添加手动语义字幕语音切分工具(多角色)

添加手动语义字幕语音切分工具(多角色)
This commit is contained in:
刘悦 2024-02-03 11:48:21 +08:00 committed by GitHub
parent 16309ff44c
commit 66341adf55
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
4 changed files with 624 additions and 0 deletions

83
argparse_tools.py Normal file
View File

@ -0,0 +1,83 @@
import argparse
from pathlib import Path
import yaml
import sys
class ArgumentParser(argparse.ArgumentParser):
"""Simple implementation of ArgumentParser supporting config file
This class is originated from https://github.com/bw2/ConfigArgParse,
but this class is lack of some features that it has.
- Not supporting multiple config files
- Automatically adding "--config" as an option.
- Not supporting any formats other than yaml
- Not checking argument type
"""
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
self.add_argument("--config", help="Give config file in yaml format")
def parse_known_args(self, args=None, namespace=None):
# Once parsing for setting from "--config"
_args, _ = super().parse_known_args(args, namespace)
if _args.config is not None:
if not Path(_args.config).exists():
self.error(f"No such file: {_args.config}")
with open(_args.config, "r", encoding="utf-8") as f:
d = yaml.safe_load(f)
if not isinstance(d, dict):
self.error("Config file has non dict value: {_args.config}")
for key in d:
for action in self._actions:
if key == action.dest:
break
else:
self.error(f"unrecognized arguments: {key} (from {_args.config})")
# NOTE(kamo): Ignore "--config" from a config file
# NOTE(kamo): Unlike "configargparse", this module doesn't check type.
# i.e. We can set any type value regardless of argument type.
self.set_defaults(**d)
return super().parse_known_args(args, namespace)
def get_commandline_args():
extra_chars = [
" ",
";",
"&",
"(",
")",
"|",
"^",
"<",
">",
"?",
"*",
"[",
"]",
"$",
"`",
'"',
"\\",
"!",
"{",
"}",
]
# Escape the extra characters for shell
argv = [
arg.replace("'", "'\\''")
if all(char not in arg for char in extra_chars)
else "'" + arg.replace("'", "'\\''") + "'"
for arg in sys.argv
]
return sys.executable + " " + " ".join(argv)

