From 74e79ae6d68f11c268a542ac69d6b693a2866271 Mon Sep 17 00:00:00 2001 From: RVC-Boss <129054828+RVC-Boss@users.noreply.github.com> Date: Sat, 7 Jun 2025 14:40:30 +0800 Subject: [PATCH] Delete batch_inference.py --- batch_inference.py | 442 --------------------------------------------- 1 file changed, 442 deletions(-) delete mode 100644 batch_inference.py diff --git a/batch_inference.py b/batch_inference.py deleted file mode 100644 index 476d20b..0000000 --- a/batch_inference.py +++ /dev/null @@ -1,442 +0,0 @@ -import argparse -import os -import pdb -import signal -import sys -from time import time as ttime -import torch -import librosa -import soundfile as sf -from fastapi import FastAPI, Request, HTTPException -from fastapi.responses import StreamingResponse -import uvicorn -from transformers import AutoModelForMaskedLM, AutoTokenizer -import numpy as np -from feature_extractor import cnhubert -from io import BytesIO -from module.models import SynthesizerTrn -from AR.models.t2s_lightning_module import Text2SemanticLightningModule -from text import cleaned_text_to_sequence -from text.cleaner import clean_text -from module.mel_processing import spectrogram_torch -from my_utils import load_audio -import config as global_config - -g_config = global_config.Config() - -# AVAILABLE_COMPUTE = "cuda" if torch.cuda.is_available() else "cpu" - -parser = argparse.ArgumentParser(description="GPT-SoVITS api") - -parser.add_argument("-s", "--sovits_path", type=str, default=g_config.sovits_path, help="SoVITS模型路径") -parser.add_argument("-g", "--gpt_path", type=str, default=g_config.gpt_path, help="GPT模型路径") - -parser.add_argument("-dr", "--default_refer_path", type=str, default="", - help="默认参考音频路径, 请求缺少参考音频时调用") -parser.add_argument("-dt", "--default_refer_text", type=str, default="", help="默认参考音频文本") -parser.add_argument("-dl", "--default_refer_language", type=str, default="", help="默认参考音频语种") - -parser.add_argument("-d", "--device", type=str, default=g_config.infer_device, help="cuda / cpu") -parser.add_argument("-p", "--port", type=int, default=g_config.api_port, help="default: 9880") -parser.add_argument("-a", "--bind_addr", type=str, default="127.0.0.1", help="default: 127.0.0.1") -parser.add_argument("-fp", "--full_precision", action="store_true", default=False, help="覆盖config.is_half为False, 使用全精度") -parser.add_argument("-hp", "--half_precision", action="store_true", default=False, help="覆盖config.is_half为True, 使用半精度") -# bool值的用法为 `python ./api.py -fp ...` -# 此时 full_precision==True, half_precision==False - -parser.add_argument("-hb", "--hubert_path", type=str, default=g_config.cnhubert_path, help="覆盖config.cnhubert_path") -parser.add_argument("-b", "--bert_path", type=str, default=g_config.bert_path, help="覆盖config.bert_path") - -args = parser.parse_args() - -sovits_path = args.sovits_path -gpt_path = args.gpt_path - -default_refer_path = args.default_refer_path -default_refer_text = args.default_refer_text -default_refer_language = args.default_refer_language -has_preset = False - -device = args.device -port = args.port -host = args.bind_addr - -if sovits_path == "": - sovits_path = g_config.pretrained_sovits_path - print(f"[WARN] 未指定SoVITS模型路径, fallback后当前值: {sovits_path}") -if gpt_path == "": - gpt_path = g_config.pretrained_gpt_path - print(f"[WARN] 未指定GPT模型路径, fallback后当前值: {gpt_path}") - -# 指定默认参考音频, 调用方 未提供/未给全 参考音频参数时使用 -if default_refer_path == "" or default_refer_text == "" or default_refer_language == "": - default_refer_path, default_refer_text, default_refer_language = "", "", "" - print("[INFO] 未指定默认参考音频") - has_preset = False -else: - print(f"[INFO] 默认参考音频路径: {default_refer_path}") - print(f"[INFO] 默认参考音频文本: {default_refer_text}") - print(f"[INFO] 默认参考音频语种: {default_refer_language}") - has_preset = True - -is_half = g_config.is_half -if args.full_precision: - is_half = False -if args.half_precision: - is_half = True -if args.full_precision and args.half_precision: - is_half = g_config.is_half # 炒饭fallback - -print(f"[INFO] 半精: {is_half}") - -cnhubert_base_path = args.hubert_path -bert_path = args.bert_path - -cnhubert.cnhubert_base_path = cnhubert_base_path -tokenizer = AutoTokenizer.from_pretrained(bert_path) -bert_model = AutoModelForMaskedLM.from_pretrained(bert_path) -if is_half: - bert_model = bert_model.half().to(device) -else: - bert_model = bert_model.to(device) - - -def get_bert_feature(text, word2ph): - with torch.no_grad(): - inputs = tokenizer(text, return_tensors="pt") - for i in inputs: - inputs[i] = inputs[i].to(device) #####输入是long不用管精度问题,精度随bert_model - res = bert_model(**inputs, output_hidden_states=True) - res = torch.cat(res["hidden_states"][-3:-2], -1)[0].cpu()[1:-1] - assert len(word2ph) == len(text) - phone_level_feature = [] - for i in range(len(word2ph)): - repeat_feature = res[i].repeat(word2ph[i], 1) - phone_level_feature.append(repeat_feature) - phone_level_feature = torch.cat(phone_level_feature, dim=0) - # if(is_half==True):phone_level_feature=phone_level_feature.half() - return phone_level_feature.T - - -n_semantic = 1024 -dict_s2 = torch.load(sovits_path, map_location="cpu", weights_only=False) -hps = dict_s2["config"] -print(hps) - -class DictToAttrRecursive(dict): - def __init__(self, input_dict): - super().__init__(input_dict) - for key, value in input_dict.items(): - if isinstance(value, dict): - value = DictToAttrRecursive(value) - self[key] = value - setattr(self, key, value) - - def __getattr__(self, item): - try: - return self[item] - except KeyError: - raise AttributeError(f"Attribute {item} not found") - - def __setattr__(self, key, value): - if isinstance(value, dict): - value = DictToAttrRecursive(value) - super(DictToAttrRecursive, self).__setitem__(key, value) - super().__setattr__(key, value) - - def __delattr__(self, item): - try: - del self[item] - except KeyError: - raise AttributeError(f"Attribute {item} not found") - - -hps = DictToAttrRecursive(hps) -hps.model.semantic_frame_rate = "25hz" -dict_s1 = torch.load(gpt_path, map_location="cpu", weights_only=False) -config = dict_s1["config"] -ssl_model = cnhubert.get_model() -if is_half: - ssl_model = ssl_model.half().to(device) -else: - ssl_model = ssl_model.to(device) - -vq_model = SynthesizerTrn( - hps.data.filter_length // 2 + 1, - hps.train.segment_size // hps.data.hop_length, - n_speakers=hps.data.n_speakers, - **hps.model) -if is_half: - vq_model = vq_model.half().to(device) -else: - vq_model = vq_model.to(device) -vq_model.eval() -print(vq_model.load_state_dict(dict_s2["weight"], strict=False)) -hz = 50 -max_sec = config['data']['max_sec'] -t2s_model = Text2SemanticLightningModule(config, "ojbk", is_train=False) -t2s_model.load_state_dict(dict_s1["weight"]) -if