mirror of
https://github.com/RVC-Boss/GPT-SoVITS.git
synced 2025-04-05 19:41:56 +08:00
Update inference_webui.py
This commit is contained in:
parent
4a9723e571
commit
74409f3570
@ -1,4 +1,5 @@
|
||||
import os,re,logging
|
||||
import os, re, logging
|
||||
|
||||
logging.getLogger("markdown_it").setLevel(logging.ERROR)
|
||||
logging.getLogger("urllib3").setLevel(logging.ERROR)
|
||||
logging.getLogger("httpcore").setLevel(logging.ERROR)
|
||||
@ -10,16 +11,16 @@ logging.getLogger("torchaudio._extension").setLevel(logging.ERROR)
|
||||
import pdb
|
||||
|
||||
if os.path.exists("./gweight.txt"):
|
||||
with open("./gweight.txt", 'r',encoding="utf-8") as file:
|
||||
with open("./gweight.txt", 'r', encoding="utf-8") as file:
|
||||
gweight_data = file.read()
|
||||
gpt_path = os.environ.get(
|
||||
"gpt_path", gweight_data)
|
||||
"gpt_path", gweight_data)
|
||||
else:
|
||||
gpt_path = os.environ.get(
|
||||
"gpt_path", "GPT_SoVITS/pretrained_models/s1bert25hz-2kh-longer-epoch=68e-step=50232.ckpt")
|
||||
"gpt_path", "GPT_SoVITS/pretrained_models/s1bert25hz-2kh-longer-epoch=68e-step=50232.ckpt")
|
||||
|
||||
if os.path.exists("./sweight.txt"):
|
||||
with open("./sweight.txt", 'r',encoding="utf-8") as file:
|
||||
with open("./sweight.txt", 'r', encoding="utf-8") as file:
|
||||
sweight_data = file.read()
|
||||
sovits_path = os.environ.get("sovits_path", sweight_data)
|
||||
else:
|
||||
@ -37,16 +38,17 @@ bert_path = os.environ.get(
|
||||
infer_ttswebui = os.environ.get("infer_ttswebui", 9872)
|
||||
infer_ttswebui = int(infer_ttswebui)
|
||||
is_share = os.environ.get("is_share", "False")
|
||||
is_share=eval(is_share)
|
||||
is_share = eval(is_share)
|
||||
if "_CUDA_VISIBLE_DEVICES" in os.environ:
|
||||
os.environ["CUDA_VISIBLE_DEVICES"] = os.environ["_CUDA_VISIBLE_DEVICES"]
|
||||
is_half = eval(os.environ.get("is_half", "True"))
|
||||
import gradio as gr
|
||||
from transformers import AutoModelForMaskedLM, AutoTokenizer
|
||||
import numpy as np
|
||||
import librosa,torch
|
||||
import librosa, torch
|
||||
from feature_extractor import cnhubert
|
||||
cnhubert.cnhubert_base_path=cnhubert_base_path
|
||||
|
||||
cnhubert.cnhubert_base_path = cnhubert_base_path
|
||||
|
||||
from module.models import SynthesizerTrn
|
||||
from AR.models.t2s_lightning_module import Text2SemanticLightningModule
|
||||
@ -56,9 +58,10 @@ from time import time as ttime
|
||||
from module.mel_processing import spectrogram_torch
|
||||
from my_utils import load_audio
|
||||
from tools.i18n.i18n import I18nAuto
|
||||
|
||||
i18n = I18nAuto()
|
||||
|
||||
os.environ['PYTORCH_ENABLE_MPS_FALLBACK'] = '1' # 确保直接启动推理UI时也能够设置。
|
||||
os.environ['PYTORCH_ENABLE_MPS_FALLBACK'] = '1' # 确保直接启动推理UI时也能够设置。
|
||||
|
||||
if torch.cuda.is_available():
|
||||
device = "cuda"
|
||||
@ -74,6 +77,7 @@ if is_half == True:
|
||||
else:
|
||||
bert_model = bert_model.to(device)
|
||||
|
||||
|
||||
def get_bert_feature(text, word2ph):
|
||||
with torch.no_grad():
|
||||
inputs = tokenizer(text, return_tensors="pt")
|
||||
@ -89,6 +93,7 @@ def get_bert_feature(text, word2ph):
|
||||
phone_level_feature = torch.cat(phone_level_feature, dim=0)
|
||||
return phone_level_feature.T
|
||||
|
||||
|
||||
class DictToAttrRecursive(dict):
|
||||
def __init__(self, input_dict):
