diff --git a/tools/asr/config.py b/tools/asr/config.py new file mode 100644 index 0000000..025ef38 --- /dev/null +++ b/tools/asr/config.py @@ -0,0 +1,31 @@ +import os + +def check_fw_local_models(): + ''' + 启动时检查本地是否有 Faster Whisper 模型. + ''' + model_size_list = [ + "tiny", "tiny.en", + "base", "base.en", + "small", "small.en", + "medium", "medium.en", + "large", "large-v1", + "large-v2", "large-v3"] + for i, size in enumerate(model_size_list): + if os.path.exists(f'tools/asr/models/faster-whisper-{size}'): + model_size_list[i] = size + '(local)' + return model_size_list + +asr_dict = { + "达摩 ASR (中文)": { + 'lang': ['zh'], + 'size': ['large'], + 'path': 'funasr_asr.py', + }, + "Faster Whisper (多语种)": { + 'lang': ['auto', 'zh', 'en', 'ja'], + 'size': check_fw_local_models(), + 'path': 'fasterwhisper_asr.py' + } +} + diff --git a/tools/asr/fasterwhisper_asr.py b/tools/asr/fasterwhisper_asr.py new file mode 100644 index 0000000..02f4e66 --- /dev/null +++ b/tools/asr/fasterwhisper_asr.py @@ -0,0 +1,97 @@ +import argparse +import os +import traceback +import requests +from glob import glob + +from faster_whisper import WhisperModel +from tqdm import tqdm + +from config import check_fw_local_models + +os.environ["KMP_DUPLICATE_LIB_OK"]="TRUE" + +language_code_list = [ + "af", "am", "ar", "as", "az", + "ba", "be", "bg", "bn", "bo", + "br", "bs", "ca", "cs", "cy", + "da", "de", "el", "en", "es", + "et", "eu", "fa", "fi", "fo", + "fr", "gl", "gu", "ha", "haw", + "he", "hi", "hr", "ht", "hu", + "hy", "id", "is", "it", "ja", + "jw", "ka", "kk", "km", "kn", + "ko", "la", "lb", "ln", "lo", + "lt", "lv", "mg", "mi", "mk", + "ml", "mn", "mr", "ms", "mt", + "my", "ne", "nl", "nn", "no", + "oc", "pa", "pl", "ps", "pt", + "ro", "ru", "sa", "sd", "si", + "sk", "sl", "sn", "so", "sq", + "sr", "su", "sv", "sw", "ta", + "te", "tg", "th", "tk", "tl", + "tr", "tt", "uk", "ur", "uz", + "vi", "yi", "yo", "zh", "yue", + "auto"] + +def execute_asr(input_folder, output_folder, model_size, language): + if 'local' in model_size: + model_size = model_size.split('(')[0] + model_path = f'tools/asr/models/faster-whisper-{model_size}' + else: + model_path = model_size + if language == 'auto': + language = None #不设置语种由模型自动输出概率最高的语种 + + try: + model = WhisperModel(model_path, device="cuda", compute_type="float16") + except: + return print(traceback.format_exc()) + + output = [] + output_file_name = os.path.basename(input_folder) + output_file_path = os.path.abspath(f'{output_folder}/{output_file_name}.list') + + if not os.path.exists(output_folder): + os.makedirs(output_folder) + + for file in tqdm(glob(os.path.join(input_folder, '**/*.wav'), recursive=True)): + try: + segments, info = model.transcribe( + audio = file, + beam_size = 5, + vad_filter = True, + vad_parameters = dict(min_silence_duration_ms=700), + language = language) + text = '' + for segment in segments: + text += segment.text + output.append(f"{file}|{output_file_name}|{info.language.upper()}|{text}") + except: + return print(traceback.format_exc()) + + with open(output_file_path, "w", encoding="utf-8") as f: + f.write("\n".join(output)) + print(f"ASR 任务完成->标注文件路径: {output_file_path}\n") + return output_file_path + +if __name__ == '__main__': + parser = argparse.ArgumentParser() + parser.add_argument("-i", "--input_folder", type=str, required=True, + help="Path to the folder containing WAV files.") + parser.add_argument("-o", "--output_folder", type=str, required=True, + help="Output folder to store transcriptions.") + parser.add_argument("-s", "--model_size", type=str, default='large-v3', + choices=check_fw_local_models(), + help="Model