is_half: - t2s_model = t2s_model.half() -t2s_model = t2s_model.to(device) -t2s_model.eval() -total = sum([param.nelement() for param in t2s_model.parameters()]) -print("Number of parameter: %.2fM" % (total / 1e6)) - - -def get_spepc(hps, filename): - audio = load_audio(filename, int(hps.data.sampling_rate)) - audio = torch.FloatTensor(audio) - audio_norm = audio - audio_norm = audio_norm.unsqueeze(0) - spec = spectrogram_torch(audio_norm, hps.data.filter_length, hps.data.sampling_rate, hps.data.hop_length, - hps.data.win_length, center=False) - return spec - - -dict_language = { - "中文": "zh", - "英文": "en", - "日文": "ja", - "ZH": "zh", - "EN": "en", - "JA": "ja", - "zh": "zh", - "en": "en", - "ja": "ja" -} - - -def get_tts_wav(ref_wav_path, prompt_text, prompt_language, text, text_language): - t0 = ttime() - prompt_text = prompt_text.strip("\n") - prompt_language, text = prompt_language, text.strip("\n") - zero_wav = np.zeros(int(hps.data.sampling_rate * 0.3), dtype=np.float16 if is_half == True else np.float32) - with torch.no_grad(): - wav16k, sr = librosa.load(ref_wav_path, sr=16000) - wav16k = torch.from_numpy(wav16k) - zero_wav_torch = torch.from_numpy(zero_wav) - if (is_half == True): - wav16k = wav16k.half().to(device) - zero_wav_torch = zero_wav_torch.half().to(device) - else: - wav16k = wav16k.to(device) - zero_wav_torch = zero_wav_torch.to(device) - wav16k=torch.cat([wav16k,zero_wav_torch]) - ssl_content = ssl_model.model(wav16k.unsqueeze(0))["last_hidden_state"].transpose(1, 2) # .float() - codes = vq_model.extract_latent(ssl_content) - prompt_semantic = codes[0, 0] - t1 = ttime() - prompt_language = dict_language[prompt_language] - text_language = dict_language[text_language] - phones1, word2ph1, norm_text1 = clean_text(prompt_text, prompt_language) - phones1 = cleaned_text_to_sequence(phones1) - texts = text.split("\n") - audio_opt = [] - - for text in texts: - phones2, word2ph2, norm_text2 = clean_text(text, text_language) - phones2 = cleaned_text_to_sequence(phones2) - if (prompt_language == "zh"): - bert1 = get_bert_feature(norm_text1, word2ph1).to(device) - else: - bert1 = torch.zeros((1024, len(phones1)), dtype=torch.float16 if is_half == True else torch.float32).to( - device) - if (text_language == "zh"): - bert2 = get_bert_feature(norm_text2, word2ph2).to(device) - else: - bert2 = torch.zeros((1024, len(phones2))).to(bert1) - bert = torch.cat([bert1, bert2], 1) - - all_phoneme_ids = torch.LongTensor(phones1 + phones2).to(device).unsqueeze(0) - bert = bert.to(device).unsqueeze(0) - all_phoneme_len = torch.tensor([all_phoneme_ids.shape[-1]]).to(device) - prompt = prompt_semantic.unsqueeze(0).to(device) - t2 = ttime() - with torch.no_grad(): - # pred_semantic = t2s_model.model.infer( - pred_semantic, idx = t2s_model.model.infer_panel( - all_phoneme_ids, - all_phoneme_len, - prompt, - bert, - # prompt_phone_len=ph_offset, - top_k=config['inference']['top_k'], - early_stop_num=hz * max_sec) - t3 = ttime() - # print(pred_semantic.shape,idx) - pred_semantic = pred_semantic[:, -idx:].unsqueeze(0) # .unsqueeze(0)#mq要多unsqueeze一次 - refer = get_spepc(hps, ref_wav_path) # .to(device) - if (is_half == True): - refer = refer.half().to(device) - else: - refer = refer.to(device) - # audio = vq_model.decode(pred_semantic, all_phoneme_ids, refer).detach().cpu().numpy()[0, 0] - audio = \ - vq_model.decode(pred_semantic, torch.LongTensor(phones2).to(device).unsqueeze(0), - refer).detach().cpu().numpy()[ - 0, 0] ###试试重建不带上prompt部分 - audio_opt.append(audio) - audio_opt.append(zero_wav) - t4 = ttime() - print("%.3f\t%.3f\t%.3f\t%.3f" % (t1 - t0, t2 - t1, t3 - t2, t4 - t3)) - # yield hps.data.sampling_rate, (np.concatenate(audio_opt, 0) * 32768).astype(np.int16) - return hps.data.sampling_rate, (np.concatenate(audio_opt, 0) * 32768).astype(np.int16) -def get_tts_wavs(ref_wav_path, prompt_text, prompt_language, textss, text_language): - t0 = ttime() - prompt_text = prompt_text.strip("\n") - zero_wav = np.zeros(int(hps.data.sampling_rate * 0.3), dtype=np.float16 if is_half == True else np.float32) - with torch.no_grad(): - wav16k, sr = librosa.load(ref_wav_path, sr=16000) - wav16k = torch.from_numpy(wav16k) - zero_wav_torch = torch.from_numpy(zero_wav) - if (is_half == True): - wav16k = wav16k.half().to(device) - zero_wav_torch = zero_wav_torch.half().to(device) - else: - wav16k = wav16k.to(device) - zero_wav_torch = zero_wav_torch.to(device) - wav16k=torch.cat([wav16k,zero_wav_torch]) - ssl_content = ssl_model.model(wav16k.unsqueeze(0))["last_hidden_state"].transpose(1, 2) # .float() - codes = vq_model.extract_latent(ssl_content) - prompt_semantic = codes[0, 0] - t1 = ttime() - prompt_language = dict_language[prompt_language] - text_language = dict_language[text_language] - phones1, word2ph1, norm_text1 = clean_text(prompt_text, prompt_language) - phones1 = cleaned_text_to_sequence(phones1) - audios_opt=[] - for text0 in textss: - texts = text0.strip("\n").split("\n") - audio_opt = [] - for text in texts: - text=text.strip("。")+"。" - phones2, word2ph2, norm_text2 = clean_text(text, text_language) - phones2 = cleaned_text_to_sequence(phones2) - if (prompt_language == "zh"): - bert1 = get_bert_feature(norm_text1, word2ph1).to(device) - else: - bert1 = torch.zeros((1024, len(phones1)), dtype=torch.float16 if is_half == True else torch.float32).to( - device) - if (text_language == "zh"): - bert2 = get_bert_feature(norm_text2, word2ph2).to(device) - else: - bert2 = torch.zeros((1024, len(phones2))).to(bert1) - bert = torch.cat([bert1, bert2], 1) - - all_phoneme_ids = torch.LongTensor(phones1 + phones2).to(device).unsqueeze(0) - bert = bert.to(device).unsqueeze(0) - all_phoneme_len = torch.tensor([all_phoneme_ids.shape[-1]]).to(device) - prompt = prompt_semantic.unsqueeze(0).to(device) - t2 = ttime() - with torch.no_grad(): - # pred_semantic = t2s_model.model.infer( - pred_semantic, idx = t2s_model.model.infer_panel( - all_phoneme_ids, - all_phoneme_len, - prompt, - bert, - # prompt_phone_len=ph_offset, - top_k=config['inference']['top_k'], - early_stop_num=hz * max_sec) - t3 = ttime() - # print(pred_semantic.shape,idx) - pred_semantic = pred_semantic[:, -idx:].unsqueeze(0) # .unsqueeze(0)#mq要多unsqueeze一次 - refer = get_spepc(hps, ref_wav_path) # .to(device) - if (is_half == True): - refer = refer.half().to(device) - else: - refer = refer.to(device) - # audio = vq_model.decode(pred_semantic, all_phoneme_ids, refer).detach().cpu().numpy()[0, 0] - audio = \ - vq_model.decode(pred_semantic, torch.LongTensor(phones2).to(device).unsqueeze(0), - refer).detach().cpu().numpy()[ - 0, 