mirror of
https://github.com/RVC-Boss/GPT-SoVITS.git
synced 2025-04-06 03:57:44 +08:00
Update inference_webui.py
This commit is contained in:
parent
4a9723e571
commit
74409f3570
@ -1,4 +1,5 @@
|
||||
import os, re, logging
|
||||
|
||||
logging.getLogger("markdown_it").setLevel(logging.ERROR)
|
||||
logging.getLogger("urllib3").setLevel(logging.ERROR)
|
||||
logging.getLogger("httpcore").setLevel(logging.ERROR)
|
||||
@ -46,6 +47,7 @@ from transformers import AutoModelForMaskedLM, AutoTokenizer
|
||||
import numpy as np
|
||||
import librosa, torch
|
||||
from feature_extractor import cnhubert
|
||||
|
||||
cnhubert.cnhubert_base_path = cnhubert_base_path
|
||||
|
||||
from module.models import SynthesizerTrn
|
||||
@ -56,6 +58,7 @@ from time import time as ttime
|
||||
from module.mel_processing import spectrogram_torch
|
||||
from my_utils import load_audio
|
||||
from tools.i18n.i18n import I18nAuto
|
||||
|
||||
i18n = I18nAuto()
|
||||
|
||||
os.environ['PYTORCH_ENABLE_MPS_FALLBACK'] = '1' # 确保直接启动推理UI时也能够设置。
|
||||
@ -74,6 +77,7 @@ if is_half == True:
|
||||
else:
|
||||
bert_model = bert_model.to(device)
|
||||
|
||||
|
||||
def get_bert_feature(text, word2ph):
|
||||
with torch.no_grad():
|
||||
inputs = tokenizer(text, return_tensors="pt")
|
||||
@ -89,6 +93,7 @@ def get_bert_feature(text, word2ph):
|
||||
phone_level_feature = torch.cat(phone_level_feature, dim=0)
|
||||
return phone_level_feature.T
|
||||
|
||||
|
||||
class DictToAttrRecursive(dict):
|
||||
def __init__(self, input_dict):
|
||||
super().__init__(input_dict)
|
||||
@ -123,6 +128,7 @@ if is_half == True:
|
||||
else:
|
||||
ssl_model = ssl_model.to(device)
|
||||
|
||||
|
||||
def change_sovits_weights(sovits_path):
|
||||
global vq_model, hps
|
||||
dict_s2 = torch.load(sovits_path, map_location="cpu")
|
||||
@ -143,9 +149,13 @@ def change_sovits_weights(sovits_path):
|
||||
vq_model = vq_model.to(device)
|
||||
vq_model.eval()
|
||||
print(vq_model.load_state_dict(dict_s2["weight"], strict=False))
|
||||
with open("./sweight.txt","w",encoding="utf-8")as f:f.write(sovits_path)
|
||||
with open("./sweight.txt", "w", encoding="utf-8") as f:
|
||||
f.write(sovits_path)
|
||||
|
||||
|
||||
change_sovits_weights(sovits_path)
|
||||
|
||||
|
||||
def change_gpt_weights(gpt_path):
|
||||
global hz, max_sec, t2s_model, config
|
||||
hz = 50
|
||||
@ -161,8 +171,11 @@ def change_gpt_weights(gpt_path):
|
||||
total = sum([param.nelement() for param in t2s_model.parameters()])
|
||||
print("Number of parameter: %.2fM" % (total / 1e6))
|
||||
with open("./gweight.txt", "w", encoding="utf-8") as f: f.write(gpt_path)
|
||||
|
||||
|
||||
change_gpt_weights(gpt_path)
|
||||
|
||||
|
||||
def get_spepc(hps, filename):
|
||||
audio = load_audio(filename, int(hps.data.sampling_rate))
|
||||
audio = torch.FloatTensor(audio)
|
||||
@ -262,12 +275,16 @@ def nonen_get_bert_inf(text, language):
|
||||
|
||||
return bert
|
||||
|
||||
|
||||
splits = {",", "。", "?", "!", ",", ".", "?", "!", "~", ":", ":", "—", "…", }
|
||||
|
||||
|
||||
def get_first(text):
|
||||
pattern = "[" + "".join(re.escape(sep) for sep in splits) + "]"
|
||||
text = re.split(pattern, text)[0].strip()
|
||||
return text
|
||||
|
||||
|
||||
def get_tts_wav(ref_wav_path, prompt_text, prompt_language, text, text_language, how_to_cut=i18n("不切")):
|
||||
t0 = ttime()
|
||||
prompt_text = prompt_text.strip("\n")
|
||||
@ -307,10 +324,16 @@ def get_tts_wav(ref_wav_path, prompt_text, prompt_language, text, text_language,
|
||||
phones1, word2ph1, norm_text1 = clean_text_inf(prompt_text, prompt_language)
|
||||
else:
|
||||
phones1, word2ph1, norm_text1 = nonen_clean_text_inf(prompt_text, prompt_language)
|
||||
if(how_to_cut==i18n("凑四句一切")):text=cut1(text)
|
||||
elif(how_to_cut==i18n("凑50字一切")):text=cut2(text)
|
||||
elif(how_to_cut==i18n("按中文句号。切")):text=cut3(text)
|
||||
elif(how_to_cut==i18n("按英文句号.切")):text=cut4(text)
|
||||
if (how_to_cut == i18n("凑四句一切")):
|
||||
text = cut1(text)
|
||||
elif (how_to_cut == i18n("凑50字一切")):
|
||||
text = cut2(text)
|
||||
elif (how_to_cut == i18n("按中文句号。切")):
|
||||
text = cut3(text)
|
||||
elif (how_to_cut == i18n("按英文句号.切")):
|
||||
text = cut4(text)
|
||||
elif (how_to_cut == i18n("按标点符号切")):
|
||||
text = cut5(text)
|
||||
text = text.replace("\n\n", "\n").replace("\n\n", "\n").replace("\n\n", "\n")
|
||||
print(i18n("实际输入的目标文本(切句后):"), text)
|
||||
texts = text.split("\n")
|
||||
@ -380,6 +403,7 @@ def get_tts_wav(ref_wav_path, prompt_text, prompt_language, text, text_language,
|
||||
np.int16
|
||||
)
|
||||
|
||||
|
||||
def split(todo_text):
|
||||
todo_text = todo_text.replace("……", "。").replace("——", ",")
|
||||
if todo_text[-1] not in splits:
|
||||
@ -440,10 +464,25 @@ def cut2(inp):
|
||||
def cut3(inp):
|
||||
inp = inp.strip("\n")
|
||||
return "\n".join(["%s" % item for item in inp.strip("。").split("。")])
|
||||
|
||||
|
||||
def cut4(inp):
|
||||
inp = inp.strip("\n")
|
||||
return "\n".join(["%s" % item for item in inp.strip(".").split(".")])
