mirror of
https://github.com/RVC-Boss/GPT-SoVITS.git
synced 2025-10-06 22:50:00 +08:00
添加手动语义字幕语音切分工具(多角色)
添加手动语义字幕语音切分工具(多角色)
This commit is contained in:
parent
16309ff44c
commit
66341adf55
83
argparse_tools.py
Normal file
83
argparse_tools.py
Normal file
@ -0,0 +1,83 @@
|
||||
import argparse
|
||||
from pathlib import Path
|
||||
|
||||
import yaml
|
||||
import sys
|
||||
|
||||
|
||||
class ArgumentParser(argparse.ArgumentParser):
|
||||
"""Simple implementation of ArgumentParser supporting config file
|
||||
|
||||
This class is originated from https://github.com/bw2/ConfigArgParse,
|
||||
but this class is lack of some features that it has.
|
||||
|
||||
- Not supporting multiple config files
|
||||
- Automatically adding "--config" as an option.
|
||||
- Not supporting any formats other than yaml
|
||||
- Not checking argument type
|
||||
|
||||
"""
|
||||
|
||||
def __init__(self, *args, **kwargs):
|
||||
super().__init__(*args, **kwargs)
|
||||
self.add_argument("--config", help="Give config file in yaml format")
|
||||
|
||||
def parse_known_args(self, args=None, namespace=None):
|
||||
# Once parsing for setting from "--config"
|
||||
_args, _ = super().parse_known_args(args, namespace)
|
||||
if _args.config is not None:
|
||||
if not Path(_args.config).exists():
|
||||
self.error(f"No such file: {_args.config}")
|
||||
|
||||
with open(_args.config, "r", encoding="utf-8") as f:
|
||||
d = yaml.safe_load(f)
|
||||
if not isinstance(d, dict):
|
||||
self.error("Config file has non dict value: {_args.config}")
|
||||
|
||||
for key in d:
|
||||
for action in self._actions:
|
||||
if key == action.dest:
|
||||
break
|
||||
else:
|
||||
self.error(f"unrecognized arguments: {key} (from {_args.config})")
|
||||
|
||||
# NOTE(kamo): Ignore "--config" from a config file
|
||||
# NOTE(kamo): Unlike "configargparse", this module doesn't check type.
|
||||
# i.e. We can set any type value regardless of argument type.
|
||||
self.set_defaults(**d)
|
||||
return super().parse_known_args(args, namespace)
|
||||
|
||||
|
||||
def get_commandline_args():
|
||||
extra_chars = [
|
||||
" ",
|
||||
";",
|
||||
"&",
|
||||
"(",
|
||||
")",
|
||||
"|",
|
||||
"^",
|
||||
"<",
|
||||
">",
|
||||
"?",
|
||||
"*",
|
||||
"[",
|
||||
"]",
|
||||
"$",
|
||||
"`",
|
||||
'"',
|
||||
"\\",
|
||||
"!",
|
||||
"{",
|
||||
"}",
|
||||
]
|
||||
|
||||
# Escape the extra characters for shell
|
||||
argv = [
|
||||
arg.replace("'", "'\\''")
|
||||
if all(char not in arg for char in extra_chars)
|
||||
else "'" + arg.replace("'", "'\\''") + "'"
|
||||
for arg in sys.argv
|
||||
]
|
||||
|
||||
return sys.executable + " " + " ".join(argv)
|
130
subtitle_utils.py
Normal file
130
subtitle_utils.py
Normal file
@ -0,0 +1,130 @@
|
||||
def time_convert(ms):
|
||||
ms = int(ms)
|
||||
tail = ms % 1000
|
||||
s = ms // 1000
|
||||
mi = s // 60
|
||||
s = s % 60
|
||||
h = mi // 60
|
||||
mi = mi % 60
|
||||
h = "00" if h == 0 else str(h)
|
||||
mi = "00" if mi == 0 else str(mi)
|
||||
s = "00" if s == 0 else str(s)
|
||||
tail = str(tail)
|
||||
if len(h) == 1: h = '0' + h
|
||||
if len(mi) == 1: mi = '0' + mi
|
||||
if len(s) == 1: s = '0' + s
|
||||
return "{}:{}:{},{}".format(h, mi, s, tail)
|
||||
|
||||
|
||||
class Text2SRT():
|
||||
def __init__(self, text_seg, ts_list, offset=0):
|
||||
self.token_list = [i for i in text_seg.split() if len(i)]
|
||||
self.ts_list = ts_list
|
||||
start, end = ts_list[0][0] - offset, ts_list[-1][1] - offset
|
||||
self.start_sec, self.end_sec = start, end
