onnx export

onnx export
This commit is contained in:
Ναρουσέ·μ·γιουμεμί·Χινακάννα 2025-04-03 16:41:13 +08:00 committed by GitHub
parent e537e129a5
commit 70f1ec719e
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194

View File

@ -1,24 +1,28 @@
import warnings
warnings.filterwarnings("ignore")
import copy
import math
from typing import Optional
import os
import pdb
import torch
from torch import nn
from torch.nn import functional as F
from module import commons
from module import modules
from module import attentions_onnx as attentions
from f5_tts.model import DiT
from module import attentions
#from f5_tts.model.backbones.dit import DiT
from torch.nn import Conv1d, ConvTranspose1d, AvgPool1d, Conv2d
from torch.nn.utils import weight_norm, remove_weight_norm, spectral_norm
from module.commons import init_weights, get_padding
from module.mrte_model import MRTE
from module.quantize import ResidualVectorQuantizer
# from text import symbols
from text import symbols as symbols_v1
from text import symbols2 as symbols_v2
from torch.cuda.amp import autocast
import contextlib,random
class StochasticDurationPredictor(nn.Module):
@ -186,7 +190,7 @@ class TextEncoder(nn.Module):
kernel_size,
p_dropout,
latent_channels=192,
version="v2",
version = "v2",
):
super().__init__()
self.out_channels = out_channels
@ -220,7 +224,7 @@ class TextEncoder(nn.Module):
symbols = symbols_v2.symbols
self.text_embedding = nn.Embedding(len(symbols), hidden_channels)
self.mrte = attentions.MRTE()
self.mrte = MRTE()
self.encoder2 = attentions.Encoder(
hidden_channels,
@ -233,7 +237,7 @@ class TextEncoder(nn.Module):
self.proj = nn.Conv1d(hidden_channels, out_channels * 2, 1)
def forward(self, y, text, ge, speed=1):
def forward(self, y, text, ge, speed=1,test=None):
y_mask = torch.ones_like(y[:1,:1,:])
y = self.ssl_proj(y * y_mask) * y_mask
@ -244,16 +248,35 @@ class TextEncoder(nn.Module):
text = self.text_embedding(text).transpose(1, 2)
text = self.encoder_text(text * text_mask, text_mask)
y = self.mrte(y, y_mask, text, text_mask, ge)
y = self.encoder2(y * y_mask, y_mask)
if(speed!=1):
y = F.interpolate(y, size=int(y.shape[-1] / speed)+1, mode="linear")
y_mask = F.interpolate(y_mask, size=y.shape[-1], mode="nearest")
stats = self.proj(y) * y_mask
m, logs = torch.split(stats, self.out_channels, dim=1)
return y, m, logs, y_mask
def extract_latent(self, x):
x = self.ssl_proj(x)
quantized, codes, commit_loss, quantized_list = self.quantizer(x)
return codes.transpose(0, 1)
def decode_latent(self, codes, y_mask, refer, refer_mask, ge):
quantized = self.quantizer.decode(codes)
y = self.vq_proj(quantized) * y_mask
y = self.encoder_ssl(y * y_mask, y_mask)
y = self.mrte(y, y_mask, refer, refer_mask, ge)
y = self.encoder2(y * y_mask, y_mask)
stats = self.proj(y) * y_mask
m, logs = torch.split(stats, self.out_channels, dim=1)
return y, m, logs, y_mask, quantized
class ResidualCouplingBlock(nn.Module):
def __init__(