130
subtitle_utils.py Normal file
View File

@ -0,0 +1,130 @@
def time_convert(ms):
ms = int(ms)
tail = ms % 1000
s = ms // 1000
mi = s // 60
s = s % 60
h = mi // 60
mi = mi % 60
h = "00" if h == 0 else str(h)
mi = "00" if mi == 0 else str(mi)
s = "00" if s == 0 else str(s)
tail = str(tail)
if len(h) == 1: h = '0' + h
if len(mi) == 1: mi = '0' + mi
if len(s) == 1: s = '0' + s
return "{}:{}:{},{}".format(h, mi, s, tail)
class Text2SRT():
def __init__(self, text_seg, ts_list, offset=0):
self.token_list = [i for i in text_seg.split() if len(i)]
self.ts_list = ts_list
start, end = ts_list[0][0] - offset, ts_list[-1][1] - offset
self.start_sec, self.end_sec = start, end
self.start_time = time_convert(start)
self.end_time = time_convert(end)
def text(self):
res = ""
for word in self.token_list:
if '\u4e00' <= word <= '\u9fff':
res += word
else:
res += " " + word
return res
def len(self):
return len(self.token_list)
def srt(self, acc_ost=0.0):
return "{} --> {}\n{}\n".format(
time_convert(self.start_sec+acc_ost*1000),
time_convert(self.end_sec+acc_ost*1000),
self.text())
def time(self, acc_ost=0.0):
return (self.start_sec/1000+acc_ost, self.end_sec/1000+acc_ost)
def distribute_spk(sentence_list, sd_time_list):
sd_sentence_list = []
for d in sentence_list:
sentence_start = d['ts_list'][0][0]
sentence_end = d['ts_list'][-1][1]
sentence_spk = 0
max_overlap = 0
for sd_time in sd_time_list:
spk_st, spk_ed, spk = sd_time
spk_st = spk_st*1000
spk_ed = spk_ed*1000
overlap = max(
min(sentence_end, spk_ed) - max(sentence_start, spk_st), 0)
if overlap > max_overlap:
max_overlap = overlap
sentence_spk = spk
d['spk'] = sentence_spk
sd_sentence_list.append(d)
return sd_sentence_list
def generate_srt(sentence_list):
srt_total = ''
for i, d in enumerate(sentence_list):
t2s = Text2SRT(d['text_seg'], d['ts_list'])
if 'spk' in d:
srt_total += "{} spk{}\n{}".format(i, d['spk'], t2s.srt())
else:
srt_total += "{}\n{}".format(i, t2s.srt())
return srt_total
def generate_srt_clip(sentence_list, start, end, begin_index=0, time_acc_ost=0.0):
start, end = int(start * 1000), int(end * 1000)
srt_total = ''
cc = 1 + begin_index
subs = []
for i, d in enumerate(sentence_list):
if d['ts_list'][-1][1] <= start:
continue
if d['ts_list'][0][0] >= end:
break
# parts in between
if (d['ts_list'][-1][1] <= end and d['ts_list'][0][0] > start) or (d['ts_list'][-1][1] == end and d['ts_list'][0][0] == start):
t2s = Text2SRT(d['text_seg'], d['ts_list'], offset=start)
srt_total += "{}\n{}".format(cc, t2s.srt(time_acc_ost))
subs.append((t2s.time(time_acc_ost), t2s.text()))
cc += 1
continue
if d['ts_list'][0][0] <= start:
if not d['ts_list'][-1][1] > end:
for j, ts in enumerate(d['ts_list']):
if ts[1] > start:
break
_text = " ".join(d['text_seg'].split()[j:])
_ts = d['ts_list'][j:]
else:
for j, ts in enumerate(d['ts_list']):
if ts[1] > start:
_start = j
break
for j, ts in enumerate(d['ts_list']):
if ts[1] > end:
_end = j
break
_text = " ".join(d['text_seg'].split()[_start:_end])
_ts = d['ts_list'][_start:_end]
if len(ts):
t2s = Text2SRT(_text, _ts, offset=start)
srt_total += "{}\n{}".format(cc, t2s.srt(time_acc_ost))
subs.append((t2s.time(time_acc_ost), t2s.text()))
cc += 1
continue
if d['ts_list'][-1][1] > end:
for j, ts in enumerate(d['ts_list']):
if ts[1] > end:
break
_text = " ".join(d['text_seg'].split()[:j])
_ts = d['ts_list'][:j]
if len(_ts):
t2s = Text2SRT(_text, _ts, offset=start)
srt_total += "{}\n{}".format(cc, t2s.srt(time_acc_ost))
subs.append(
(t2s.time(time_acc_ost), t2s.text())
)
cc += 1
continue
return srt_total, subs, cc

82
trans_utils.py Normal file
View File

@ -0,0 +1,82 @@
PUNC_LIST = ['', '', '', '', '']
def pre_proc(text):
res = ''
for i in range(len(text)):
if text[i] in PUNC_LIST:
continue
if '\u4e00' <= text[i] <= '\u9fff':
if len(res) and res[-1] != " ":
res += ' ' + text[i]+' '
else:
res += text[i]+' '
else:
res += text[i]
if res[-1] == ' ':
res = res[:-1]
return res
def proc(raw_text, timestamp, dest_text):
# simple matching
ld = len(dest_text.split())
mi, ts = [], []
offset = 0
while True:
fi = raw_text.find(dest_text, offset, len(raw_text))
# import pdb; pdb.set_trace()
ti = raw_text[:fi].count(' ')
if fi == -1:
break
offset = fi + ld
mi.append(fi)
ts.append([timestamp[ti][0]*16, timestamp[ti+ld-1][1]*16])
# import pdb; pdb.set_trace()
return ts
def proc_spk(dest_spk, sd_sentences):
ts = []
for d in sd_sentences:
d_start = d['ts_list'][0][0]
d_end = d['ts_list'][-1][1]
spkid=dest_spk[3:]
if str(d['spk']) == spkid and d_end-d_start>999:
ts.append([d['start']*16, d['end']*16])
return ts
def generate_vad_data(data, sd_sentences, sr=16000):
assert len(data.shape) == 1
vad_data = []
for d in sd_sentences:
d_start = round(d['ts_list'][0][0]/1000, 2)
d_end = round(d['ts_list'][-1][1]/1000, 2)
vad_data.append([d_start, d_end, data[int(d_start * sr):int(d_end * sr)]])
return vad_data
def write_state(output_dir, state):
for key in ['/recog_res_raw', '/timestamp', '/sentences', '/sd_sentences']:
with open(output_dir+key, 'w') as fout:
fout.write(str(state[key[1:]]))
if 'sd_sentences' in state:
with open(output_dir+'/sd_sentences', 'w') as fout:
fout.write(str(state['sd_sentences']))
import os
def load_state(output_dir):
state = {}
with open(output_dir+'/recog_res_raw') as fin:
line = fin.read()
state['recog_res_raw'] = line
with open(output_dir+'/timestamp') as fin:
line = fin.read()
state['timestamp'] = eval(line)
with open(output_dir+'/sentences') as fin:
line = fin.read()
state['sentences'] = eval(line)
if os.path.exists(output_dir+'/sd_sentences'):
with open(output_dir+'/sd_sentences') as fin:
line = fin.read()
state['sd_sentences'] = eval(line)
return state