|
||||
self.start_time = time_convert(start)
|
||||
self.end_time = time_convert(end)
|
||||
def text(self):
|
||||
res = ""
|
||||
for word in self.token_list:
|
||||
if '\u4e00' <= word <= '\u9fff':
|
||||
res += word
|
||||
else:
|
||||
res += " " + word
|
||||
return res
|
||||
def len(self):
|
||||
return len(self.token_list)
|
||||
def srt(self, acc_ost=0.0):
|
||||
return "{} --> {}\n{}\n".format(
|
||||
time_convert(self.start_sec+acc_ost*1000),
|
||||
time_convert(self.end_sec+acc_ost*1000),
|
||||
self.text())
|
||||
def time(self, acc_ost=0.0):
|
||||
return (self.start_sec/1000+acc_ost, self.end_sec/1000+acc_ost)
|
||||
|
||||
def distribute_spk(sentence_list, sd_time_list):
|
||||
sd_sentence_list = []
|
||||
for d in sentence_list:
|
||||
sentence_start = d['ts_list'][0][0]
|
||||
sentence_end = d['ts_list'][-1][1]
|
||||
sentence_spk = 0
|
||||
max_overlap = 0
|
||||
for sd_time in sd_time_list:
|
||||
spk_st, spk_ed, spk = sd_time
|
||||
spk_st = spk_st*1000
|
||||
spk_ed = spk_ed*1000
|
||||
overlap = max(
|
||||
min(sentence_end, spk_ed) - max(sentence_start, spk_st), 0)
|
||||
if overlap > max_overlap:
|
||||
max_overlap = overlap
|
||||
sentence_spk = spk
|
||||
d['spk'] = sentence_spk
|
||||
sd_sentence_list.append(d)
|
||||
return sd_sentence_list
|
||||
|
||||
def generate_srt(sentence_list):
|
||||
srt_total = ''
|
||||
for i, d in enumerate(sentence_list):
|
||||
t2s = Text2SRT(d['text_seg'], d['ts_list'])
|
||||
if 'spk' in d:
|
||||
srt_total += "{} spk{}\n{}".format(i, d['spk'], t2s.srt())
|
||||
else:
|
||||
srt_total += "{}\n{}".format(i, t2s.srt())
|
||||
return srt_total
|
||||
|
||||
def generate_srt_clip(sentence_list, start, end, begin_index=0, time_acc_ost=0.0):
|
||||
start, end = int(start * 1000), int(end * 1000)
|
||||
srt_total = ''
|
||||
cc = 1 + begin_index
|
||||
subs = []
|
||||
for i, d in enumerate(sentence_list):
|
||||
if d['ts_list'][-1][1] <= start:
|
||||
continue
|
||||
if d['ts_list'][0][0] >= end:
|
||||
break
|
||||
# parts in between
|
||||
if (d['ts_list'][-1][1] <= end and d['ts_list'][0][0] > start) or (d['ts_list'][-1][1] == end and d['ts_list'][0][0] == start):
|
||||
t2s = Text2SRT(d['text_seg'], d['ts_list'], offset=start)
|
||||
srt_total += "{}\n{}".format(cc, t2s.srt(time_acc_ost))
|
||||
subs.append((t2s.time(time_acc_ost), t2s.text()))
|
||||
cc += 1
|
||||
continue
|
||||
if d['ts_list'][0][0] <= start:
|
||||
if not d['ts_list'][-1][1] > end:
|
||||
for j, ts in enumerate(d['ts_list']):
|
||||
if ts[1] > start:
|
||||
break
|
||||
_text = " ".join(d['text_seg'].split()[j:])
|
||||
_ts = d['ts_list'][j:]
|
||||
else:
|
||||
for j, ts in enumerate(d['ts_list']):
|
||||
if ts[1] > start:
|
||||
_start = j
|
||||
break
|
||||
for j, ts in enumerate(d['ts_list']):
|
||||
if ts[1] > end:
|
||||
_end = j
|
||||
break
|
||||
_text = " ".join(d['text_seg'].split()[_start:_end])
|
||||
_ts = d['ts_list'][_start:_end]
|
||||
if len(ts):
|
||||
t2s = Text2SRT(_text, _ts, offset=start)
|
||||
srt_total += "{}\n{}".format(cc, t2s.srt(time_acc_ost))
|
||||
subs.append((t2s.time(time_acc_ost), t2s.text()))
|
||||
cc += 1
|
||||
continue
|
||||
if d['ts_list'][-1][1] > end:
|
||||
for j, ts in enumerate(d['ts_list']):
|
||||
if ts[1] > end:
|
||||
break
|
||||
_text = " ".join(d['text_seg'].split()[:j])
|
||||
_ts = d['ts_list'][:j]
|
||||
if len(_ts):
|
||||
t2s = Text2SRT(_text, _ts, offset=start)
|
||||
srt_total += "{}\n{}".format(cc, t2s.srt(time_acc_ost))
|
||||
subs.append(
|
||||
