fix_onlyasr (#1433)

This commit is contained in:
蓝梦实 2024-08-12 10:42:52 +08:00 committed by GitHub
parent 2310bcde53
commit 62831dfcc7
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
2 changed files with 60 additions and 47 deletions

View File

@ -68,10 +68,9 @@ def execute_asr(input_folder, output_folder, model_size, language, precision):
if info.language == "zh":
print("检测为中文文本, 转 FunASR 处理")
if("only_asr"not in globals()):
from tools.asr.funasr_asr import \
only_asr # #如果用英文就不需要导入下载模型
text = only_asr(file_path)
if("only_asr" not in globals()):
from tools.asr.funasr_asr import only_asr #如果用英文就不需要导入下载模型
text = only_asr(file_path, language=info.language.lower())
if text == '':
for segment in segments:

View File

@ -3,30 +3,72 @@
import argparse
import os
import traceback
from tqdm import tqdm
# from funasr.utils import version_checker
# version_checker.check_for_update = lambda: None
from funasr import AutoModel
from tqdm import tqdm
funasr_models = {} # 存储模型避免重复加载
def only_asr(input_file):
def only_asr(input_file, language):
try:
model = create_model(language)
text = model.generate(input=input_file)[0]["text"]
except:
text = ''
print(traceback.format_exc())
return text
def create_model(language="zh"):
path_vad = 'tools/asr/models/speech_fsmn_vad_zh-cn-16k-common-pytorch'
path_punc = 'tools/asr/models/punc_ct-transformer_zh-cn-common-vocab272727-pytorch'
path_vad = path_vad if os.path.exists(path_vad) else "iic/speech_fsmn_vad_zh-cn-16k-common-pytorch"
path_punc = path_punc if os.path.exists(path_punc) else "iic/punc_ct-transformer_zh-cn-common-vocab272727-pytorch"
vad_model_revision = punc_model_revision = "v2.0.4"
if language == "zh":
path_asr = 'tools/asr/models/speech_paraformer-large_asr_nat-zh-cn-16k-common-vocab8404-pytorch'
path_asr = path_asr if os.path.exists(path_asr) else "iic/speech_paraformer-large_asr_nat-zh-cn-16k-common-vocab8404-pytorch"
model_revision = "v2.0.4"
elif language == "yue":
path_asr = 'tools/asr/models/speech_UniASR_asr_2pass-cantonese-CHS-16k-common-vocab1468-tensorflow1-online'
path_asr = path_asr if os.path.exists(path_asr) else "iic/speech_UniASR_asr_2pass-cantonese-CHS-16k-common-vocab1468-tensorflow1-online"
model_revision = "master"
path_vad = path_punc = None
vad_model_revision = punc_model_revision = None
###友情提示粤语带VAD识别可能会有少量shape不对报错的但是不带VAD可以.不带vad只能分阶段单独加标点。不过标点模型对粤语效果真的不行…
else:
raise ValueError("FunASR 不支持该语言" + ": " + language)
if language in funasr_models:
return funasr_models[language]
else:
model = AutoModel(
model = path_asr,
model_revision = model_revision,
vad_model = path_vad,
vad_model_revision = vad_model_revision,
punc_model = path_punc,
punc_model_revision = punc_model_revision,
)
print(f"FunASR 模型加载完成: {language.upper()}")
funasr_models[language] = model
return model
def execute_asr(input_folder, output_folder, model_size, language):
input_file_names = os.listdir(input_folder)
input_file_names.sort()
output = []
output_file_name = os.path.basename(input_folder)
model = create_model(language)
for file_name in tqdm(input_file_names):
try:
print(file_name)
print("\n" + file_name)
file_path = os.path.join(input_folder, file_name)
text = model.generate(input=file_path)[0]["text"]
output.append(f"{file_path}|{output_file_name}|{language.upper()}|{text}")
@ -42,47 +84,19 @@ def execute_asr(input_folder, output_folder, model_size, language):
print(f"ASR 任务完成->标注文件路径: {output_file_path}\n")
return output_file_path
parser = argparse.ArgumentParser()
parser.add_argument("-i", "--input_folder", type=str, required=True,
help="Path to the folder containing WAV files.")
parser.add_argument("-o", "--output_folder", type=str, required=True,
help="Output folder to store transcriptions.")
parser.add_argument("-s", "--model_size", type=str, default='large',
help="Model Size of FunASR is Large")
parser.add_argument("-l", "--language", type=str, default='zh', choices=['zh','yue','auto'],
help="Language of the audio files.")
parser.add_argument("-p", "--precision", type=str, default='float16', choices=['float16','float32'],
help="fp16 or fp32")#还没接入
cmd = parser.parse_args()
path_vad = 'tools/asr/models/speech_fsmn_vad_zh-cn-16k-common-pytorch'
path_punc = 'tools/asr/models/punc_ct-transformer_zh-cn-common-vocab272727-pytorch'
path_vad = path_vad if os.path.exists(path_vad) else "iic/speech_fsmn_vad_zh-cn-16k-common-pytorch"
path_punc = path_punc if os.path.exists(path_punc) else "iic/punc_ct-transformer_zh-cn-common-vocab272727-pytorch"
vad_model_revision=punc_model_revision="v2.0.4"
if(cmd.language=="zh"):
path_asr = 'tools/asr/models/speech_paraformer-large_asr_nat-zh-cn-16k-common-vocab8404-pytorch'
path_asr = path_asr if os.path.exists(path_asr) else "iic/speech_paraformer-large_asr_nat-zh-cn-16k-common-vocab8404-pytorch"
model_revision="v2.0.4"
else:
path_asr = 'tools/asr/models/speech_UniASR_asr_2pass-cantonese-CHS-16k-common-vocab1468-tensorflow1-online'
path_asr = path_asr if os.path.exists(path_asr) else "iic/speech_UniASR_asr_2pass-cantonese-CHS-16k-common-vocab1468-tensorflow1-online"
model_revision="master"
path_vad=path_punc=vad_model_revision=punc_model_revision=None###友情提示粤语带VAD识别可能会有少量shape不对报错的但是不带VAD可以.不带vad只能分阶段单独加标点。不过标点模型对粤语效果真的不行…
model = AutoModel(
model=path_asr,
model_revision=model_revision,
vad_model=path_vad,
vad_model_revision=vad_model_revision,
punc_model=path_punc,
punc_model_revision=punc_model_revision,
)
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument("-i", "--input_folder", type=str, required=True,
help="Path to the folder containing WAV files.")
parser.add_argument("-o", "--output_folder", type=str, required=True,
help="Output folder to store transcriptions.")
parser.add_argument("-s", "--model_size", type=str, default='large',
help="Model Size of FunASR is Large")
parser.add_argument("-l", "--language", type=str, default='zh', choices=['zh','yue','auto'],
help="Language of the audio files.")
parser.add_argument("-p", "--precision", type=str, default='float16', choices=['float16','float32'],
help="fp16 or fp32")#还没接入
cmd = parser.parse_args()
execute_asr(
input_folder = cmd.input_folder,
output_folder = cmd.output_folder,