0] ###试试重建不带上prompt部分 - audio_opt.append(audio) - audio_opt.append(zero_wav) - t4 = ttime() - print("%.3f\t%.3f\t%.3f\t%.3f" % (t1 - t0, t2 - t1, t3 - t2, t4 - t3)) - audios_opt.append([text0,(np.concatenate(audio_opt, 0) * 32768).astype(np.int16)]) - return audios_opt - - -# get_tts_wav(r"D:\BaiduNetdiskDownload\gsv\speech\萧逸声音-你得先从滑雪的基本技巧学起.wav", "你得先从滑雪的基本技巧学起。", "中文", "我觉得还是该给喜欢的女孩子一场认真的告白。", "中文") -# with open(r"D:\BaiduNetdiskDownload\gsv\烟嗓-todo1.txt","r",encoding="utf8")as f: -# with open(r"D:\BaiduNetdiskDownload\gsv\年下-todo1.txt","r",encoding="utf8")as f: -# with open(r"D:\BaiduNetdiskDownload\gsv\萧逸3b.txt","r",encoding="utf8")as f: -with open(r"D:\BaiduNetdiskDownload\gsv\萧逸4.txt","r",encoding="utf8")as f: - textss=f.read().split("\n") -for idx,(text,audio)in enumerate(get_tts_wavs(r"D:\BaiduNetdiskDownload\gsv\speech\萧逸声音-你得先从滑雪的基本技巧学起.wav", "你得先从滑雪的基本技巧学起。", "中文", textss, "中文")): - -# for idx,(text,audio)in enumerate(get_tts_wavs(r"D:\BaiduNetdiskDownload\gsv\足够的能力,去制定好自己的生活规划。低沉烟嗓.MP3_1940480_2095360.wav", "足够的能力,去制定好自己的生活规划。", "中文", textss, "中文")): -# for idx,(text,audio)in enumerate(get_tts_wavs(r"D:\BaiduNetdiskDownload\gsv\不会呀!你前几天才吃过你还说好吃来着。年下少年音.MP3_537600_711040.wav", "不会呀!你前几天才吃过你还说好吃来着。", "中文", textss, "中文")): - print(idx,text) - # sf.write(r"D:\BaiduNetdiskDownload\gsv\output\烟嗓第一批\%04d-%s.wav"%(idx,text),audio,32000) - # sf.write(r"D:\BaiduNetdiskDownload\gsv\output\年下\%04d-%s.wav"%(idx,text),audio,32000) - sf.write(r"D:\BaiduNetdiskDownload\gsv\output\萧逸第4批\%04d-%s.wav"%(idx,text),audio,32000) - - -# def handle(command, refer_wav_path, prompt_text, prompt_language, text, text_language): -# if command == "/restart": -# os.execl(g_config.python_exec, g_config.python_exec, *sys.argv) -# elif command == "/exit": -# os.kill(os.getpid(), signal.SIGTERM) -# exit(0) -# -# if ( -# refer_wav_path == "" or refer_wav_path is None -# or prompt_text == "" or prompt_text is None -# or prompt_language == "" or prompt_language is None -# ): -# refer_wav_path, prompt_text, prompt_language = ( -# default_refer_path, -# default_refer_text, -# default_refer_language, -# ) -# if not has_preset: -# raise HTTPException(status_code=400, detail="未指定参考音频且接口无预设") -# -# with torch.no_grad(): -# gen = get_tts_wav( -# refer_wav_path, prompt_text, prompt_language, text, text_language -# ) -# sampling_rate, audio_data = next(gen) -# -# wav = BytesIO() -# sf.write(wav, audio_data, sampling_rate, format="wav") -# wav.seek(0) -# -# torch.cuda.empty_cache() -# return StreamingResponse(wav, media_type="audio/wav") - - -# app = FastAPI() -# -# -# @app.post("/") -# async def tts_endpoint(request: Request): -# json_post_raw = await request.json() -# return handle( -# json_post_raw.get("command"), -# json_post_raw.get("refer_wav_path"), -# json_post_raw.get("prompt_text"), -# json_post_raw.get("prompt_language"), -# json_post_raw.get("text"), -# json_post_raw.get("text_language"), -# ) -# -# -# @app.get("/") -# async def tts_endpoint( -# command: str = None, -# refer_wav_path: str = None, -# prompt_text: str = None, -# prompt_language: str = None, -# text: str = None, -# text_language: str = None, -# ): -# return handle(command, refer_wav_path, prompt_text, prompt_language, text, text_language) -# -# -# if __name__ == "__main__": -# uvicorn.run(app, host=host, port=port, workers=1)