|
||||
super().__init__(input_dict)
|
||||
@ -123,10 +128,11 @@ if is_half == True:
|
||||
else:
|
||||
ssl_model = ssl_model.to(device)
|
||||
|
||||
|
||||
def change_sovits_weights(sovits_path):
|
||||
global vq_model,hps
|
||||
dict_s2=torch.load(sovits_path,map_location="cpu")
|
||||
hps=dict_s2["config"]
|
||||
global vq_model, hps
|
||||
dict_s2 = torch.load(sovits_path, map_location="cpu")
|
||||
hps = dict_s2["config"]
|
||||
hps = DictToAttrRecursive(hps)
|
||||
hps.model.semantic_frame_rate = "25hz"
|
||||
vq_model = SynthesizerTrn(
|
||||
@ -135,7 +141,7 @@ def change_sovits_weights(sovits_path):
|
||||
n_speakers=hps.data.n_speakers,
|
||||
**hps.model
|
||||
)
|
||||
if("pretrained"not in sovits_path):
|
||||
if ("pretrained" not in sovits_path):
|
||||
del vq_model.enc_q
|
||||
if is_half == True:
|
||||
vq_model = vq_model.half().to(device)
|
||||
@ -143,11 +149,15 @@ def change_sovits_weights(sovits_path):
|
||||
vq_model = vq_model.to(device)
|
||||
vq_model.eval()
|
||||
print(vq_model.load_state_dict(dict_s2["weight"], strict=False))
|
||||
with open("./sweight.txt","w",encoding="utf-8")as f:f.write(sovits_path)
|
||||
with open("./sweight.txt", "w", encoding="utf-8") as f:
|
||||
f.write(sovits_path)
|
||||
|
||||
|
||||
change_sovits_weights(sovits_path)
|
||||
|
||||
|
||||
def change_gpt_weights(gpt_path):
|
||||
global hz,max_sec,t2s_model,config
|
||||
global hz, max_sec, t2s_model, config
|
||||
hz = 50
|
||||
dict_s1 = torch.load(gpt_path, map_location="cpu")
|
||||
config = dict_s1["config"]
|
||||
@ -160,9 +170,12 @@ def change_gpt_weights(gpt_path):
|
||||
t2s_model.eval()
|
||||
total = sum([param.nelement() for param in t2s_model.parameters()])
|
||||
print("Number of parameter: %.2fM" % (total / 1e6))
|
||||
with open("./gweight.txt","w",encoding="utf-8")as f:f.write(gpt_path)
|
||||
with open("./gweight.txt", "w", encoding="utf-8") as f: f.write(gpt_path)
|
||||
|
||||
|
||||
change_gpt_weights(gpt_path)
|
||||
|
||||
|
||||
def get_spepc(hps, filename):
|
||||
audio = load_audio(filename, int(hps.data.sampling_rate))
|
||||
audio = torch.FloatTensor(audio)
|
||||
@ -179,10 +192,10 @@ def get_spepc(hps, filename):
|
||||
return spec
|
||||
|
||||
|
||||
dict_language={
|
||||
i18n("中文"):"zh",
|
||||
i18n("英文"):"en",
|
||||
i18n("日文"):"ja"
|
||||
dict_language = {
|
||||
i18n("中文"): "zh",
|
||||
i18n("英文"): "en",
|
||||
i18n("日文"): "ja"
|
||||
}
|
||||
|
||||
|
||||
@ -262,27 +275,31 @@ def nonen_get_bert_inf(text, language):
|
||||
|
||||
return bert
|
||||
|
||||
splits = {",","。","?","!",",",".","?","!","~",":",":","—","…",}
|
||||
|
||||
splits = {",", "。", "?", "!", ",", ".", "?", "!", "~", ":", ":", "—", "…", }
|
||||
|
||||
|
||||
def get_first(text):
|
||||
pattern = "[" + "".join(re.escape(sep) for sep in splits) + "]"
|
||||
text = re.split(pattern, text)[0].strip()
|
||||
return text
|
||||
|
||||
def get_tts_wav(ref_wav_path, prompt_text, prompt_language, text, text_language,how_to_cut=i18n("不切")):
|
||||
|
||||
def get_tts_wav(ref_wav_path, prompt_text, prompt_language, text, text_language, how_to_cut=i18n("不切")):
|
||||
t0 = ttime()
|
||||
prompt_text = prompt_text.strip("\n")
|
||||
if(prompt_text[-1]not in splits):prompt_text+="。"if prompt_language!="en"else "."
