diff --git a/GPT_SoVITS/inference_webui.py b/GPT_SoVITS/inference_webui.py index 16ac1469..b350eb18 100644 --- a/GPT_SoVITS/inference_webui.py +++ b/GPT_SoVITS/inference_webui.py @@ -25,11 +25,9 @@ import torch infer_ttswebui = os.environ.get("infer_ttswebui", 9872) infer_ttswebui = int(infer_ttswebui) -is_share = os.environ.get("is_share", "False") -is_share = eval(is_share) if "_CUDA_VISIBLE_DEVICES" in os.environ: os.environ["CUDA_VISIBLE_DEVICES"] = os.environ["_CUDA_VISIBLE_DEVICES"] -is_half = eval(os.environ.get("is_half", "True")) and torch.cuda.is_available() +from config import is_half,is_share gpt_path = os.environ.get("gpt_path", None) sovits_path = os.environ.get("sovits_path", None) cnhubert_base_path = os.environ.get("cnhubert_base_path", None) diff --git a/GPT_SoVITS/prepare_datasets/1-get-text.py b/GPT_SoVITS/prepare_datasets/1-get-text.py index e01a63b9..27da9128 100644 --- a/GPT_SoVITS/prepare_datasets/1-get-text.py +++ b/GPT_SoVITS/prepare_datasets/1-get-text.py @@ -10,7 +10,7 @@ all_parts = os.environ.get("all_parts") os.environ["CUDA_VISIBLE_DEVICES"] = os.environ.get("_CUDA_VISIBLE_DEVICES") opt_dir = os.environ.get("opt_dir") bert_pretrained_dir = os.environ.get("bert_pretrained_dir") -is_half = eval(os.environ.get("is_half", "True")) +from config import is_half import sys, numpy as np, traceback, pdb import os.path from glob import glob diff --git a/GPT_SoVITS/prepare_datasets/2-get-hubert-wav32k.py b/GPT_SoVITS/prepare_datasets/2-get-hubert-wav32k.py index 61c933a4..c300cb1c 100644 --- a/GPT_SoVITS/prepare_datasets/2-get-hubert-wav32k.py +++ b/GPT_SoVITS/prepare_datasets/2-get-hubert-wav32k.py @@ -10,7 +10,7 @@ os.environ["CUDA_VISIBLE_DEVICES"]= os.environ.get("_CUDA_VISIBLE_DEVICES") from feature_extractor import cnhubert opt_dir= os.environ.get("opt_dir") cnhubert.cnhubert_base_path= os.environ.get("cnhubert_base_dir") -is_half=eval(os.environ.get("is_half","True")) +from config import is_half import pdb,traceback,numpy as np,logging from scipy.io import wavfile diff --git a/GPT_SoVITS/prepare_datasets/3-get-semantic.py b/GPT_SoVITS/prepare_datasets/3-get-semantic.py index 3448a580..271ba3ae 100644 --- a/GPT_SoVITS/prepare_datasets/3-get-semantic.py +++ b/GPT_SoVITS/prepare_datasets/3-get-semantic.py @@ -8,7 +8,7 @@ os.environ["CUDA_VISIBLE_DEVICES"] = os.environ.get("_CUDA_VISIBLE_DEVICES") opt_dir = os.environ.get("opt_dir") pretrained_s2G = os.environ.get("pretrained_s2G") s2config_path = os.environ.get("s2config_path") -is_half = eval(os.environ.get("is_half", "True")) +from config import is_half import math, traceback import multiprocessing import sys, pdb diff --git a/config.py b/config.py index 1f741285..081a10d2 100644 --- a/config.py +++ b/config.py @@ -42,6 +42,7 @@ if infer_device == "cuda": is_half=False if(infer_device=="cpu"):is_half=False +if(torch.backends.mps.is_available()):is_half=False class Config: def __init__(self): diff --git a/tools/cmd-denoise.py b/tools/cmd-denoise.py index 69b51e66..b23eee2c 100644 --- a/tools/cmd-denoise.py +++ b/tools/cmd-denoise.py @@ -1,29 +1,29 @@ -import os,argparse - -from modelscope.pipelines import pipeline -from modelscope.utils.constant import Tasks -from tqdm import tqdm - -path_denoise = 'tools/denoise-model/speech_frcrn_ans_cirm_16k' -path_denoise = path_denoise if os.path.exists(path_denoise) else "damo/speech_frcrn_ans_cirm_16k" -ans = pipeline(Tasks.acoustic_noise_suppression,model=path_denoise) -def execute_denoise(input_folder,output_folder): - os.makedirs(output_folder,exist_ok=True) - # print(input_folder) - # print(list(os.listdir(input_folder).sort())) - for name in tqdm(os.listdir(input_folder)): - ans("%s/%s"%(input_folder,name),output_path='%s/%s'%(output_folder,name)) - -if __name__ == '__main__': - parser = argparse.ArgumentParser() - parser.add_argument("-i", "--input_folder", type=str, required=True, - help="Path to the folder containing WAV files.") - parser.add_argument("-o", "--output_folder", type=str, required=True, - help="Output folder to store transcriptions.") - parser.add_argument("-p", "--precision", type=str, default='float16', choices=['float16','float32'], - help="fp16 or fp32")#还没接入 - cmd = parser.parse_args() - execute_denoise( - input_folder = cmd.input_folder, - output_folder = cmd.output_folder, +import os,argparse + +from modelscope.pipelines import pipeline +from modelscope.utils.constant import Tasks +from tqdm import tqdm + +path_denoise = 'tools/denoise-model/speech_frcrn_ans_cirm_16k' +path_denoise = path_denoise if os.path.exists(path_denoise) else "damo/speech_frcrn_ans_cirm_16k" +ans = pipeline(Tasks.acoustic_noise_suppression,model=path_denoise) +def execute_denoise(input_folder,output_folder): + os.makedirs(output_folder,exist_ok=True) + # print(input_folder) + # print(list(os.listdir(input_folder).sort())) + for name in tqdm(os.listdir(input_folder)): + ans("%s/%s"%(input_folder,name),output_path='%s/%s'%(output_folder,name)) + +if __name__ == '__main__': + parser = argparse.ArgumentParser() + parser.add_argument("-i", "--input_folder", type=str, required=True, + help="Path to the folder containing WAV files.") + parser.add_argument("-o", "--output_folder", type=str, required=True, + help="Output folder to store transcriptions.") + parser.add_argument("-p", "--precision", type=str, default='float16', choices=['float16','float32'], + help="fp16 or fp32")#还没接入 + cmd = parser.parse_args() + execute_denoise( + input_folder = cmd.input_folder, + output_folder = cmd.output_folder, ) \ No newline at end of file