329
videoclipper.py Normal file
View File

@ -0,0 +1,329 @@
import sys
import copy
import librosa
import logging
import argparse
import numpy as np
import soundfile as sf
import moviepy.editor as mpy
# from modelscope.pipelines import pipeline
# from modelscope.utils.constant import Tasks
from subtitle_utils import generate_srt, generate_srt_clip, distribute_spk
from trans_utils import pre_proc, proc, write_state, load_state, proc_spk, generate_vad_data
from argparse_tools import ArgumentParser, get_commandline_args
from moviepy.editor import *
from moviepy.video.tools.subtitles import SubtitlesClip
class VideoClipper():
def __init__(self, asr_pipeline, sd_pipeline=None):
logging.warning("Initializing VideoClipper.")
self.asr_pipeline = asr_pipeline
self.sd_pipeline = sd_pipeline
def recog(self, audio_input, sd_switch='no', state=None):
if state is None:
state = {}
sr, data = audio_input
assert sr == 16000, "16kHz sample rate required, {} given.".format(sr)
if len(data.shape) == 2: # multi-channel wav input
logging.warning("Input wav shape: {}, only first channel reserved.").format(data.shape)
data = data[:,0]
state['audio_input'] = (sr, data)
data = data.astype(np.float64)
rec_result = self.asr_pipeline(audio_in=data)
if sd_switch == 'yes':
vad_data = generate_vad_data(data.astype(np.float32), rec_result['sentences'], sr)
sd_result = self.sd_pipeline(audio=vad_data, batch_size=1)
rec_result['sd_sentences'] = distribute_spk(rec_result['sentences'], sd_result['text'])
res_srt = generate_srt(rec_result['sd_sentences'])
state['sd_sentences'] = rec_result['sd_sentences']
else:
res_srt = generate_srt(rec_result['sentences'])
state['recog_res_raw'] = rec_result['text_postprocessed']
state['timestamp'] = rec_result['time_stamp']
state['sentences'] = rec_result['sentences']
res_text = rec_result['text']
return res_text, res_srt, state
def clip(self, dest_text, start_ost, end_ost, state, dest_spk=None):
# get from state
audio_input = state['audio_input']
recog_res_raw = state['recog_res_raw']
timestamp = state['timestamp']
sentences = state['sentences']
sr, data = audio_input
data = data.astype(np.float64)
all_ts = []
if dest_spk is None or dest_spk == '' or 'sd_sentences' not in state:
for _dest_text in dest_text.split('#'):
_dest_text = pre_proc(_dest_text)
ts = proc(recog_res_raw, timestamp, _dest_text)
for _ts in ts: all_ts.append(_ts)
else:
for _dest_spk in dest_spk.split('#'):
ts = proc_spk(_dest_spk, state['sd_sentences'])
for _ts in ts: all_ts.append(_ts)
ts = all_ts
# ts.sort()
srt_index = 0
clip_srt = ""
if len(ts):
start, end = ts[0]
start = min(max(0, start+start_ost*16), len(data))
end = min(max(0, end+end_ost*16), len(data))
res_audio = data[start:end]
start_end_info = "from {} to {}".format(start/16000, end/16000)
srt_clip, _, srt_index = generate_srt_clip(sentences, start/16000.0, end/16000.0, begin_index=srt_index)
clip_srt += srt_clip
for _ts in ts[1:]: # multiple sentence input or multiple output matched
start, end = _ts
start = min(max(0, start+start_ost*16), len(data))
end = min(max(0, end+end_ost*16), len(data))
start_end_info += ", from {} to {}".format(start, end)
res_audio = np.concatenate([res_audio, data[start+start_ost*16:end+end_ost*16]], -1)
srt_clip, _, srt_index = generate_srt_clip(sentences, start/16000.0, end/16000.0, begin_index=srt_index-1)
clip_srt += srt_clip
if len(ts):
message = "{} periods found in the speech: ".format(len(ts)) + start_end_info
else:
message = "No period found in the speech, return raw speech. You may check the recognition result and try other destination text."
res_audio = data
return (sr, res_audio), message, clip_srt
def video_recog(self, vedio_filename, sd_switch='no'):
vedio_filename = vedio_filename
clip_video_file = vedio_filename[:-4] + '_clip.mp4'
video = mpy.VideoFileClip(vedio_filename)