(t2s.time(time_acc_ost), t2s.text())
|
||||
)
|
||||
cc += 1
|
||||
continue
|
||||
return srt_total, subs, cc
|
82
trans_utils.py
Normal file
82
trans_utils.py
Normal file
@ -0,0 +1,82 @@
|
||||
PUNC_LIST = [',', '。', '!', '?', '、']
|
||||
|
||||
|
||||
def pre_proc(text):
|
||||
res = ''
|
||||
for i in range(len(text)):
|
||||
if text[i] in PUNC_LIST:
|
||||
continue
|
||||
if '\u4e00' <= text[i] <= '\u9fff':
|
||||
if len(res) and res[-1] != " ":
|
||||
res += ' ' + text[i]+' '
|
||||
else:
|
||||
res += text[i]+' '
|
||||
else:
|
||||
res += text[i]
|
||||
if res[-1] == ' ':
|
||||
res = res[:-1]
|
||||
return res
|
||||
|
||||
def proc(raw_text, timestamp, dest_text):
|
||||
# simple matching
|
||||
ld = len(dest_text.split())
|
||||
mi, ts = [], []
|
||||
offset = 0
|
||||
while True:
|
||||
fi = raw_text.find(dest_text, offset, len(raw_text))
|
||||
# import pdb; pdb.set_trace()
|
||||
ti = raw_text[:fi].count(' ')
|
||||
if fi == -1:
|
||||
break
|
||||
offset = fi + ld
|
||||
mi.append(fi)
|
||||
ts.append([timestamp[ti][0]*16, timestamp[ti+ld-1][1]*16])
|
||||
# import pdb; pdb.set_trace()
|
||||
return ts
|
||||
|
||||
def proc_spk(dest_spk, sd_sentences):
|
||||
ts = []
|
||||
for d in sd_sentences:
|
||||
d_start = d['ts_list'][0][0]
|
||||
d_end = d['ts_list'][-1][1]
|
||||
spkid=dest_spk[3:]
|
||||
if str(d['spk']) == spkid and d_end-d_start>999:
|
||||
ts.append([d['start']*16, d['end']*16])
|
||||
return ts
|
||||
|
||||
def generate_vad_data(data, sd_sentences, sr=16000):
|
||||
assert len(data.shape) == 1
|
||||
vad_data = []
|
||||
for d in sd_sentences:
|
||||
d_start = round(d['ts_list'][0][0]/1000, 2)
|
||||
d_end = round(d['ts_list'][-1][1]/1000, 2)
|
||||
vad_data.append([d_start, d_end, data[int(d_start * sr):int(d_end * sr)]])
|
||||
return vad_data
|
||||
|
||||
def write_state(output_dir, state):
|
||||
for key in ['/recog_res_raw', '/timestamp', '/sentences', '/sd_sentences']:
|
||||
with open(output_dir+key, 'w') as fout:
|
||||
fout.write(str(state[key[1:]]))
|
||||
if 'sd_sentences' in state:
|
||||
with open(output_dir+'/sd_sentences', 'w') as fout:
|
||||
fout.write(str(state['sd_sentences']))
|
||||
|
||||
import os
|
||||
def load_state(output_dir):
|
||||
state = {}
|
||||
with open(output_dir+'/recog_res_raw') as fin:
|
||||
line = fin.read()
|
||||
state['recog_res_raw'] = line
|
||||
with open(output_dir+'/timestamp') as fin:
|
||||
line = fin.read()
|
||||
state['timestamp'] = eval(line)
|
||||
with open(output_dir+'/sentences') as fin:
|
||||
line = fin.read()
|
||||
state['sentences'] = eval(line)
|
||||
if os.path.exists(output_dir+'/sd_sentences'):
|
||||
with open(output_dir+'/sd_sentences') as fin:
|
||||
line = fin.read()
|
||||
state['sd_sentences'] = eval(line)
|
||||
return state
|
||||
|
||||
|
329
videoclipper.py
Normal file
329
videoclipper.py
Normal file
@ -0,0 +1,329 @@
|
||||
import sys
|
||||
import copy
|
||||
import librosa
|
||||
import logging
|
||||
import argparse
|
||||
import numpy as np
|
||||
import soundfile as sf
|
||||
import moviepy.editor as mpy
|
||||
# from modelscope.pipelines import pipeline
|
||||
# from modelscope.utils.constant import Tasks
|
||||
from subtitle_utils import generate_srt, generate_srt_clip, distribute_spk
|
||||
from trans_utils import pre_proc, proc, write_state, load_state, proc_spk, generate_vad_data
|
||||
from argparse_tools import ArgumentParser, get_commandline_args
|
||||
|
||||
from moviepy.editor import *
|
||||
from moviepy.video.tools.subtitles import SubtitlesClip