@ -465,7 +488,7 @@ class Generator(torch.nn.Module):
if gin_channels != 0:
self.cond = nn.Conv1d(gin_channels, upsample_initial_channel, 1)
def forward(self, x, g:Optional[torch.Tensor]=None):
def forward(self, x, g=None):
x = self.conv_pre(x)
if g is not None:
x = x + self.cond(g)
@ -923,7 +946,7 @@ class SynthesizerTrn(nn.Module):
# self.enc_p.encoder_text.requires_grad_(False)
# self.enc_p.mrte.requires_grad_(False)
def forward(self, codes, text, refer,noise_scale=0.5, speed=1):
def forward(self, codes, text, refer, noise_scale=0.5):
refer_mask = torch.ones_like(refer[:1,:1,:])
if (self.version == "v1"):
ge = self.ref_enc(refer * refer_mask, refer_mask)
@ -935,79 +958,98 @@ class SynthesizerTrn(nn.Module):
dquantized = torch.cat([quantized, quantized]).permute(1, 2, 0)
quantized = dquantized.contiguous().view(1, self.ssl_dim, -1)
x, m_p, logs_p, y_mask = self.enc_p(
quantized, text, ge, speed
_, m_p, logs_p, y_mask = self.enc_p(
quantized, text, ge
)
z_p = m_p + torch.randn_like(m_p) * torch.exp(logs_p) * noise_scale
z = self.flow(z_p, y_mask, g=ge, reverse=True)
o = self.dec((z * y_mask)[:, :, :], g=ge)
return o
def extract_latent(self, x):
ssl = self.ssl_proj(x)
quantized, codes, commit_loss, quantized_list = self.quantizer(ssl)
_, codes, _, _ = self.quantizer(ssl)
return codes.transpose(0, 1)
class CFM(torch.nn.Module):
def __init__(
self,
in_channels,dit
):
super().__init__()
# self.sigma_min = 1e-6
self.sigma_min = 1e-6
self.estimator = dit
self.in_channels = in_channels
# self.criterion = torch.nn.MSELoss()
self.criterion = torch.nn.MSELoss()
def forward(self, mu:torch.Tensor, x_lens:torch.LongTensor, prompt:torch.Tensor, n_timesteps:torch.LongTensor, temperature:float=1.0):
@torch.inference_mode()
def inference(self, mu, x_lens, prompt, n_timesteps, temperature=1.0, inference_cfg_rate=0):
"""Forward diffusion"""
B, T = mu.size(0), mu.size(1)
x = torch.randn([B, self.in_channels, T], device=mu.device,dtype=mu.dtype)
ntimesteps = int(n_timesteps)
x = torch.randn([B, self.in_channels, T], device=mu.device,dtype=mu.dtype) * temperature
prompt_len = prompt.size(-1)
prompt_x = torch.zeros_like(x,dtype=mu.dtype)
prompt_x[..., :prompt_len] = prompt[..., :prompt_len]
x[..., :prompt_len] = 0.0
x[..., :prompt_len] = 0
mu=mu.transpose(2,1)
t = torch.tensor(0.0,dtype=x.dtype,device=x.device)
d = torch.tensor(1.0/ntimesteps,dtype=x.dtype,device=x.device)
d_tensor = torch.ones(x.shape[0], device=x.device,dtype=mu.dtype) * d
for j in range(ntimesteps):
t = 0
d = 1 / n_timesteps
for j in range(n_timesteps):
t_tensor = torch.ones(x.shape[0], device=x.device,dtype=mu.dtype) * t
# d_tensor = torch.ones(x.shape[0], device=x.device,dtype=mu.dtype) * d
d_tensor = torch.ones(x.shape[0], device=x.device,dtype=mu.dtype) * d
# v_pred = model(x, t_tensor, d_tensor, **extra_args)
v_pred = self.estimator(x, prompt_x, x_lens, t_tensor,d_tensor, mu).transpose(2, 1)