Size of Faster Whisper") + parser.add_argument("-l", "--language", type=str, default='zh', + choices=language_code_list, + help="Language of the audio files.") + + cmd = parser.parse_args() + output_file_path = execute_asr( + input_folder = cmd.input_folder, + output_folder = cmd.output_folder, + model_size = cmd.model_size, + language = cmd.language, + ) \ No newline at end of file diff --git a/tools/asr/funasr_asr.py b/tools/asr/funasr_asr.py new file mode 100644 index 0000000..b25a72c --- /dev/null +++ b/tools/asr/funasr_asr.py @@ -0,0 +1,66 @@ +# -*- coding:utf-8 -*- + +import argparse +import os +import traceback +from tqdm import tqdm + +from funasr import AutoModel + +path_asr = 'tools/damo_asr/models/speech_paraformer-large_asr_nat-zh-cn-16k-common-vocab8404-pytorch' +path_vad = 'tools/damo_asr/models/speech_fsmn_vad_zh-cn-16k-common-pytorch' +path_punc = 'tools/damo_asr/models/punc_ct-transformer_zh-cn-common-vocab272727-pytorch' +path_asr = path_asr if os.path.exists(path_asr) else "iic/speech_paraformer-large_asr_nat-zh-cn-16k-common-vocab8404-pytorch" +path_vad = path_vad if os.path.exists(path_vad) else "iic/speech_fsmn_vad_zh-cn-16k-common-pytorch" +path_punc = path_punc if os.path.exists(path_punc) else "iic/punc_ct-transformer_zh-cn-common-vocab272727-pytorch" + +model = AutoModel( + model = path_asr, + model_revision = "v2.0.4", + vad_model = path_vad, + vad_model_revision = "v2.0.4", + punc_model = path_punc, + punc_model_revision = "v2.0.4", +) + +def execute_asr(input_folder, output_folder, model_size, language): + input_file_names = os.listdir(input_folder) + input_file_names.sort() + + output = [] + output_file_name = os.path.basename(input_folder) + + for name in tqdm(input_file_names): + try: + text = model.generate(input="%s/%s"%(input_folder, name))[0]["text"] + output.append(f"{input_folder}/{name}|{output_file_name}|{language.upper()}|{text}") + except: + return print(traceback.format_exc()) + + output_folder = output_folder or "output/asr_opt" + os.makedirs(output_folder, exist_ok=True) + output_file_path = os.path.abspath(f'{output_folder}/{output_file_name}.list') + + with open(output_file_path, "w", encoding="utf-8") as f: + f.write("\n".join(output)) + print(f"ASR 任务完成->标注文件路径: {output_file_path}\n") + return output_file_path + +if __name__ == '__main__': + parser = argparse.ArgumentParser() + parser.add_argument("-i", "--input_folder", type=str, required=True, + help="Path to the folder containing WAV files.") + parser.add_argument("-o", "--output_folder", type=str, required=True, + help="Output folder to store transcriptions.") + parser.add_argument("-s", "--model_size", type=str, default='large', + help="Model Size of FunASR is Large") + parser.add_argument("-l", "--language", type=str, default='zh', choices=['zh'], + help="Language of the audio files.") + + cmd = parser.parse_args() + execute_asr( + input_folder = cmd.input_folder, + output_folder = cmd.output_folder, + model_size = cmd.model_size, + language = cmd.language, + ) \ No newline at end of file diff --git a/tools/damo_asr/models/.gitignore b/tools/asr/models/.gitignore similarity index 100% rename from tools/damo_asr/models/.gitignore rename to tools/asr/models/.gitignore diff --git a/tools/damo_asr/WhisperASR.py b/tools/damo_asr/WhisperASR.py deleted file mode 100644 index 3b0a946..0000000 --- a/tools/damo_asr/WhisperASR.py +++ /dev/null @@ -1,42 +0,0 @@ -import os -import argparse -import os -os.environ["KMP_DUPLICATE_LIB_OK"]="TRUE" -from glob import glob -from faster_whisper import WhisperModel - -def main(input_folder, output_folder, output_filename, language): - model = WhisperModel("large-v3", device="cuda", compute_type="float16") - - output_file = os.path.join(output_folder, output_filename) - if not os.path.exists(output_folder): - os.makedirs(output_folder) - - with open(output_file, 'w', encoding='utf-8') as f: - for file in glob(os.path.join(input_folder, '**/*.wav'), recursive=True): - segments, _ = model.transcribe(file, beam_size=10, vad_filter=True, - vad_parameters=dict(min_silence_duration_ms=700), language=language) - segments = list(segments) - - filename = os.path.basename(file).replace('.wav', '') - directory = os.path.dirname(file) - - result_line = f"{file}|{language.upper()}|{segments[0].text}\n" - f.write(result_line) - -if __name__ == '__main__': - parser = argparse.ArgumentParser() - parser.add_argument("-i", "--input_folder", type=str, required=True, - help="Path to the folder containing WAV files.") - parser.add_argument("-o", "--output_folder", type=str, required=True, help="Output folder to store transcriptions.") - parser.add_argument("-f", "--output_filename", type=str, default="transcriptions.txt", help="Name of the output text file.") - parser.add_argument("-l", "--language", type=str, default='zh', choices=['zh', 'en', ...], - help="Language of the audio files.") - - cmd = parser.parse_args() - - input_folder = cmd.input_folder - output_folder = cmd.output_folder - output_filename = cmd.output_filename - language = cmd.language - main(input_folder, output_folder, output_filename, language) \ No newline at end of file diff --git a/tools/damo_asr/cmd-asr.py b/tools/damo_asr/cmd-asr.py deleted file mode 100644 index 9840e91..0000000 --- a/tools/damo_asr/cmd-asr.py +++ /dev/null @@ -1,39 +0,0 @@ -# -*- coding:utf-8 -*- - -import sys,os,traceback - -from funasr import AutoModel - -dir=sys.argv[1] -if(dir[-1]=="/"):dir=dir[:-1] -# opt_name=dir.split("\\")[-1].split("/")[-1] -opt_name=os.path.basename(dir) - -path_asr='tools/damo_asr/models/speech_paraformer-large_asr_nat-zh-cn-16k-common-vocab8404-pytorch' -path_vad='tools/damo_asr/models/speech_fsmn_vad_zh-cn-16k-common-pytorch' -path_punc='tools/damo_asr/models/punc_ct-transformer_zh-cn-common-vocab272727-pytorch' -path_asr=path_asr if os.path.exists(path_asr)else "iic/speech_paraformer-large_asr_nat-zh-cn-16k-common-vocab8404-pytorch" -path_vad=path_vad if os.path.exists(path_vad)else "iic/speech_fsmn_vad_zh-cn-16k-common-pytorch" -path_punc=path_punc if os.path.exists(path_punc)else "iic/punc_ct-transformer_zh-cn-common-vocab272727-pytorch" - -model = AutoModel(model=path_asr, model_revision="v2.0.4", - vad_model=path_vad, - vad_model_revision="v2.0.4", - punc_model=path_punc, - punc_model_revision="v2.0.4", - ) - - -opt=[] -file_names = os.listdir(dir) -file_names.sort() -for name in file_names: - try: - text = model.generate(input="%s/%s"%(dir,name))[0]["text"] - opt.append("%s/%s|%s|ZH|%s"%(dir,name,opt_name,text)) - except: - print(traceback.format_exc()) - -opt_dir="output/asr_opt" -os.makedirs(opt_dir,exist_ok=True) -with open("%s/%s.list"%(opt_dir,opt_name),"w",encoding="utf-8")as f:f.write("\n".join(opt)) diff --git a/webui.py b/webui.py index fb18112..1f07898 100644 --- a/webui.py +++ b/webui.py @@ -192,20 +192,26 @@ def change_tts_inference(if_tts,bert_path,cnhubert_base_path,gpu_number,gpt_path p_tts_inference=None yield i18n("TTS推理进程已关闭") - -def open_asr(asr_inp_dir): +from tools.asr.config import asr_dict +def open_asr(asr_inp_dir, asr_opt_dir, asr_model, asr_model_size, asr_lang): global p_asr if(p_asr==None): asr_inp_dir=my_utils.clean_path(asr_inp_dir) - cmd = '"%s" tools/damo_asr/cmd-asr.py "%s"'%(python_exec,asr_inp_dir) + cmd = f"{python_exec} tools/asr/{asr_dict[asr_model]['path']}" + cmd += f" -i {asr_inp_dir}" + cmd += f" -o {asr_opt_dir}" + cmd += f" -s {asr_model_size}" + cmd += f" -l {asr_lang}" + yield "ASR任务开启:%s"%cmd,{"__type__":"update","visible":False},{"__type__":"update","visible":True} print(cmd) p_asr = Popen(cmd, shell=True) p_asr.wait() p_asr=None - yield "ASR任务完成",{"__type__":"update","visible":True},{"__type__":"update","visible":False} + yield f"ASR任务完成, 查看终端进行下一步",{"__type__":"update","visible":True},{"__type__":"update","visible":False} else: yield "已有正在进行的ASR任务,需先终止才能开启下一次任务",{"__type__":"update","visible":False},{"__type__":"update","visible":True} + return None def close_asr(): global p_asr @@ -674,12 +680,44 @@ with gr.Blocks(title="GPT-SoVITS WebUI") as app: with gr.Row(): open_asr_button = gr.Button(i18n("开启离线批量ASR"), variant="primary",visible=True) close_asr_button = gr.Button(i18n("终止ASR进程"), variant="primary",visible=False) - asr_inp_dir = gr.Textbox( - label=i18n("批量ASR(中文only)输入文件夹路径"), - value="D:\\RVC1006\\GPT-SoVITS\\raw\\xxx", - interactive=True, - ) - asr_info = gr.Textbox(label=i18n("ASR进程输出信息")) + with gr.Column(): + with gr.Row(): + asr_inp_dir = gr.Textbox( + label=i18n("输入文件夹路径"), + value="D:\\RVC1006\\GPT-SoVITS\\raw\\xxx", + interactive=True, + ) + asr_opt_dir = gr.Textbox( + label = i18n("输出文件夹路径"), + value = "output/asr_opt", + interactive = False, + ) + with gr.Row(): + asr_model = gr.Dropdown( + label = i18n("ASR 模型"), + choices = list(asr_dict.keys()), + interactive = True, + ) + asr_size = gr.Dropdown( + label = i18n("ASR 模型尺寸"), + choices = [], + interactive = True, + ) + asr_lang = gr.Dropdown( + label = i18n("ASR 语言设置"), + choices = [], + interactive = True, + ) + with gr.Row(): + asr_info = gr.Textbox(label=i18n("ASR进程输出信息")) + + def change_lang_choices(key): #根据选择的模型修改可选的语言 + return gr.Dropdown(choices=asr_dict[key]['lang']) + def change_size_choices(key): # 根据选择的模型修改可选的模型尺寸 + return gr.Dropdown(choices=asr_dict[key]['size']) + asr_model.change(change_lang_choices, asr_model, asr_lang) + asr_model.change(change_size_choices, asr_model, asr_size) + gr.Markdown(value=i18n("0d-语音文本校对标注工具")) with gr.Row(): if_label = gr.Checkbox(label=i18n("是否开启打标WebUI"),show_label=True) @@ -691,7 +729,7 @@ with gr.Blocks(title="GPT-SoVITS WebUI") as app: label_info = gr.Textbox(label=i18n("打标工具进程输出信息")) if_label.change(change_label, [if_label,path_list], [label_info]) if_uvr5.change(change_uvr5, [if_uvr5], [uvr5_info]) - open_asr_button.click(open_asr, [asr_inp_dir], [asr_info,open_asr_button,close_asr_button]) + open_asr_button.click(open_asr, [asr_inp_dir, asr_opt_dir, asr_model, asr_size, asr_lang], [asr_info,open_asr_button,close_asr_button]) close_asr_button.click(close_asr, [], [asr_info,open_asr_button,close_asr_button]) open_slicer_button.click(open_slice, [slice_inp_path,slice_opt_root,threshold,min_length,min_interval,hop_size,max_sil_kept,_max,alpha,n_process], [slicer_info,open_slicer_button,close_slicer_button]) close_slicer_button.click(close_slice, [], [slicer_info,open_slicer_button,close_slicer_button]) @@ -788,7 +826,7 @@ with gr.Blocks(title="GPT-SoVITS WebUI") as app: tts_info = gr.Textbox(label=i18n("TTS推理WebUI进程输出信息")) if_tts.change(change_tts_inference, [if_tts,bert_pretrained_dir,cnhubert_base_dir,gpu_number_1C,GPT_dropdown,SoVITS_dropdown], [tts_info]) with gr.TabItem(i18n("2-GPT-SoVITS-变声")):gr.Markdown(value=i18n("施工中,请静候佳音")) - app.queue(concurrency_count=511, max_size=1022).launch( + app.queue(max_size=1022).launch( server_name="0.0.0.0", inbrowser=True, share=is_share,