|
||||
if (prompt_text[-1] not in splits): prompt_text += "。" if prompt_language != "en" else "."
|
||||
text = text.strip("\n")
|
||||
if(text[0]not in splits and len(get_first(text))<4):text="。"+text if text_language!="en"else "."+text
|
||||
print(i18n("实际输入的参考文本:"),prompt_text)
|
||||
print(i18n("实际输入的目标文本:"),text)
|
||||
if (text[0] not in splits and len(get_first(text)) < 4): text = "。" + text if text_language != "en" else "." + text
|
||||
print(i18n("实际输入的参考文本:"), prompt_text)
|
||||
print(i18n("实际输入的目标文本:"), text)
|
||||
zero_wav = np.zeros(
|
||||
int(hps.data.sampling_rate * 0.3),
|
||||
dtype=np.float16 if is_half == True else np.float32,
|
||||
)
|
||||
with torch.no_grad():
|
||||
wav16k, sr = librosa.load(ref_wav_path, sr=16000)
|
||||
if(wav16k.shape[0]>160000 or wav16k.shape[0]<48000):
|
||||
if (wav16k.shape[0] > 160000 or wav16k.shape[0] < 48000):
|
||||
raise OSError(i18n("参考音频在3~10秒范围外,请更换!"))
|
||||
wav16k = torch.from_numpy(wav16k)
|
||||
zero_wav_torch = torch.from_numpy(zero_wav)
|
||||
@ -292,7 +309,7 @@ def get_tts_wav(ref_wav_path, prompt_text, prompt_language, text, text_language,
|
||||
else:
|
||||
wav16k = wav16k.to(device)
|
||||
zero_wav_torch = zero_wav_torch.to(device)
|
||||
wav16k=torch.cat([wav16k,zero_wav_torch])
|
||||
wav16k = torch.cat([wav16k, zero_wav_torch])
|
||||
ssl_content = ssl_model.model(wav16k.unsqueeze(0))[
|
||||
"last_hidden_state"
|
||||
].transpose(
|
||||
@ -307,13 +324,19 @@ def get_tts_wav(ref_wav_path, prompt_text, prompt_language, text, text_language,
|
||||
phones1, word2ph1, norm_text1 = clean_text_inf(prompt_text, prompt_language)
|
||||
else:
|
||||
phones1, word2ph1, norm_text1 = nonen_clean_text_inf(prompt_text, prompt_language)
|
||||
if(how_to_cut==i18n("凑四句一切")):text=cut1(text)
|
||||
elif(how_to_cut==i18n("凑50字一切")):text=cut2(text)
|
||||
elif(how_to_cut==i18n("按中文句号。切")):text=cut3(text)
|
||||
elif(how_to_cut==i18n("按英文句号.切")):text=cut4(text)
|
||||
text = text.replace("\n\n","\n").replace("\n\n","\n").replace("\n\n","\n")
|
||||
print(i18n("实际输入的目标文本(切句后):"),text)
|
||||
texts=text.split("\n")
|
||||
if (how_to_cut == i18n("凑四句一切")):
|
||||
text = cut1(text)
|
||||
elif (how_to_cut == i18n("凑50字一切")):
|