# if inference_cfg_rate>1e-5:
# neg = self.estimator(x, prompt_x, x_lens, t_tensor, d_tensor, mu, use_grad_ckpt=False, drop_audio_cond=True, drop_text=True).transpose(2, 1)
# v_pred=v_pred+(v_pred-neg)*inference_cfg_rate
v_pred = self.estimator(x, prompt_x, x_lens, t_tensor,d_tensor, mu, use_grad_ckpt=False,drop_audio_cond=False,drop_text=False).transpose(2, 1)
if inference_cfg_rate>1e-5:
neg = self.estimator(x, prompt_x, x_lens, t_tensor, d_tensor, mu, use_grad_ckpt=False, drop_audio_cond=True, drop_text=True).transpose(2, 1)
v_pred=v_pred+(v_pred-neg)*inference_cfg_rate
x = x + d * v_pred
t = t + d
x[:, :, :prompt_len] = 0.0
x[:, :, :prompt_len] = 0
return x
def forward(self, x1, x_lens, prompt_lens, mu, use_grad_ckpt):
b, _, t = x1.shape
t = torch.rand([b], device=mu.device, dtype=x1.dtype)
x0 = torch.randn_like(x1,device=mu.device)
vt = x1 - x0
xt = x0 + t[:, None, None] * vt
dt = torch.zeros_like(t,device=mu.device)
prompt = torch.zeros_like(x1)
for i in range(b):
prompt[i, :, :prompt_lens[i]] = x1[i, :, :prompt_lens[i]]
xt[i, :, :prompt_lens[i]] = 0
gailv=0.3# if ttime()>1736250488 else 0.1
if random.random() < gailv:
base = torch.randint(2, 8, (t.shape[0],), device=mu.device)
d = 1/torch.pow(2, base)
d_input = d.clone()
d_input[d_input < 1e-2] = 0
# with torch.no_grad():
v_pred_1 = self.estimator(xt, prompt, x_lens, t, d_input, mu, use_grad_ckpt).transpose(2, 1).detach()
# v_pred_1 = self.diffusion(xt, t, d_input, cond=conditioning).detach()
x_mid = xt + d[:, None, None] * v_pred_1
# v_pred_2 = self.diffusion(x_mid, t+d, d_input, cond=conditioning).detach()
v_pred_2 = self.estimator(x_mid, prompt, x_lens, t+d, d_input, mu, use_grad_ckpt).transpose(2, 1).detach()
vt = (v_pred_1 + v_pred_2) / 2
vt = vt.detach()
dt = 2*d
vt_pred = self.estimator(xt, prompt, x_lens, t,dt, mu, use_grad_ckpt).transpose(2,1)
loss = 0
for i in range(b):
loss += self.criterion(vt_pred[i, :, prompt_lens[i]:x_lens[i]], vt[i, :, prompt_lens[i]:x_lens[i]])
loss /= b
return loss
def set_no_grad(net_g):
for name, param in net_g.named_parameters():
param.requires_grad=False
@torch.jit.script_if_tracing
def compile_codes_length(codes):
y_lengths1 = torch.LongTensor([codes.size(2)]).to(codes.device)
return y_lengths1 * 2.5 * 1.5
@torch.jit.script_if_tracing
def compile_ref_length(refer):
refer_lengths = torch.LongTensor([refer.size(2)]).to(refer.device)
return refer_lengths
class SynthesizerTrnV3(nn.Module):
"""
@ -1035,7 +1077,6 @@ class SynthesizerTrnV3(nn.Module):
use_sdp=True,
semantic_frame_rate=None,
freeze_quantizer=None,
version="v3",
**kwargs):
super().__init__()
@ -1056,7 +1097,6 @@ class SynthesizerTrnV3(nn.Module):
self.segment_size = segment_size
self.n_speakers = n_speakers
self.gin_channels = gin_channels
self.version = version
self.model_dim=512
self.use_sdp = use_sdp
@ -1083,7 +1123,7 @@ class SynthesizerTrnV3(nn.Module):
n_q=1,
bins=1024
)
freeze_quantizer
self.freeze_quantizer=freeze_quantizer
inter_channels2=512
self.bridge=nn.Sequential(