|
||||
|
||||
|
||||
class VideoClipper():
|
||||
def __init__(self, asr_pipeline, sd_pipeline=None):
|
||||
logging.warning("Initializing VideoClipper.")
|
||||
self.asr_pipeline = asr_pipeline
|
||||
self.sd_pipeline = sd_pipeline
|
||||
|
||||
def recog(self, audio_input, sd_switch='no', state=None):
|
||||
if state is None:
|
||||
state = {}
|
||||
sr, data = audio_input
|
||||
assert sr == 16000, "16kHz sample rate required, {} given.".format(sr)
|
||||
if len(data.shape) == 2: # multi-channel wav input
|
||||
logging.warning("Input wav shape: {}, only first channel reserved.").format(data.shape)
|
||||
data = data[:,0]
|
||||
state['audio_input'] = (sr, data)
|
||||
data = data.astype(np.float64)
|
||||
rec_result = self.asr_pipeline(audio_in=data)
|
||||
if sd_switch == 'yes':
|
||||
vad_data = generate_vad_data(data.astype(np.float32), rec_result['sentences'], sr)
|
||||
sd_result = self.sd_pipeline(audio=vad_data, batch_size=1)
|
||||
rec_result['sd_sentences'] = distribute_spk(rec_result['sentences'], sd_result['text'])
|
||||
res_srt = generate_srt(rec_result['sd_sentences'])
|
||||
state['sd_sentences'] = rec_result['sd_sentences']
|
||||
else:
|
||||
res_srt = generate_srt(rec_result['sentences'])
|
||||
state['recog_res_raw'] = rec_result['text_postprocessed']
|
||||
state['timestamp'] = rec_result['time_stamp']
|
||||
state['sentences'] = rec_result['sentences']
|
||||
res_text = rec_result['text']
|
||||
return res_text, res_srt, state
|
||||
|
||||
def clip(self, dest_text, start_ost, end_ost, state, dest_spk=None):
|
||||
# get from state
|
||||
audio_input = state['audio_input']
|
||||
recog_res_raw = state['recog_res_raw']
|
||||
timestamp = state['timestamp']
|
||||
sentences = state['sentences']
|
||||
sr, data = audio_input
|
||||
data = data.astype(np.float64)
|
||||
|
||||
all_ts = []
|
||||
if dest_spk is None or dest_spk == '' or 'sd_sentences' not in state:
|
||||
for _dest_text in dest_text.split('#'):
|
||||
_dest_text = pre_proc(_dest_text)
|
||||
ts = proc(recog_res_raw, timestamp, _dest_text)
|
||||
for _ts in ts: all_ts.append(_ts)
|
||||
else:
|
||||
for _dest_spk in dest_spk.split('#'):
|
||||
ts = proc_spk(_dest_spk, state['sd_sentences'])
|
||||
for _ts in ts: all_ts.append(_ts)
|
||||
ts = all_ts
|
||||
# ts.sort()
|
||||
srt_index = 0
|
||||
clip_srt = ""
|
||||
if len(ts):
|
||||
start, end = ts[0]
|
||||
start = min(max(0, start+start_ost*16), len(data))
|
||||
end = min(max(0, end+end_ost*16), len(data))
|
||||
res_audio = data[start:end]
|
||||
start_end_info = "from {} to {}".format(start/16000, end/16000)
|
||||
srt_clip, _, srt_index = generate_srt_clip(sentences, start/16000.0, end/16000.0, begin_index=srt_index)
|
||||
clip_srt += srt_clip
|
||||
for _ts in ts[1:]: # multiple sentence input or multiple output matched
|
||||
start, end = _ts
|
||||
start = min(max(0, start+start_ost*16), len(data))
|
||||
end = min(max(0, end+end_ost*16), len(data))
|
||||
start_end_info += ", from {} to {}".format(start, end)
|
||||
res_audio = np.concatenate([res_audio, data[start+start_ost*16:end+end_ost*16]], -1)
|
||||
srt_clip, _, srt_index = generate_srt_clip(sentences, start/16000.0, end/16000.0, begin_index=srt_index-1)
|
||||
clip_srt += srt_clip
|
||||
if len(ts):
|
||||
message = "{} periods found in the speech: ".format(len(ts)) + start_end_info
|
||||
else:
|
||||
message = "No period found in the speech, return raw speech. You may check the recognition result and try other destination text."
