Added inference code

This commit is contained in:
Kazuki Kyakuno 2024-03-21 15:20:46 +09:00
parent 825588b526
commit 7632175d7f

View File

@ -0,0 +1,140 @@
import torch
import torchaudio
from torch import nn
import onnxruntime
import os
from text import cleaned_text_to_sequence
from text.japanese import g2p
import soundfile
import ffmpeg
import numpy as np
import librosa
from my_utils import load_audio
class T2SModel(nn.Module):
def __init__(self):
super().__init__()
self.hz = 50
self.max_sec = 54
self.top_k = 5
self.early_stop_num = torch.LongTensor([self.hz * self.max_sec])
self.sess_encoder = onnxruntime.InferenceSession(f"./onnx/nahida/nahida_t2s_encoder.onnx", providers=["CPUExecutionProvider"])
self.sess_fsdec = onnxruntime.InferenceSession(f"./onnx/nahida/nahida_t2s_fsdec.onnx", providers=["CPUExecutionProvider"])
self.sess_sdec = onnxruntime.InferenceSession(f"./onnx/nahida/nahida_t2s_sdec.onnx", providers=["CPUExecutionProvider"])
def forward(self, ref_seq, text_seq, ref_bert, text_bert, ssl_content):
early_stop_num = self.early_stop_num
EOS = 1024
#[1,N] [1,N] [N, 1024] [N, 1024] [1, 768, N]
x, prompts = self.sess_encoder.run(None, {"ref_seq":ref_seq.detach().numpy(), "text_seq":text_seq.detach().numpy(), "ref_bert":ref_bert.detach().numpy(), "text_bert":text_bert.detach().numpy(), "ssl_content":ssl_content.detach().numpy()})
x = torch.from_numpy(x)
prompts = torch.from_numpy(prompts)
prefix_len = prompts.shape[1]
#[1,N,512] [1,N]
y, k, v, y_emb, x_example = self.sess_fsdec.run(None, {"x":x.detach().numpy(), "prompts":prompts.detach().numpy()})
y = torch.from_numpy(y)
k = torch.from_numpy(k)
v = torch.from_numpy(v)
y_emb = torch.from_numpy(y_emb)
x_example = torch.from_numpy(x_example)
stop = False
for idx in range(1, 1500):
#[1, N] [N_layer, N, 1, 512] [N_layer, N, 1, 512] [1, N, 512] [1] [1, N, 512] [1, N]
y, k, v, y_emb, logits, samples = self.sess_sdec.run(None, {"iy":y.detach().numpy(), "ik":k.detach().numpy(), "iv":v.detach().numpy(), "iy_emb":y_emb.detach().numpy(), "ix_example":x_example.detach().numpy()})
y = torch.from_numpy(y)
k = torch.from_numpy(k)
v = torch.from_numpy(v)
y_emb = torch.from_numpy(y_emb)
logits = torch.from_numpy(logits)
samples = torch.from_numpy(samples)
if early_stop_num != -1 and (y.shape[1] - prefix_len) > early_stop_num:
stop = True
if torch.argmax(logits, dim=-1)[0] == EOS or samples[0, 0] == EOS:
stop = True
if stop:
break
y[0, -1] = 0
return y[:, -idx:-1].unsqueeze(0)
class GptSoVits(nn.Module):
def __init__(self, t2s):
super().__init__()
self.t2s = t2s
self.sess = onnxruntime.InferenceSession("./onnx/nahida/nahida_vits.onnx", providers=["CPUExecutionProvider"])
def forward(self, ref_seq, text_seq, ref_bert, text_bert, ref_audio, ssl_content):
pred_semantic = self.t2s(ref_seq, text_seq, ref_bert, text_bert, ssl_content)
audio1 = self.sess.run(None, {
"text_seq" : text_seq.detach().cpu().numpy(),
"pred_semantic" : pred_semantic.detach().cpu().numpy(),
"ref_audio" : ref_audio.detach().cpu().numpy()
})
return torch.from_numpy(audio1[0])
class SSLModel(nn.Module):
def __init__(self):
super().__init__()
self.sess = onnxruntime.InferenceSession("./onnx/nahida/nahida_cnhubert.onnx", providers=["CPUExecutionProvider"])
def forward(self, ref_audio_16k):
last_hidden_state = self.sess.run(None, {
"ref_audio_16k" : ref_audio_16k.detach().cpu().numpy()
})
return torch.from_numpy(last_hidden_state[0])
def inference():
gpt = T2SModel()
gpt_sovits = GptSoVits(gpt)
ssl = SSLModel()
ref_audio = torch.randn((1, 48000 * 5)).float()
input_audio = "JSUT.wav"
ref_phones = g2p("水をマレーシアから買わなくてはならない。")
ref_audio = torch.tensor([load_audio(input_audio, 48000)]).float()
ref_seq = torch.LongTensor([cleaned_text_to_sequence(ref_phones)])
text_phones = g2p("音声合成のテストを行なっています。")
text_seq = torch.LongTensor([cleaned_text_to_sequence(text_phones)])
# empty for ja or en
ref_bert = torch.zeros((ref_seq.shape[1], 1024)).float()
text_bert = torch.zeros((text_seq.shape[1], 1024)).float()
ref_audio_16k = torchaudio.functional.resample(ref_audio,48000,16000).float()
vits_hps_data_sampling_rate = 32000
ref_audio_sr = torchaudio.functional.resample(ref_audio,48000,vits_hps_data_sampling_rate).float()
zero_wav = np.zeros(
int(vits_hps_data_sampling_rate * 0.3),
dtype=np.float32,
)
wav16k, sr = librosa.load(input_audio, sr=16000)
wav16k = torch.from_numpy(wav16k)
zero_wav_torch = torch.from_numpy(zero_wav)
wav16k = torch.cat([wav16k, zero_wav_torch]).unsqueeze(0)
ref_audio_16k = wav16k
ssl_content = ssl(ref_audio_16k).float()
a = gpt_sovits(ref_seq, text_seq, ref_bert, text_bert, ref_audio_sr, ssl_content)
soundfile.write("out.wav", a.cpu().detach().numpy(), vits_hps_data_sampling_rate)
if __name__ == "__main__":
inference()