nn.Conv1d(inter_channels, inter_channels2, 1, stride=1),
@ -1092,32 +1132,213 @@ class SynthesizerTrnV3(nn.Module):
self.wns1=Encoder(inter_channels2, inter_channels2, inter_channels2, 5, 1, 8,gin_channels=gin_channels)
self.linear_mel=nn.Conv1d(inter_channels2,100,1,stride=1)
self.cfm = CFM(100,DiT(**dict(dim=1024, depth=22, heads=16, ff_mult=2, text_dim=inter_channels2, conv_layers=4)),)#text_dim is condition feature dim
if freeze_quantizer==True:
if self.freeze_quantizer==True:
set_no_grad(self.ssl_proj)
set_no_grad(self.quantizer)
set_no_grad(self.enc_p)
def create_ge(self, refer):
refer_lengths = compile_ref_length(refer)
refer_mask = torch.unsqueeze(commons.sequence_mask(refer_lengths, refer.size(2)), 1).to(refer.dtype)
ge = self.ref_enc(refer[:,:704] * refer_mask, refer_mask)
return ge
def forward(self, ssl, y, mel,ssl_lengths,y_lengths, text, text_lengths,mel_lengths, use_grad_ckpt):#ssl_lengths no need now
with autocast(enabled=False):
y_mask = torch.unsqueeze(commons.sequence_mask(y_lengths, y.size(2)), 1).to(y.dtype)
ge = self.ref_enc(y[:,:704] * y_mask, y_mask)
maybe_no_grad = torch.no_grad() if self.freeze_quantizer else contextlib.nullcontext()
with maybe_no_grad:
if self.freeze_quantizer:
self.ssl_proj.eval()#
self.quantizer.eval()
self.enc_p.eval()
ssl = self.ssl_proj(ssl)
quantized, codes, commit_loss, quantized_list = self.quantizer(
ssl, layers=[0]
)
quantized = F.interpolate(quantized, scale_factor=2, mode="nearest")##BCT
x, m_p, logs_p, y_mask = self.enc_p(quantized, y_lengths, text, text_lengths, ge)
fea=self.bridge(x)
fea = F.interpolate(fea, scale_factor=1.875, mode="nearest")##BCT
fea, y_mask_ = self.wns1(fea, mel_lengths, ge)##If the 1-minute fine-tuning works fine, no need to manually adjust the learning rate.
B=ssl.shape[0]
prompt_len_max = mel_lengths*2/3
prompt_len = (torch.rand([B], device=fea.device) * prompt_len_max).floor().to(dtype=torch.long)
minn=min(mel.shape[-1],fea.shape[-1])
mel=mel[:,:,:minn]
fea=fea[:,:,:minn]
cfm_loss= self.cfm(mel, mel_lengths, prompt_len, fea, use_grad_ckpt)
return cfm_loss
def forward(self, codes, text,ge,speed=1):
@torch.no_grad()
def decode_encp(self, codes,text, refer,ge=None,speed=1):
# print(2333333,refer.shape)
# ge=None
if(ge==None):
refer_lengths = torch.LongTensor([refer.size(2)]).to(refer.device)
refer_mask = torch.unsqueeze(commons.sequence_mask(refer_lengths, refer.size(2)), 1).to(refer.dtype)
ge = self.ref_enc(refer[:,:704] * refer_mask, refer_mask)
y_lengths = torch.LongTensor([int(codes.size(2)*2)]).to(codes.device)
if speed==1:
sizee=int(codes.size(2)*2.5*1.5)
else:
sizee=int(codes.size(2)*2.5*1.5/speed)+1
y_lengths1 = torch.LongTensor([sizee]).to(codes.device)
text_lengths = torch.LongTensor([text.size(-1)]).to(text.device)
y_lengths1=compile_codes_length(codes)
quantized = self.quantizer.decode(codes)
if self.semantic_frame_rate == '25hz':
quantized = F.interpolate(quantized, scale_factor=2, mode="nearest")##BCT
