mirror of
https://github.com/RVC-Boss/GPT-SoVITS.git
synced 2025-09-29 08:49:59 +08:00
refactor: separate loading model logic to a function instead of while importing
This commit is contained in:
parent
611ff1e8c0
commit
65cf7d67d5
@ -160,15 +160,14 @@ dict_language_v2 = {
|
|||||||
}
|
}
|
||||||
dict_language = dict_language_v1 if version == "v1" else dict_language_v2
|
dict_language = dict_language_v1 if version == "v1" else dict_language_v2
|
||||||
|
|
||||||
tokenizer = AutoTokenizer.from_pretrained(bert_path)
|
# Initialize model variables as None - they will be loaded by load_models() function
|
||||||
bert_model = AutoModelForMaskedLM.from_pretrained(bert_path)
|
tokenizer = None
|
||||||
if is_half == True:
|
bert_model = None
|
||||||
bert_model = bert_model.half().to(device)
|
|
||||||
else:
|
|
||||||
bert_model = bert_model.to(device)
|
|
||||||
|
|
||||||
|
|
||||||
def get_bert_feature(text, word2ph):
|
def get_bert_feature(text, word2ph):
|
||||||
|
if tokenizer is None or bert_model is None:
|
||||||
|
raise RuntimeError("Models not loaded. Please call load_models() first.")
|
||||||
with torch.no_grad():
|
with torch.no_grad():
|
||||||
inputs = tokenizer(text, return_tensors="pt")
|
inputs = tokenizer(text, return_tensors="pt")
|
||||||
for i in inputs:
|
for i in inputs:
|
||||||
@ -180,6 +179,8 @@ def get_bert_feature(text, word2ph):
|
|||||||
for i in range(len(word2ph)):
|
for i in range(len(word2ph)):
|
||||||
repeat_feature = res[i].repeat(word2ph[i], 1)
|
repeat_feature = res[i].repeat(word2ph[i], 1)
|
||||||
phone_level_feature.append(repeat_feature)
|
phone_level_feature.append(repeat_feature)
|
||||||
|
if len(phone_level_feature) == 0:
|
||||||
|
return torch.empty((res.shape[1], 0), dtype=res.dtype, device=res.device)
|
||||||
phone_level_feature = torch.cat(phone_level_feature, dim=0)
|
phone_level_feature = torch.cat(phone_level_feature, dim=0)
|
||||||
return phone_level_feature.T
|
return phone_level_feature.T
|
||||||
|
|
||||||
@ -212,11 +213,8 @@ class DictToAttrRecursive(dict):
|
|||||||
raise AttributeError(f"Attribute {item} not found")
|
raise AttributeError(f"Attribute {item} not found")
|
||||||
|
|
||||||
|
|
||||||
ssl_model = cnhubert.get_model()
|
# Initialize SSL model as None - it will be loaded by load_models() function
|
||||||
if is_half == True:
|
ssl_model = None
|
||||||
ssl_model = ssl_model.half().to(device)
|
|
||||||
else:
|
|
||||||
ssl_model = ssl_model.to(device)
|
|
||||||
|
|
||||||
|
|
||||||
###todo:put them to process_ckpt and modify my_save func (save sovits weights), gpt save weights use my_save in process_ckpt
|
###todo:put them to process_ckpt and modify my_save func (save sovits weights), gpt save weights use my_save in process_ckpt
|
||||||
@ -367,11 +365,13 @@ def change_sovits_weights(sovits_path, prompt_language=None, text_language=None)
|
|||||||
f.write(json.dumps(data))
|
f.write(json.dumps(data))
|
||||||
|
|
||||||
|
|
||||||
try:
|
# Initialize global model variables as None - they will be loaded by load_models() function
|
||||||
next(change_sovits_weights(sovits_path))
|
vq_model = None
|
||||||
except:
|
hps = None
|
||||||
pass
|
t2s_model = None
|
||||||
|
config = None
|
||||||
|
hz = None
|
||||||
|
max_sec = None
|
||||||
|
|
||||||
def change_gpt_weights(gpt_path):
|
def change_gpt_weights(gpt_path):
|
||||||
if "!" in gpt_path or "!" in gpt_path:
|
if "!" in gpt_path or "!" in gpt_path:
|
||||||
@ -385,7 +385,8 @@ def change_gpt_weights(gpt_path):
|
|||||||
t2s_model.load_state_dict(dict_s1["weight"])
|
t2s_model.load_state_dict(dict_s1["weight"])
|
||||||
if is_half == True:
|
if is_half == True:
|
||||||
t2s_model = t2s_model.half()
|
t2s_model = t2s_model.half()
|
||||||
t2s_model = t2s_model.to(device)
|
else:
|
||||||
|
t2s_model = t2s_model.to(device)
|
||||||
t2s_model.eval()
|
t2s_model.eval()
|
||||||
# total = sum([param.nelement() for param in t2s_model.parameters()])
|
# total = sum([param.nelement() for param in t2s_model.parameters()])
|
||||||
# print("Number of parameter: %.2fM" % (total / 1e6))
|