||||
text = cut2(text)
|
||||
elif (how_to_cut == i18n("按中文句号。切")):
|
||||
text = cut3(text)
|
||||
elif (how_to_cut == i18n("按英文句号.切")):
|
||||
text = cut4(text)
|
||||
elif (how_to_cut == i18n("按标点符号切")):
|
||||
text = cut5(text)
|
||||
text = text.replace("\n\n", "\n").replace("\n\n", "\n").replace("\n\n", "\n")
|
||||
print(i18n("实际输入的目标文本(切句后):"), text)
|
||||
texts = text.split("\n")
|
||||
audio_opt = []
|
||||
if prompt_language == "en":
|
||||
bert1 = get_bert_inf(phones1, word2ph1, norm_text1, prompt_language)
|
||||
@ -368,9 +391,9 @@ def get_tts_wav(ref_wav_path, prompt_text, prompt_language, text, text_language,
|
||||
vq_model.decode(
|
||||
pred_semantic, torch.LongTensor(phones2).to(device).unsqueeze(0), refer
|
||||
)
|
||||
.detach()
|
||||
.cpu()
|
||||
.numpy()[0, 0]
|
||||
.detach()
|
||||
.cpu()
|
||||
.numpy()[0, 0]
|
||||
) ###试试重建不带上prompt部分
|
||||
audio_opt.append(audio)
|
||||
audio_opt.append(zero_wav)
|
||||
@ -380,6 +403,7 @@ def get_tts_wav(ref_wav_path, prompt_text, prompt_language, text, text_language,
|
||||
np.int16
|
||||
)
|
||||
|
||||
|
||||
def split(todo_text):
|
||||
todo_text = todo_text.replace("……", "。").replace("——", ",")
|
||||
if todo_text[-1] not in splits:
|
||||
@ -407,7 +431,7 @@ def cut1(inp):
|
||||
if len(split_idx) > 1:
|
||||
opts = []
|
||||
for idx in range(len(split_idx) - 1):
|
||||
opts.append("".join(inps[split_idx[idx] : split_idx[idx + 1]]))
|
||||
opts.append("".join(inps[split_idx[idx]: split_idx[idx + 1]]))
|
||||
else:
|
||||
opts = [inp]
|
||||
return "\n".join(opts)
|
||||
@ -431,7 +455,7 @@ def cut2(inp):
|
||||
if tmp_str != "":
|
||||
opts.append(tmp_str)
|
||||
# print(opts)
|
||||
if len(opts)>1 and len(opts[-1]) < 50: ##如果最后一个太短了,和前一个合一起
|
||||
if len(opts) > 1 and len(opts[-1]) < 50: ##如果最后一个太短了,和前一个合一起
|
||||
opts[-2] = opts[-2] + opts[-1]
|
||||
opts = opts[:-1]
|
||||
return "\n".join(opts)
|
||||
@ -440,10 +464,25 @@ def cut2(inp):
|
||||
def cut3(inp):
|
||||
inp = inp.strip("\n")
|
||||
return "\n".join(["%s" % item for item in inp.strip("。").split("。")])
|
||||
|
||||
|
||||
def cut4(inp):
|
||||
inp = inp.strip("\n")
|
||||
return "\n".join(["%s" % item for item in inp.strip(".").split(".")])
