배포 준비비

This commit is contained in:
SanghyeonAn94 2025-10-16 19:42:29 +09:00
parent e8616c87c6
commit 62513f9d95
16 changed files with 210 additions and 54 deletions

4
.gitignore vendored
View File

@ -5,10 +5,6 @@ __pycache__
env
runtime
.idea
output
logs
SoVITS_weights*/
GPT_weights*/
TEMP
weight.json
ffmpeg*

View File

@ -1,62 +1,73 @@
ARG CUDA_VERSION=12.6
ARG TORCH_BASE=full
FROM nvidia/cuda:12.8.1-cudnn-runtime-ubuntu22.04
FROM xxxxrt666/torch-base:cu${CUDA_VERSION}-${TORCH_BASE}
# GPT-SoVITS Docker Image
# This image contains the GPT-SoVITS TTS model with GPU support
LABEL maintainer="XXXXRT"
LABEL version="V4"
LABEL description="Docker image for GPT-SoVITS"
# Prevent interactive prompts during build
ENV DEBIAN_FRONTEND=noninteractive
ARG CUDA_VERSION=12.6
# Install system dependencies
RUN apt-get update && apt-get install -y \
software-properties-common \
&& add-apt-repository ppa:deadsnakes/ppa \
&& apt-get update && apt-get install -y \
python3.11 \
python3.11-dev \
python3.11-distutils \
git \
wget \
curl \
ffmpeg \
libsndfile1 \
build-essential \
&& rm -rf /var/lib/apt/lists/*
ENV CUDA_VERSION=${CUDA_VERSION}
# Install pip for Python 3.11
RUN curl -sS https://bootstrap.pypa.io/get-pip.py | python3.11
SHELL ["/bin/bash", "-c"]
WORKDIR /workspace/GPT-SoVITS
COPY Docker /workspace/GPT-SoVITS/Docker/
ARG LITE=false
ENV LITE=${LITE}
ARG WORKFLOW=false
ENV WORKFLOW=${WORKFLOW}
ARG TARGETPLATFORM
ENV TARGETPLATFORM=${TARGETPLATFORM}
RUN bash Docker/miniconda_install.sh
COPY extra-req.txt /workspace/GPT-SoVITS/
COPY requirements.txt /workspace/GPT-SoVITS/
COPY install.sh /workspace/GPT-SoVITS/
RUN bash Docker/install_wrapper.sh
EXPOSE 9871 9872 9873 9874 9880
ENV PYTHONPATH="/workspace/GPT-SoVITS"
RUN conda init bash && echo "conda activate base" >> ~/.bashrc
# Set Python 3.11 as default
RUN update-alternatives --install /usr/bin/python python /usr/bin/python3.11 1 && \
update-alternatives --install /usr/bin/pip pip /usr/local/bin/pip3.11 1
# Set working directory
WORKDIR /workspace
RUN rm -rf /workspace/GPT-SoVITS
# Environment variables for GPU
ENV NVIDIA_VISIBLE_DEVICES=all
ENV NVIDIA_DRIVER_CAPABILITIES=compute,utility
# Create GPT-SoVITS directory (will be mounted via volumes)
RUN mkdir -p /workspace/GPT-SoVITS
# Set working directory to GPT-SoVITS
WORKDIR /workspace/GPT-SoVITS
COPY . /workspace/GPT-SoVITS
# Install PyTorch with CUDA 12.8 support first
RUN pip install --no-cache-dir \
torch==2.7.1 \
torchaudio==2.7.1 \
--index-url https://download.pytorch.org/whl/cu128
CMD ["/bin/bash", "-c", "\
rm -rf /workspace/GPT-SoVITS/GPT_SoVITS/pretrained_models && \
rm -rf /workspace/GPT-SoVITS/GPT_SoVITS/text/G2PWModel && \
rm -rf /workspace/GPT-SoVITS/tools/asr/models && \
rm -rf /workspace/GPT-SoVITS/tools/uvr5/uvr5_weights && \
ln -s /workspace/models/pretrained_models /workspace/GPT-SoVITS/GPT_SoVITS/pretrained_models && \
ln -s /workspace/models/G2PWModel /workspace/GPT-SoVITS/GPT_SoVITS/text/G2PWModel && \
ln -s /workspace/models/asr_models /workspace/GPT-SoVITS/tools/asr/models && \
ln -s /workspace/models/uvr5_weights /workspace/GPT-SoVITS/tools/uvr5/uvr5_weights && \
exec bash"]
# Copy GPT-SoVITS requirements.txt from current directory
COPY requirements.txt /tmp/requirements.txt
# Install GPT-SoVITS dependencies from requirements.txt
RUN pip install --no-cache-dir -r /tmp/requirements.txt
# Install additional dependencies for STT (not in requirements.txt)
RUN pip install --no-cache-dir \
"faster-whisper>=1.1.0" \
soundfile \
BS-RoFormer
# Expose API port
EXPOSE 9881
# Default configuration
ENV API_HOST=0.0.0.0
ENV API_PORT=9881
ENV CONFIG_PATH=GPT_SoVITS/configs/tts_infer.yaml
# Health check - Just check if the API server is responding (any response is OK, even 4xx)
HEALTHCHECK --interval=30s --timeout=10s --start-period=60s --retries=3 \
CMD curl -s -o /dev/null -w "%{http_code}" http://localhost:9881/tts | grep -E "^[2-4][0-9][0-9]$" > /dev/null || exit 1