# print("Number of parameter: %.2fM" % (total / 1e6))
|
||||||
@ -397,7 +398,8 @@ def change_gpt_weights(gpt_path):
|
|||||||
f.write(json.dumps(data))
|
f.write(json.dumps(data))
|
||||||
|
|
||||||
|
|
||||||
change_gpt_weights(gpt_path)
|
# Remove the automatic loading of GPT weights at import time
|
||||||
|
# change_gpt_weights(gpt_path)
|
||||||
os.environ["HF_ENDPOINT"] = "https://hf-mirror.com"
|
os.environ["HF_ENDPOINT"] = "https://hf-mirror.com"
|
||||||
import torch
|
import torch
|
||||||
|
|
||||||
@ -495,17 +497,68 @@ def init_sv_cn():
|
|||||||
clean_hifigan_model()
|
clean_hifigan_model()
|
||||||
|
|
||||||
|
|
||||||
|
# Initialize vocoder model variables as None - they will be loaded by load_models() function
|
||||||
bigvgan_model = hifigan_model = sv_cn_model = None
|
bigvgan_model = hifigan_model = sv_cn_model = None
|
||||||
if model_version == "v3":
|
# Remove automatic vocoder loading at import time
|
||||||
init_bigvgan()
|
# if model_version == "v3":
|
||||||
if model_version == "v4":
|
# init_bigvgan()
|
||||||
init_hifigan()
|
# if model_version == "v4":
|
||||||
if model_version in {"v2Pro", "v2ProPlus"}:
|
# init_hifigan()
|
||||||
init_sv_cn()
|
# if model_version in {"v2Pro", "v2ProPlus"}:
|
||||||
|
# init_sv_cn()
|
||||||
|
|
||||||
resample_transform_dict = {}
|
resample_transform_dict = {}
|
||||||
|
|
||||||
|
|
||||||
|
def load_models( ):
|
||||||
|
"""
|
||||||
|
Load all models onto GPU. Call this function when you want to initialize models.
|
||||||
|
"""
|
||||||
|
global tokenizer, bert_model, ssl_model, vq_model, hps, t2s_model, config, hz, max_sec
|
||||||
|
global bigvgan_model, hifigan_model, sv_cn_model
|
||||||
|
|
||||||
|
print("Loading models onto GPU...")
|
||||||
|
|
||||||
|
# Load BERT tokenizer and model
|
||||||
|
print("Loading BERT model...")
|
||||||
|
tokenizer = AutoTokenizer.from_pretrained(bert_path)
|
||||||
|
bert_model = AutoModelForMaskedLM.from_pretrained(bert_path)
|
||||||
|
if is_half == True:
|
||||||
|
bert_model = bert_model.half().to(device)
|
||||||
|
else:
|
||||||
|
bert_model = bert_model.to(device)
|
||||||
|
|
||||||
|
# Load SSL model
|
||||||
|
print("Loading SSL model...")
|
||||||
|
ssl_model = cnhubert.get_model()
|
||||||
|
if is_half == True:
|
||||||
|
ssl_model = ssl_model.half().to(device)
|
||||||
|
else:
|
||||||
|
ssl_model = ssl_model.to(device)
|
||||||
|
|
||||||
|
# Load SoVITS model
|
||||||
|
print("Loading SoVITS model...")
|
||||||
|
try:
|
||||||
|
next(change_sovits_weights(sovits_path))
|
||||||
|
except:
|
||||||
|
pass
|
||||||
|
|
||||||
|
# Load GPT model
|
||||||
|
print("Loading GPT model...")
|
||||||
|
change_gpt_weights(gpt_path)
|
||||||
|
|
||||||
|
# Load appropriate vocoder model based on version
|
||||||
|
print(f"Loading vocoder model for version {model_version}...")
|
||||||
|
if model_version == "v3":
|
||||||
|
init_bigvgan()
|
||||||
|
elif model_version == "v4":
|
||||||
|
init_hifigan()
|
||||||
|
elif model_version in {"v2Pro", "v2ProPlus"}:
|
||||||
|
init_sv_cn()
|
||||||
|
|
||||||
|
print("All models loaded successfully!")
|
||||||
|
|
||||||
|
|
||||||
def resample(audio_tensor, sr0, sr1, device):
|
def resample(audio_tensor, sr0, sr1, device):
|
||||||
global resample_transform_dict
|
global resample_transform_dict
|
||||||
key = "%s-%s-%s" % (sr0, sr1, str(device))
|
key = "%s-%s-%s" % (sr0, sr1, str(device))
|
||||||
@ -1353,6 +1406,7 @@ with gr.Blocks(title="GPT-SoVITS WebUI", analytics_enabled=False, js=js, css=css
|
|||||||
# gr.Markdown(html_center(i18n("后续将支持转音素、手工修改音素、语音合成分步执行。")))
|
# gr.Markdown(html_center(i18n("后续将支持转音素、手工修改音素、语音合成分步执行。")))
|
||||||
|
|
||||||
if __name__ == "__main__":
|
if __name__ == "__main__":
|
||||||
|
load_models()
|
||||||
app.queue().launch( # concurrency_count=511, max_size=1022
|
app.queue().launch( # concurrency_count=511, max_size=1022
|
||||||
server_name="0.0.0.0",
|
server_name="0.0.0.0",
|
||||||
inbrowser=True,
|
inbrowser=True,
|
||||||
|
Loading…
x
Reference in New Issue
Block a user