x, m_p, logs_p, y_mask = self.enc_p(quantized, text, ge,speed)
x, m_p, logs_p, y_mask = self.enc_p(quantized, y_lengths, text, text_lengths, ge,speed)
fea=self.bridge(x)
fea = F.interpolate(fea, scale_factor=1.875, mode="nearest")##BCT
####more wn paramter to learn mel
fea, y_mask_ = self.wns1(fea, y_lengths1, ge)
return fea
return fea,ge
def extract_latent(self, x):
ssl = self.ssl_proj(x)
quantized, codes, commit_loss, quantized_list = self.quantizer(ssl)
return codes.transpose(0,1)
return codes.transpose(0,1)
class SynthesizerTrnV3b(nn.Module):
"""
Synthesizer for Training
"""
def __init__(self,
spec_channels,
segment_size,
inter_channels,
hidden_channels,
filter_channels,
n_heads,
n_layers,
kernel_size,
p_dropout,
resblock,
resblock_kernel_sizes,
resblock_dilation_sizes,
upsample_rates,
upsample_initial_channel,
upsample_kernel_sizes,
n_speakers=0,
gin_channels=0,
use_sdp=True,
semantic_frame_rate=None,
freeze_quantizer=None,
**kwargs):
super().__init__()
self.spec_channels = spec_channels
self.inter_channels = inter_channels
self.hidden_channels = hidden_channels
self.filter_channels = filter_channels
self.n_heads = n_heads
self.n_layers = n_layers
self.kernel_size = kernel_size
self.p_dropout = p_dropout
self.resblock = resblock
self.resblock_kernel_sizes = resblock_kernel_sizes
self.resblock_dilation_sizes = resblock_dilation_sizes
self.upsample_rates = upsample_rates
self.upsample_initial_channel = upsample_initial_channel
self.upsample_kernel_sizes = upsample_kernel_sizes
self.segment_size = segment_size
self.n_speakers = n_speakers
self.gin_channels = gin_channels
self.model_dim=512
self.use_sdp = use_sdp
self.enc_p = TextEncoder(inter_channels,hidden_channels,filter_channels,n_heads,n_layers,kernel_size,p_dropout)
# self.ref_enc = modules.MelStyleEncoder(spec_channels, style_vector_dim=gin_channels)###Rollback
self.ref_enc = modules.MelStyleEncoder(704, style_vector_dim=gin_channels)###Rollback
self.dec = Generator(inter_channels, resblock, resblock_kernel_sizes, resblock_dilation_sizes, upsample_rates,
upsample_initial_channel, upsample_kernel_sizes, gin_channels=gin_channels)
self.enc_q = PosteriorEncoder(spec_channels, inter_channels, hidden_channels, 5, 1, 16,
gin_channels=gin_channels)
self.flow = ResidualCouplingBlock(inter_channels, hidden_channels, 5, 1, 4, gin_channels=gin_channels)
ssl_dim = 768
assert semantic_frame_rate in ['25hz', "50hz"]
self.semantic_frame_rate = semantic_frame_rate
if semantic_frame_rate == '25hz':
self.ssl_proj = nn.Conv1d(ssl_dim, ssl_dim, 2, stride=2)
else:
self.ssl_proj = nn.Conv1d(ssl_dim, ssl_dim, 1, stride=1)
self.quantizer = ResidualVectorQuantizer(
dimension=ssl_dim,
n_q=1,
bins=1024
)
self.freeze_quantizer=freeze_quantizer
inter_channels2=512
self.bridge=nn.Sequential(
nn.Conv1d(inter_channels, inter_channels2, 1, stride=1),
nn.LeakyReLU()
)
self.wns1=Encoder(inter_channels2, inter_channels2, inter_channels2, 5, 1, 8,gin_channels=gin_channels)