124
Dockerfile.prod Normal file
View File

@ -0,0 +1,124 @@
# Production Dockerfile for GPT-SoVITS
# Self-contained image with GPU support and all dependencies
FROM nvidia/cuda:12.8.1-cudnn-runtime-ubuntu22.04
# Prevent interactive prompts during build
ENV DEBIAN_FRONTEND=noninteractive
# Install system dependencies including AWS CLI
RUN apt-get update && apt-get install -y \
software-properties-common \
&& add-apt-repository ppa:deadsnakes/ppa \
&& apt-get update && apt-get install -y \
python3.11 \
python3.11-dev \
python3.11-distutils \
git \
wget \
curl \
ffmpeg \
libsndfile1 \
build-essential \
unzip \
&& rm -rf /var/lib/apt/lists/*
# Install AWS CLI v2
RUN curl "https://awscli.amazonaws.com/awscli-exe-linux-x86_64.zip" -o "awscliv2.zip" \
&& unzip awscliv2.zip \
&& ./aws/install \
&& rm -rf awscliv2.zip aws
# Install pip for Python 3.11
RUN curl -sS https://bootstrap.pypa.io/get-pip.py | python3.11
# Set Python 3.11 as default
RUN update-alternatives --install /usr/bin/python python /usr/bin/python3.11 1 && \
update-alternatives --install /usr/bin/pip pip /usr/local/bin/pip3.11 1
# Set working directory
WORKDIR /workspace
# Environment variables for GPU
ENV NVIDIA_VISIBLE_DEVICES=all
ENV NVIDIA_DRIVER_CAPABILITIES=compute,utility
# Install PyTorch with CUDA 12.8 support first
RUN pip install --no-cache-dir \
torch==2.7.1 \
torchaudio==2.7.1 \
--index-url https://download.pytorch.org/whl/cu128
# Copy only requirements.txt for dependency pre-installation
COPY requirements.txt /tmp/gpt-sovits-requirements.txt
# Install GPT-SoVITS dependencies
RUN pip install --no-cache-dir -r /tmp/gpt-sovits-requirements.txt
# Install additional dependencies for STT
RUN pip install --no-cache-dir \
"faster-whisper>=1.1.0" \
soundfile \
BS-RoFormer
# Create cache storage directory (shared with ML Service)
RUN mkdir -p /app/shared/cache_storage
# Expose API port
EXPOSE 9881
# Environment variables for S3 model download
ENV API_HOST=0.0.0.0
ENV API_PORT=9881
ENV CONFIG_PATH=GPT_SoVITS/configs/tts_infer.yaml
ENV MODEL_DIR=/workspace/GPT-SoVITS
ENV S3_MODEL_URI=s3://shiftup-enterprise-ai-service/tts/model_registry/GPT-SoVITS/
# Health check
HEALTHCHECK --interval=30s --timeout=10s --start-period=90s --retries=3 \
CMD curl -s -o /dev/null -w "%{http_code}" http://localhost:9881/tts | grep -E "^[2-4][0-9][0-9]$" > /dev/null || exit 1
# Create entrypoint script for S3 model download
RUN echo '#!/bin/bash\n\
set -e\n\
\n\
echo "=== GPT-SoVITS Startup (EC2 Production) ==="\n\
echo "Model directory: $MODEL_DIR"\n\
echo "S3 source: $S3_MODEL_URI"\n\
echo ""\n\
\n\
# Check if model directory already exists and has content\n\
if [ -d "$MODEL_DIR" ] && [ "$(ls -A $MODEL_DIR 2>/dev/null)" ]; then\n\
echo "✓ Model files already exist in $MODEL_DIR"\n\
echo "Skipping S3 download..."\n\
else\n\
echo "Downloading model files from S3..."\n\
echo "This may take several minutes on first startup..."\n\
\n\
# Create model directory\n\
mkdir -p $MODEL_DIR\n\
\n\
# Download from S3 (using AWS CLI)\n\
if ! aws s3 sync "$S3_MODEL_URI" "$MODEL_DIR" --delete --quiet; then\n\
echo "ERROR: Failed to download model files from S3"\n\
echo "Please check:"\n\
echo " 1. AWS credentials (AWS_ACCESS_KEY_ID, AWS_SECRET_ACCESS_KEY, AWS_DEFAULT_REGION)"\n\
echo " 2. S3 URI: $S3_MODEL_URI"\n\
echo " 3. Network connectivity to S3"\n\
exit 1\n\
fi\n\
\n\
echo "✓ Model files downloaded successfully"\n\
fi\n\
\n\
echo ""\n\
echo "Changing to model directory..."\n\
cd $MODEL_DIR\n\
\n\
echo "Current directory: $(pwd)"\n\
echo ""\n\
echo "Starting GPT-SoVITS API on $API_HOST:$API_PORT..."\n\
exec python api_v2.py -a "$API_HOST" -p "$API_PORT" -c "$CONFIG_PATH"\n\
' > /entrypoint.sh && chmod +x /entrypoint.sh
ENTRYPOINT ["/entrypoint.sh"]