|
||||
|
||||
|
||||
# contributed by https://github.com/AI-Hobbyist/GPT-SoVITS/blob/main/GPT_SoVITS/inference_webui.py
|
||||
def cut5(inp):
|
||||
# if not re.search(r'[^\w\s]', inp[-1]):
|
||||
# inp += '。'
|
||||
inp = inp.strip("\n")
|
||||
punds = r'[,.;?!、,。?!;:]'
|
||||
items = re.split(f'({punds})', inp)
|
||||
items = ["".join(group) for group in zip(items[::2], items[1::2])]
|
||||
opt = "\n".join(items)
|
||||
return opt
|
||||
|
||||
|
||||
def custom_sort_key(s):
|
||||
# 使用正则表达式提取字符串中的数字部分和非数字部分
|
||||
parts = re.split('(\d+)', s)
|
||||
@ -451,25 +490,31 @@ def custom_sort_key(s):
|
||||
parts = [int(part) if part.isdigit() else part for part in parts]
|
||||
return parts
|
||||
|
||||
|
||||
def change_choices():
|
||||
SoVITS_names, GPT_names = get_weights_names()
|
||||
return {"choices": sorted(SoVITS_names,key=custom_sort_key), "__type__": "update"}, {"choices": sorted(GPT_names,key=custom_sort_key), "__type__": "update"}
|
||||
return {"choices": sorted(SoVITS_names, key=custom_sort_key), "__type__": "update"}, {"choices": sorted(GPT_names, key=custom_sort_key), "__type__": "update"}
|
||||
|
||||
|
||||
pretrained_sovits_name = "GPT_SoVITS/pretrained_models/s2G488k.pth"
|
||||
pretrained_gpt_name = "GPT_SoVITS/pretrained_models/s1bert25hz-2kh-longer-epoch=68e-step=50232.ckpt"
|
||||
SoVITS_weight_root = "SoVITS_weights"
|
||||
GPT_weight_root = "GPT_weights"
|
||||
os.makedirs(SoVITS_weight_root, exist_ok=True)
|
||||
os.makedirs(GPT_weight_root, exist_ok=True)
|
||||
|
||||
|
||||
pretrained_sovits_name="GPT_SoVITS/pretrained_models/s2G488k.pth"
|
||||
pretrained_gpt_name="GPT_SoVITS/pretrained_models/s1bert25hz-2kh-longer-epoch=68e-step=50232.ckpt"
|
||||
SoVITS_weight_root="SoVITS_weights"
|
||||
GPT_weight_root="GPT_weights"
|
||||
os.makedirs(SoVITS_weight_root,exist_ok=True)
|
||||
os.makedirs(GPT_weight_root,exist_ok=True)
|
||||
def get_weights_names():
|
||||
SoVITS_names = [pretrained_sovits_name]
|
||||
for name in os.listdir(SoVITS_weight_root):
|
||||
if name.endswith(".pth"):SoVITS_names.append("%s/%s"%(SoVITS_weight_root,name))
|
||||
if name.endswith(".pth"): SoVITS_names.append("%s/%s" % (SoVITS_weight_root, name))
|
||||
GPT_names = [pretrained_gpt_name]
|
||||
for name in os.listdir(GPT_weight_root):
|
||||
if name.endswith(".ckpt"): GPT_names.append("%s/%s"%(GPT_weight_root,name))
|
||||
return SoVITS_names,GPT_names
|
||||
SoVITS_names,GPT_names = get_weights_names()
|
||||
if name.endswith(".ckpt"): GPT_names.append("%s/%s" % (GPT_weight_root, name))
|
||||
return SoVITS_names, GPT_names
|
||||
|
||||
|
||||
SoVITS_names, GPT_names = get_weights_names()
|
||||
|
||||
with gr.Blocks(title="GPT-SoVITS WebUI") as app:
|
||||
gr.Markdown(
|
||||
@ -478,29 +523,29 @@ with gr.Blocks(title="GPT-SoVITS WebUI") as app:
|
||||
with gr.Group():
|
||||
gr.Markdown(value=i18n("模型切换"))
|
||||
with gr.Row():
|
||||
GPT_dropdown = gr.Dropdown(label=i18n("GPT模型列表"), choices=sorted(GPT_names, key=custom_sort_key), value=gpt_path,interactive=True)
|
||||
SoVITS_dropdown = gr.Dropdown(label=i18n("SoVITS模型列表"), choices=sorted(SoVITS_names, key=custom_sort_key), value=sovits_path,interactive=True)
|
||||
GPT_dropdown = gr.Dropdown(label=i18n("GPT模型列表"), choices=sorted(GPT_names, key=custom_sort_key), value=gpt_path, interactive=True)