self.linear_mel=nn.Conv1d(inter_channels2,100,1,stride=1)
self.cfm = CFM(100,DiT(**dict(dim=1024, depth=22, heads=16, ff_mult=2, text_dim=inter_channels2, conv_layers=4)),)#text_dim is condition feature dim
def forward(self, ssl, y, mel,ssl_lengths,y_lengths, text, text_lengths,mel_lengths):#ssl_lengths no need now
with autocast(enabled=False):
y_mask = torch.unsqueeze(commons.sequence_mask(y_lengths, y.size(2)), 1).to(y.dtype)
ge = self.ref_enc(y[:,:704] * y_mask, y_mask)
# ge = self.ref_enc(y * y_mask, y_mask)#change back, new spec setting is whole 24k
# ge=None
maybe_no_grad = torch.no_grad() if self.freeze_quantizer else contextlib.nullcontext()
with maybe_no_grad:
if self.freeze_quantizer:
self.ssl_proj.eval()
self.quantizer.eval()
ssl = self.ssl_proj(ssl)
quantized, codes, commit_loss, quantized_list = self.quantizer(
ssl, layers=[0]
)
quantized = F.interpolate(quantized, scale_factor=2, mode="nearest")##BCT
x, m_p, logs_p, y_mask = self.enc_p(quantized, y_lengths, text, text_lengths, ge)
z, m_q, logs_q, y_mask = self.enc_q(y, y_lengths, g=ge)
z_p = self.flow(z, y_mask, g=ge)
z_slice, ids_slice = commons.rand_slice_segments(z, y_lengths, self.segment_size)
o = self.dec(z_slice, g=ge)
fea=self.bridge(x)
fea = F.interpolate(fea, scale_factor=1.875, mode="nearest")##BCT
fea, y_mask_ = self.wns1(fea, mel_lengths, ge)
learned_mel = self.linear_mel(fea)
B=ssl.shape[0]
prompt_len_max = mel_lengths*2/3
prompt_len = (torch.rand([B], device=fea.device) * prompt_len_max).floor().to(dtype=torch.long)#
minn=min(mel.shape[-1],fea.shape[-1])
mel=mel[:,:,:minn]
fea=fea[:,:,:minn]
cfm_loss= self.cfm(mel, mel_lengths, prompt_len, fea)#fea==cond,y_lengths==target_mel_lengths#ge not need
return commit_loss,cfm_loss,F.mse_loss(learned_mel, mel),o, ids_slice, y_mask, y_mask, (z, z_p, m_p, logs_p, m_q, logs_q), quantized
@torch.no_grad()
def decode_encp(self, codes,text, refer,ge=None):
# print(2333333,refer.shape)
# ge=None
if(ge==None):
refer_lengths = torch.LongTensor([refer.size(2)]).to(refer.device)
refer_mask = torch.unsqueeze(commons.sequence_mask(refer_lengths, refer.size(2)), 1).to(refer.dtype)
ge = self.ref_enc(refer[:,:704] * refer_mask, refer_mask)
y_lengths = torch.LongTensor([int(codes.size(2)*2)]).to(codes.device)
y_lengths1 = torch.LongTensor([int(codes.size(2)*2.5*1.5)]).to(codes.device)
text_lengths = torch.LongTensor([text.size(-1)]).to(text.device)
quantized = self.quantizer.decode(codes)
if self.semantic_frame_rate == '25hz':
quantized = F.interpolate(quantized, scale_factor=2, mode="nearest")##BCT
x, m_p, logs_p, y_mask = self.enc_p(quantized, y_lengths, text, text_lengths, ge)
fea=self.bridge(x)
fea = F.interpolate(fea, scale_factor=1.875, mode="nearest")##BCT
####more wn paramter to learn mel
fea, y_mask_ = self.wns1(fea, y_lengths1, ge)
return fea,ge
def extract_latent(self, x):
ssl = self.ssl_proj(x)
quantized, codes, commit_loss, quantized_list = self.quantizer(ssl)
return codes.transpose(0,1)