0
GPT_weights/.gitkeep Normal file
View File

0
GPT_weights_v2/.gitkeep Normal file
View File

View File

View File

0
GPT_weights_v3/.gitkeep Normal file
View File

0
GPT_weights_v4/.gitkeep Normal file
View File

0
SoVITS_weights/.gitkeep Normal file
View File

View File

View File

View File

View File

View File

25
buildspec.yml Normal file
View File

@ -0,0 +1,25 @@
version: 0.2
env:
variables:
ECR_REGISTRY: "public.ecr.aws/r2p3x7v0/ailabs"
IMAGE_NAME: "sai2ply"
SERVICE_NAME: "gpt-sovits"
phases:
pre_build:
commands:
- aws ecr-public get-login-password --region us-east-1 | docker login --username AWS --password-stdin public.ecr.aws
- export IMAGE_TAG=${CODEBUILD_RESOLVED_SOURCE_VERSION:0:7}
- export FULL_IMAGE_URI="${ECR_REGISTRY}/${IMAGE_NAME}:${SERVICE_NAME}-${IMAGE_TAG}"
- export LATEST_IMAGE_URI="${ECR_REGISTRY}/${IMAGE_NAME}:${SERVICE_NAME}-latest"
build:
commands:
- docker build -f Dockerfile.prod -t $FULL_IMAGE_URI -t $LATEST_IMAGE_URI .
post_build:
commands:
- docker push $FULL_IMAGE_URI
- docker push $LATEST_IMAGE_URI
- echo "Image pushed - $LATEST_IMAGE_URI"