audio_file = vedio_filename[:-3] + 'wav'
video.audio.write_audiofile(audio_file)
wav = librosa.load(audio_file, sr=16000)[0]
state = {
'vedio_filename': vedio_filename,
'clip_video_file': clip_video_file,
'video': video,
}
# res_text, res_srt = self.recog((16000, wav), state)
return self.recog((16000, wav), sd_switch, state)
def video_clip(self, dest_text, start_ost, end_ost, state, font_size=32, font_color='white', add_sub=False, dest_spk=None):
# get from state
recog_res_raw = state['recog_res_raw']
timestamp = state['timestamp']
sentences = state['sentences']
video = state['video']
clip_video_file = state['clip_video_file']
vedio_filename = state['vedio_filename']
all_ts = []
srt_index = 0
if dest_spk is None or dest_spk == '' or 'sd_sentences' not in state:
for _dest_text in dest_text.split('#'):
_dest_text = pre_proc(_dest_text)
ts = proc(recog_res_raw, timestamp, _dest_text)
for _ts in ts: all_ts.append(_ts)
else:
for _dest_spk in dest_spk.split('#'):
ts = proc_spk(_dest_spk, state['sd_sentences'])
for _ts in ts: all_ts.append(_ts)
time_acc_ost = 0.0
ts = all_ts
# ts.sort()
clip_srt = ""
if len(ts):
start, end = ts[0][0] / 16000, ts[0][1] / 16000
srt_clip, subs, srt_index = generate_srt_clip(sentences, start, end, begin_index=srt_index, time_acc_ost=time_acc_ost)
start, end = start+start_ost/1000.0, end+end_ost/1000.0
video_clip = video.subclip(start, end)
start_end_info = "from {} to {}".format(start, end)
clip_srt += srt_clip
if add_sub:
generator = lambda txt: TextClip(txt, font='./font/STHeitiMedium.ttc', fontsize=font_size, color=font_color)
subtitles = SubtitlesClip(subs, generator)
video_clip = CompositeVideoClip([video_clip, subtitles.set_pos(('center','bottom'))])
concate_clip = [video_clip]
time_acc_ost += end+end_ost/1000.0 - (start+start_ost/1000.0)
for _ts in ts[1:]:
start, end = _ts[0] / 16000, _ts[1] / 16000
srt_clip, subs, srt_index = generate_srt_clip(sentences, start, end, begin_index=srt_index-1, time_acc_ost=time_acc_ost)
chi_subs = []
sub_starts = subs[0][0][0]
for sub in subs:
chi_subs.append(((sub[0][0]-sub_starts, sub[0][1]-sub_starts), sub[1]))
start, end = start+start_ost/1000.0, end+end_ost/1000.0
_video_clip = video.subclip(start, end)
start_end_info += ", from {} to {}".format(start, end)
clip_srt += srt_clip
if add_sub:
generator = lambda txt: TextClip(txt, font='./font/STHeitiMedium.ttc', fontsize=font_size, color=font_color)
subtitles = SubtitlesClip(chi_subs, generator)
_video_clip = CompositeVideoClip([_video_clip, subtitles.set_pos(('center','bottom'))])
# _video_clip.write_videofile("debug.mp4", audio_codec="aac")
concate_clip.append(copy.copy(_video_clip))
time_acc_ost += end+end_ost/1000.0 - (start+start_ost/1000.0)
message = "{} periods found in the audio: ".format(len(ts)) + start_end_info
logging.warning("Concating...")
if len(concate_clip) > 1:
video_clip = concatenate_videoclips(concate_clip)
video_clip.write_videofile(clip_video_file, audio_codec="aac")
else:
clip_video_file = vedio_filename
message = "No period found in the audio, return raw speech. You may check the recognition result and try other destination text."
srt_clip = ''
return clip_video_file, message, clip_srt
def get_parser():
parser = ArgumentParser(
description="ClipVideo Argument",
formatter_class=argparse.ArgumentDefaultsHelpFormatter,
)
parser.add_argument(
"--stage",
type=int,
choices=(1, 2),
help="Stage, 0 for recognizing and 1 for clipping",
required=True
)
parser.add_argument(
"--file",
type=str,
default=None,
help="Input file path",
required=True
)
parser.add_argument(
"--sd_switch",
type=str,
choices=("no", "yes"),
default="no",
help="Trun on the speaker diarization or not",
)
parser.add_argument(
"--output_dir",
type=str,
default='./output',
help="Output files path",
)
parser.add_argument(
"--dest_text",
