPT-SoVITS-DockerTest\logs:/workspace/logs --volume=G:\GPT-SoVITS-DockerTest\SoVITS_weights:/workspace/SoVITS_weights --workdir=/workspace -p 9870:9870 -p 9871:9871 -p 9872:9872 -p 9873:9873 -p 9874:9874 --shm-size="16G" -d breakstring/gpt-sovits:xxxxx
|
||||
```
|
||||
|
||||
|
||||
|
@ -108,6 +108,7 @@ brew install ffmpeg
|
||||
|
||||
#### docker-compose.yamlの設定
|
||||
|
||||
0. イメージのタグについて:コードベースの更新が速く、イメージのパッケージングとテストが遅いため、[Docker Hub](https://hub.docker.com/r/breakstring/gpt-sovits) で現在パッケージされている最新のイメージをご覧になり、ご自身の状況に応じて選択するか、またはご自身のニーズに応じてDockerfileを使用してローカルで構築してください。
|
||||
1. 環境変数:
|
||||
- `is_half`:半精度/倍精度の制御。"SSL抽出"ステップ中に`4-cnhubert/5-wav32k`ディレクトリ内の内容が正しく生成されない場合、通常これが原因です。実際の状況に応じてTrueまたはFalseに調整してください。
|
||||
|
||||
@ -124,7 +125,7 @@ docker compose -f "docker-compose.yaml" up -d
|
||||
|
||||
上記と同様に、実際の状況に基づいて対応するパラメータを変更し、次のコマンドを実行します:
|
||||
```markdown
|
||||
docker run --rm -it --gpus=all --env=is_half=False --volume=G:\GPT-SoVITS-DockerTest\output:/workspace/output --volume=G:\GPT-SoVITS-DockerTest\logs:/workspace/logs --volume=G:\GPT-SoVITS-DockerTest\SoVITS_weights:/workspace/SoVITS_weights --workdir=/workspace -p 9870:9870 -p 9871:9871 -p 9872:9872 -p 9873:9873 -p 9874:9874 --shm-size="16G" -d breakstring/gpt-sovits:dev-20240123.03
|
||||
docker run --rm -it --gpus=all --env=is_half=False --volume=G:\GPT-SoVITS-DockerTest\output:/workspace/output --volume=G:\GPT-SoVITS-DockerTest\logs:/workspace/logs --volume=G:\GPT-SoVITS-DockerTest\SoVITS_weights:/workspace/SoVITS_weights --workdir=/workspace -p 9870:9870 -p 9871:9871 -p 9872:9872 -p 9873:9873 -p 9874:9874 --shm-size="16G" -d breakstring/gpt-sovits:xxxxx
|
||||
```
|
||||
|
||||
|
||||
|
10
webui.py
10
webui.py
@ -16,7 +16,11 @@ if(os.path.exists(tmp)):
|
||||
if(name=="jieba.cache"):continue
|
||||
path="%s/%s"%(tmp,name)
|
||||
delete=os.remove if os.path.isfile(path) else shutil.rmtree
|
||||
try:
|
||||
delete(path)
|
||||
except Exception as e:
|
||||
print(str(e))
|
||||
pass
|
||||
import site
|
||||
site_packages_roots = []
|
||||
for path in site.getsitepackages():
|
||||
@ -26,7 +30,6 @@ if(site_packages_roots==[]):site_packages_roots=["%s/runtime/Lib/site-packages"
|
||||
#os.environ["OPENBLAS_NUM_THREADS"] = "4"
|
||||
os.environ["no_proxy"] = "localhost, 127.0.0.1, ::1"
|
||||
os.environ["all_proxy"] = ""
|
||||
|
||||
for site_packages_root in site_packages_roots:
|
||||
if os.path.exists(site_packages_root):
|
||||
try:
|
||||
@ -38,7 +41,6 @@ for site_packages_root in site_packages_roots:
|
||||
break
|
||||
except PermissionError:
|
||||
pass
|
||||
|
||||
from tools import my_utils
|
||||
import traceback
|
||||
import shutil
|
||||
@ -662,7 +664,7 @@ with gr.Blocks(title="GPT-SoVITS WebUI") as app:
|
||||
with gr.Row():
|
||||
if_label = gr.Checkbox(label=i18n("是否开启打标WebUI"),show_label=True)
|
||||
path_list = gr.Textbox(
|
||||
label=i18n("打标数据标注文件路径"),
|
||||
label=i18n(".list标注文件的路径"),
|
||||
value="D:\\RVC1006\\GPT-SoVITS\\raw\\xxx.list",
|
||||
interactive=True,
|
||||
)
|
||||
@ -688,7 +690,7 @@ with gr.Blocks(title="GPT-SoVITS WebUI") as app:
|
||||
label=i18n("*训练集音频文件目录"),
|
||||
# value=r"D:\RVC1006\GPT-SoVITS\raw\xxx",
|
||||
interactive=True,
|
||||
placeholder=i18n("训练集音频文件目录-拼接-list文件里波形对应的文件名(不是全路径)。")
|
||||
placeholder=i18n("填切割后音频所在目录!读取的音频文件完整路径=该目录-拼接-list文件里波形对应的文件名(不是全路径)。")
|
||||
)
|
||||
gr.Markdown(value=i18n("1Aa-文本内容"))
|
||||
with gr.Row():
|
||||
|
Loading…
x
Reference in New Issue
Block a user