|
||||
res_audio = data
|
||||
return (sr, res_audio), message, clip_srt
|
||||
|
||||
def video_recog(self, vedio_filename, sd_switch='no'):
|
||||
vedio_filename = vedio_filename
|
||||
clip_video_file = vedio_filename[:-4] + '_clip.mp4'
|
||||
video = mpy.VideoFileClip(vedio_filename)
|
||||
audio_file = vedio_filename[:-3] + 'wav'
|
||||
video.audio.write_audiofile(audio_file)
|
||||
wav = librosa.load(audio_file, sr=16000)[0]
|
||||
state = {
|
||||
'vedio_filename': vedio_filename,
|
||||
'clip_video_file': clip_video_file,
|
||||
'video': video,
|
||||
}
|
||||
# res_text, res_srt = self.recog((16000, wav), state)
|
||||
return self.recog((16000, wav), sd_switch, state)
|
||||
|
||||
def video_clip(self, dest_text, start_ost, end_ost, state, font_size=32, font_color='white', add_sub=False, dest_spk=None):
|
||||
# get from state
|
||||
recog_res_raw = state['recog_res_raw']
|
||||
timestamp = state['timestamp']
|
||||
sentences = state['sentences']
|
||||
video = state['video']
|
||||
clip_video_file = state['clip_video_file']
|
||||
vedio_filename = state['vedio_filename']
|
||||
|
||||
all_ts = []
|
||||
srt_index = 0
|
||||
if dest_spk is None or dest_spk == '' or 'sd_sentences' not in state:
|
||||
for _dest_text in dest_text.split('#'):
|
||||
_dest_text = pre_proc(_dest_text)
|
||||
ts = proc(recog_res_raw, timestamp, _dest_text)
|
||||
for _ts in ts: all_ts.append(_ts)
|
||||
else:
|
||||
for _dest_spk in dest_spk.split('#'):
|
||||
ts = proc_spk(_dest_spk, state['sd_sentences'])
|
||||
for _ts in ts: all_ts.append(_ts)
|
||||
time_acc_ost = 0.0
|
||||
ts = all_ts
|
||||
# ts.sort()
|
||||
clip_srt = ""
|
||||
if len(ts):
|
||||
start, end = ts[0][0] / 16000, ts[0][1] / 16000
|
||||
srt_clip, subs, srt_index = generate_srt_clip(sentences, start, end, begin_index=srt_index, time_acc_ost=time_acc_ost)
|
||||
start, end = start+start_ost/1000.0, end+end_ost/1000.0
|
||||
video_clip = video.subclip(start, end)
|
||||
start_end_info = "from {} to {}".format(start, end)
|
||||
clip_srt += srt_clip
|
||||
if add_sub:
|
||||
generator = lambda txt: TextClip(txt, font='./font/STHeitiMedium.ttc', fontsize=font_size, color=font_color)
|
||||
subtitles = SubtitlesClip(subs, generator)
|
||||
video_clip = CompositeVideoClip([video_clip, subtitles.set_pos(('center','bottom'))])
|
||||
concate_clip = [video_clip]
|
||||
time_acc_ost += end+end_ost/1000.0 - (start+start_ost/1000.0)
|
||||
for _ts in ts[1:]:
|
||||
start, end = _ts[0] / 16000, _ts[1] / 16000
|
||||
srt_clip, subs, srt_index = generate_srt_clip(sentences, start, end, begin_index=srt_index-1, time_acc_ost=time_acc_ost)
|
||||
chi_subs = []
|
||||
sub_starts = subs[0][0][0]
|
||||
for sub in subs:
|
||||
chi_subs.append(((sub[0][0]-sub_starts, sub[0][1]-sub_starts), sub[1]))
|
||||
start, end = start+start_ost/1000.0, end+end_ost/1000.0
|
||||
_video_clip = video.subclip(start, end)
|
||||
start_end_info += ", from {} to {}".format(start, end)
|
||||
clip_srt += srt_clip
|
||||
if add_sub:
|
||||
generator = lambda txt: TextClip(txt, font='./font/STHeitiMedium.ttc', fontsize=font_size, color=font_color)
|
||||