|
||||
SoVITS_dropdown = gr.Dropdown(label=i18n("SoVITS模型列表"), choices=sorted(SoVITS_names, key=custom_sort_key), value=sovits_path, interactive=True)
|
||||
refresh_button = gr.Button(i18n("刷新模型路径"), variant="primary")
|
||||
refresh_button.click(fn=change_choices, inputs=[], outputs=[SoVITS_dropdown, GPT_dropdown])
|
||||
SoVITS_dropdown.change(change_sovits_weights,[SoVITS_dropdown],[])
|
||||
GPT_dropdown.change(change_gpt_weights,[GPT_dropdown],[])
|
||||
SoVITS_dropdown.change(change_sovits_weights, [SoVITS_dropdown], [])
|
||||
GPT_dropdown.change(change_gpt_weights, [GPT_dropdown], [])
|
||||
gr.Markdown(value=i18n("*请上传并填写参考信息"))
|
||||
with gr.Row():
|
||||
inp_ref = gr.Audio(label=i18n("请上传3~10秒内参考音频,超过会报错!"), type="filepath")
|
||||
prompt_text = gr.Textbox(label=i18n("参考音频的文本"), value="")
|
||||
prompt_language = gr.Dropdown(
|
||||
label=i18n("参考音频的语种"),choices=[i18n("中文"),i18n("英文"),i18n("日文")],value=i18n("中文")
|
||||
label=i18n("参考音频的语种"), choices=[i18n("中文"), i18n("英文"), i18n("日文")], value=i18n("中文")
|
||||
)
|
||||
gr.Markdown(value=i18n("*请填写需要合成的目标文本。中英混合选中文,日英混合选日文,中日混合暂不支持,非目标语言文本自动遗弃。"))
|
||||
with gr.Row():
|
||||
text = gr.Textbox(label=i18n("需要合成的文本"), value="")
|
||||
text_language = gr.Dropdown(
|
||||
label=i18n("需要合成的语种"),choices=[i18n("中文"),i18n("英文"),i18n("日文")],value=i18n("中文")
|
||||
label=i18n("需要合成的语种"), choices=[i18n("中文"), i18n("英文"), i18n("日文")], value=i18n("中文")
|
||||
)
|
||||
how_to_cut = gr.Radio(
|
||||
label=i18n("怎么切"),
|
||||
choices=[i18n("不切"),i18n("凑四句一切"),i18n("凑50字一切"),i18n("按中文句号。切"),i18n("按英文句号.切"),],
|
||||
value=i18n("凑50字一切"),
|
||||
choices=[i18n("不切"), i18n("凑四句一切"), i18n("凑50字一切"), i18n("按中文句号。切"), i18n("按英文句号.切"), i18n("按标点符号切"), ],
|
||||
value=i18n("凑四句一切"),
|
||||
interactive=True,
|
||||
)
|
||||
inference_button = gr.Button(i18n("合成语音"), variant="primary")
|
||||
@ -508,22 +553,24 @@ with gr.Blocks(title="GPT-SoVITS WebUI") as app:
|
||||
|
||||
inference_button.click(
|
||||
get_tts_wav,
|
||||
[inp_ref, prompt_text, prompt_language, text, text_language,how_to_cut],
|
||||
[inp_ref, prompt_text, prompt_language, text, text_language, how_to_cut],
|
||||
[output],
|
||||
)
|
||||
|
||||
gr.Markdown(value=i18n("文本切分工具。太长的文本合成出来效果不一定好,所以太长建议先切。合成会根据文本的换行分开合成再拼起来。"))
|
||||
with gr.Row():
|
||||
text_inp = gr.Textbox(label=i18n("需要合成的切分前文本"),value="")
|
||||
text_inp = gr.Textbox(label=i18n("需要合成的切分前文本"), value="")
|
||||
button1 = gr.Button(i18n("凑四句一切"), variant="primary")
|
||||
button2 = gr.Button(i18n("凑50字一切"), variant="primary")
|
||||
button3 = gr.Button(i18n("按中文句号。切"), variant="primary")
|
||||
button4 = gr.Button(i18n("按英文句号.切"), variant="primary")
|
||||
button5 = gr.Button(i18n("按标点符号切"), variant="primary")
|
||||
text_opt = gr.Textbox(label=i18n("切分后文本"), value="")
|
||||
button1.click(cut1, [text_inp], [text_opt])
|
||||
button2.click(cut2, [text_inp], [text_opt])
|
||||
button3.click(cut3, [text_inp], [text_opt])
|
||||
button4.click(cut4, [text_inp], [text_opt])
|
||||
button5.click(cut5, [text_inp], [text_opt])
|
||||
gr.Markdown(value=i18n("后续将支持混合语种编码文本输入。"))
|
||||
|
||||
app.queue(concurrency_count=511, max_size=1022).launch(
|
||||
|
Loading…
x
Reference in New Issue
Block a user