|
||||
|
||||
|
||||
# contributed by https://github.com/AI-Hobbyist/GPT-SoVITS/blob/main/GPT_SoVITS/inference_webui.py
|
||||
def cut5(inp):
|
||||
# if not re.search(r'[^\w\s]', inp[-1]):
|
||||
# inp += '。'
|
||||
inp = inp.strip("\n")
|
||||
punds = r'[,.;?!、,。?!;:]'
|
||||
items = re.split(f'({punds})', inp)
|
||||
items = ["".join(group) for group in zip(items[::2], items[1::2])]
|
||||
opt = "\n".join(items)
|
||||
return opt
|
||||
|
||||
|
||||
def custom_sort_key(s):
|
||||
# 使用正则表达式提取字符串中的数字部分和非数字部分
|
||||
parts = re.split('(\d+)', s)
|
||||
@ -451,16 +490,20 @@ def custom_sort_key(s):
|
||||
parts = [int(part) if part.isdigit() else part for part in parts]
|
||||
return parts
|
||||
|
||||
|
||||
def change_choices():
|
||||
SoVITS_names, GPT_names = get_weights_names()
|
||||
return {"choices": sorted(SoVITS_names, key=custom_sort_key), "__type__": "update"}, {"choices": sorted(GPT_names, key=custom_sort_key), "__type__": "update"}
|
||||
|
||||
|
||||
pretrained_sovits_name = "GPT_SoVITS/pretrained_models/s2G488k.pth"
|
||||
pretrained_gpt_name = "GPT_SoVITS/pretrained_models/s1bert25hz-2kh-longer-epoch=68e-step=50232.ckpt"
|
||||
SoVITS_weight_root = "SoVITS_weights"
|
||||
GPT_weight_root = "GPT_weights"
|
||||
os.makedirs(SoVITS_weight_root, exist_ok=True)
|
||||
os.makedirs(GPT_weight_root, exist_ok=True)
|
||||
|
||||
|
||||
def get_weights_names():
|
||||
SoVITS_names = [pretrained_sovits_name]
|
||||
for name in os.listdir(SoVITS_weight_root):
|
||||
@ -469,6 +512,8 @@ def get_weights_names():
|
||||
for name in os.listdir(GPT_weight_root):
|
||||
if name.endswith(".ckpt"): GPT_names.append("%s/%s" % (GPT_weight_root, name))
|
||||
return SoVITS_names, GPT_names
|
||||
|
||||
|
||||
SoVITS_names, GPT_names = get_weights_names()
|
||||
|
||||
with gr.Blocks(title="GPT-SoVITS WebUI") as app:
|
||||
@ -499,8 +544,8 @@ with gr.Blocks(title="GPT-SoVITS WebUI") as app:
|
||||
)
|
||||
how_to_cut = gr.Radio(
|
||||
label=i18n("怎么切"),
|
||||
choices=[i18n("不切"),i18n("凑四句一切"),i18n("凑50字一切"),i18n("按中文句号。切"),i18n("按英文句号.切"),],
|
||||
value=i18n("凑50字一切"),
|
||||
choices=[i18n("不切"), i18n("凑四句一切"), i18n("凑50字一切"), i18n("按中文句号。切"), i18n("按英文句号.切"), i18n("按标点符号切"), ],
|
||||
value=i18n("凑四句一切"),
|
||||
interactive=True,
|
||||
)
|
||||
inference_button = gr.Button(i18n("合成语音"), variant="primary")
|
||||
@ -519,11 +564,13 @@ with gr.Blocks(title="GPT-SoVITS WebUI") as app:
|
||||
button2 = gr.Button(i18n("凑50字一切"), variant="primary")
|
||||
button3 = gr.Button(i18n("按中文句号。切"), variant="primary")
|
||||
button4 = gr.Button(i18n("按英文句号.切"), variant="primary")
|
||||
button5 = gr.Button(i18n("按标点符号切"), variant="primary")
|
||||
text_opt = gr.Textbox(label=i18n("切分后文本"), value="")
|
||||
button1.click(cut1, [text_inp], [text_opt])
|
||||
button2.click(cut2, [text_inp], [text_opt])
|
||||
button3.click(cut3, [text_inp], [text_opt])
|
||||
button4.click(cut4, [text_inp], [text_opt])
|
||||
button5.click(cut5, [text_inp], [text_opt])
|
||||
gr.Markdown(value=i18n("后续将支持混合语种编码文本输入。"))
|
||||
|
||||
app.queue(concurrency_count=511, max_size=1022).launch(
|
||||
|
Loading…
x
Reference in New Issue
Block a user