subtitles = SubtitlesClip(chi_subs, generator)
|
||||
_video_clip = CompositeVideoClip([_video_clip, subtitles.set_pos(('center','bottom'))])
|
||||
# _video_clip.write_videofile("debug.mp4", audio_codec="aac")
|
||||
concate_clip.append(copy.copy(_video_clip))
|
||||
time_acc_ost += end+end_ost/1000.0 - (start+start_ost/1000.0)
|
||||
message = "{} periods found in the audio: ".format(len(ts)) + start_end_info
|
||||
logging.warning("Concating...")
|
||||
if len(concate_clip) > 1:
|
||||
video_clip = concatenate_videoclips(concate_clip)
|
||||
video_clip.write_videofile(clip_video_file, audio_codec="aac")
|
||||
else:
|
||||
clip_video_file = vedio_filename
|
||||
message = "No period found in the audio, return raw speech. You may check the recognition result and try other destination text."
|
||||
srt_clip = ''
|
||||
return clip_video_file, message, clip_srt
|
||||
|
||||
|
||||
def get_parser():
|
||||
parser = ArgumentParser(
|
||||
description="ClipVideo Argument",
|
||||
formatter_class=argparse.ArgumentDefaultsHelpFormatter,
|
||||
)
|
||||
parser.add_argument(
|
||||
"--stage",
|
||||
type=int,
|
||||
choices=(1, 2),
|
||||
help="Stage, 0 for recognizing and 1 for clipping",
|
||||
required=True
|
||||
)
|
||||
parser.add_argument(
|
||||
"--file",
|
||||
type=str,
|
||||
default=None,
|
||||
help="Input file path",
|
||||
required=True
|
||||
)
|
||||
parser.add_argument(
|
||||
"--sd_switch",
|
||||
type=str,
|
||||
choices=("no", "yes"),
|
||||
default="no",
|
||||
help="Trun on the speaker diarization or not",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--output_dir",
|
||||
type=str,
|
||||
default='./output',
|
||||
help="Output files path",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--dest_text",
|
||||
type=str,
|
||||
default=None,
|
||||
help="Destination text string for clipping",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--dest_spk",
|
||||
type=str,
|
||||
default=None,
|
||||
help="Destination spk id for clipping",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--start_ost",
|
||||
type=int,
|
||||
default=0,
|
||||
help="Offset time in ms at beginning for clipping"
|
||||
)
|
||||
parser.add_argument(
|
||||
"--end_ost",
|
||||
type=int,
|
||||
default=0,
|
||||
help="Offset time in ms at ending for clipping"
|
||||
)
|
||||
parser.add_argument(
|
||||
"--output_file",
|
||||
type=str,
|
||||
default=None,
|
||||
help="Output file path"
|
||||
)
|
||||
return parser
|
||||
|
||||
|
||||
def runner(stage, file, sd_switch, output_dir, dest_text, dest_spk, start_ost, end_ost, output_file, config=None):
|
||||
audio_suffixs = ['wav']
|
||||
video_suffixs = ['mp4']
|
||||
if file[-3:] in audio_suffixs:
|
||||
mode = 'audio'
|
||||
elif file[-3:] in video_suffixs:
|
||||
mode = 'video'
|
||||
else:
|
||||
logging.error("Unsupported file format: {}".format(file))
|
||||
while output_dir.endswith('/'):
|
||||
output_dir = output_dir[:-1]
|
||||
if stage == 1:
|
||||
from modelscope.pipelines import pipeline
|
||||
from modelscope.utils.constant import Tasks
|
||||
# initialize modelscope asr pipeline
|
||||
logging.warning("Initializing modelscope asr pipeline.")