type=str,
default=None,
help="Destination text string for clipping",
)
parser.add_argument(
"--dest_spk",
type=str,
default=None,
help="Destination spk id for clipping",
)
parser.add_argument(
"--start_ost",
type=int,
default=0,
help="Offset time in ms at beginning for clipping"
)
parser.add_argument(
"--end_ost",
type=int,
default=0,
help="Offset time in ms at ending for clipping"
)
parser.add_argument(
"--output_file",
type=str,
default=None,
help="Output file path"
)
return parser
def runner(stage, file, sd_switch, output_dir, dest_text, dest_spk, start_ost, end_ost, output_file, config=None):
audio_suffixs = ['wav']
video_suffixs = ['mp4']
if file[-3:] in audio_suffixs:
mode = 'audio'
elif file[-3:] in video_suffixs:
mode = 'video'
else:
logging.error("Unsupported file format: {}".format(file))
while output_dir.endswith('/'):
output_dir = output_dir[:-1]
if stage == 1:
from modelscope.pipelines import pipeline
from modelscope.utils.constant import Tasks
# initialize modelscope asr pipeline
logging.warning("Initializing modelscope asr pipeline.")
inference_pipeline = pipeline(
task=Tasks.auto_speech_recognition,
model='damo/speech_paraformer-large-vad-punc_asr_nat-zh-cn-16k-common-vocab8404-pytorch',
vad_model='damo/speech_fsmn_vad_zh-cn-16k-common-pytorch',
punc_model='damo/punc_ct-transformer_zh-cn-common-vocab272727-pytorch',
output_dir=output_dir,
)
sd_pipeline = pipeline(
task='speaker-diarization',
model='damo/speech_campplus_speaker-diarization_common',
model_revision='v1.0.0'
)
audio_clipper = VideoClipper(inference_pipeline, sd_pipeline)
if mode == 'audio':
logging.warning("Recognizing audio file: {}".format(file))
wav, sr = librosa.load(file, sr=16000)
res_text, res_srt, state = audio_clipper.recog((sr, wav), sd_switch)
if mode == 'video':
logging.warning("Recognizing video file: {}".format(file))
res_text, res_srt, state = audio_clipper.video_recog(file, sd_switch)
total_srt_file = output_dir + '/total.srt'
with open(total_srt_file, 'w') as fout:
fout.write(res_srt)
logging.warning("Write total subtitile to {}".format(total_srt_file))
write_state(output_dir, state)
logging.warning("Recognition successed. You can copy the text segment from below and use stage 2.")
print(res_text)
if stage == 2:
audio_clipper = VideoClipper(None)
if mode == 'audio':
state = load_state(output_dir)
wav, sr = librosa.load(file, sr=16000)
state['audio_input'] = (sr, wav)
(sr, audio), message, srt_clip = audio_clipper.clip(dest_text, start_ost, end_ost, state, dest_spk=dest_spk)
if output_file is None:
output_file = output_dir + '/result.wav'
clip_srt_file = output_file[:-3] + 'srt'
logging.warning(message)
sf.write(output_file, audio, 16000)
assert output_file.endswith('.wav'), "output_file must ends with '.wav'"
logging.warning("Save clipped wav file to {}".format(output_file))
with open(clip_srt_file, 'w') as fout:
fout.write(srt_clip)
logging.warning("Write clipped subtitile to {}".format(clip_srt_file))
if mode == 'video':
state = load_state(output_dir)
state['vedio_filename'] = file
if output_file is None:
state['clip_video_file'] = file[:-4] + '_clip.mp4'
else:
state['clip_video_file'] = output_file
clip_srt_file = state['clip_video_file'][:-3] + 'srt'
state['video'] = mpy.VideoFileClip(file)
clip_video_file, message, srt_clip = audio_clipper.video_clip(dest_text, start_ost, end_ost, state, dest_spk=dest_spk)
logging.warning("Clipping Log: {}".format(message))
logging.warning("Save clipped mp4 file to {}".format(clip_video_file))
with open(clip_srt_file, 'w') as fout:
fout.write(srt_clip)
logging.warning("Write clipped subtitile to {}".format(clip_srt_file))
def main(cmd=None):
print(get_commandline_args(), file=sys.stderr)
parser = get_parser()
args = parser.parse_args(cmd)
kwargs = vars(args)
runner(**kwargs)
if __name__ == '__main__':
main()