|
||||
inference_pipeline = pipeline(
|
||||
task=Tasks.auto_speech_recognition,
|
||||
model='damo/speech_paraformer-large-vad-punc_asr_nat-zh-cn-16k-common-vocab8404-pytorch',
|
||||
vad_model='damo/speech_fsmn_vad_zh-cn-16k-common-pytorch',
|
||||
punc_model='damo/punc_ct-transformer_zh-cn-common-vocab272727-pytorch',
|
||||
output_dir=output_dir,
|
||||
)
|
||||
sd_pipeline = pipeline(
|
||||
task='speaker-diarization',
|
||||
model='damo/speech_campplus_speaker-diarization_common',
|
||||
model_revision='v1.0.0'
|
||||
)
|
||||
audio_clipper = VideoClipper(inference_pipeline, sd_pipeline)
|
||||
if mode == 'audio':
|
||||
logging.warning("Recognizing audio file: {}".format(file))
|
||||
wav, sr = librosa.load(file, sr=16000)
|
||||
res_text, res_srt, state = audio_clipper.recog((sr, wav), sd_switch)
|
||||
if mode == 'video':
|
||||
logging.warning("Recognizing video file: {}".format(file))
|
||||
res_text, res_srt, state = audio_clipper.video_recog(file, sd_switch)
|
||||
total_srt_file = output_dir + '/total.srt'
|
||||
with open(total_srt_file, 'w') as fout:
|
||||
fout.write(res_srt)
|
||||
logging.warning("Write total subtitile to {}".format(total_srt_file))
|
||||
write_state(output_dir, state)
|
||||
logging.warning("Recognition successed. You can copy the text segment from below and use stage 2.")
|
||||
print(res_text)
|
||||
if stage == 2:
|
||||
audio_clipper = VideoClipper(None)
|
||||
if mode == 'audio':
|
||||
state = load_state(output_dir)
|
||||
wav, sr = librosa.load(file, sr=16000)
|
||||
state['audio_input'] = (sr, wav)
|
||||
(sr, audio), message, srt_clip = audio_clipper.clip(dest_text, start_ost, end_ost, state, dest_spk=dest_spk)
|
||||
if output_file is None:
|
||||
output_file = output_dir + '/result.wav'
|
||||
clip_srt_file = output_file[:-3] + 'srt'
|
||||
logging.warning(message)
|
||||
sf.write(output_file, audio, 16000)
|
||||
assert output_file.endswith('.wav'), "output_file must ends with '.wav'"
|
||||
logging.warning("Save clipped wav file to {}".format(output_file))
|
||||
with open(clip_srt_file, 'w') as fout:
|
||||
fout.write(srt_clip)
|
||||
logging.warning("Write clipped subtitile to {}".format(clip_srt_file))
|
||||
if mode == 'video':
|
||||
state = load_state(output_dir)
|
||||
state['vedio_filename'] = file
|
||||
if output_file is None:
|
||||
state['clip_video_file'] = file[:-4] + '_clip.mp4'
|
||||
else:
|
||||
state['clip_video_file'] = output_file
|
||||
clip_srt_file = state['clip_video_file'][:-3] + 'srt'
|
||||
state['video'] = mpy.VideoFileClip(file)
|
||||
clip_video_file, message, srt_clip = audio_clipper.video_clip(dest_text, start_ost, end_ost, state, dest_spk=dest_spk)
|
||||
logging.warning("Clipping Log: {}".format(message))
|
||||
logging.warning("Save clipped mp4 file to {}".format(clip_video_file))
|
||||
with open(clip_srt_file, 'w') as fout:
|
||||
fout.write(srt_clip)
|
||||
logging.warning("Write clipped subtitile to {}".format(clip_srt_file))
|
||||
|
||||
|
||||
def main(cmd=None):
|
||||
print(get_commandline_args(), file=sys.stderr)
|
||||
parser = get_parser()
|
||||
args = parser.parse_args(cmd)
|
||||
kwargs = vars(args)
|
||||
runner(**kwargs)
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
main()
|
Loading…
x
Reference in New Issue
Block a user