mirror of
https://github.com/RVC-Boss/GPT-SoVITS.git
synced 2025-10-08 07:49:59 +08:00
将一个batch中的padding策略,从padding on right改为了padding on left。
This commit is contained in:
parent
3706ad1b8b
commit
5fe9842069
@ -32,6 +32,7 @@ class Text2SemanticDataModule(LightningDataModule):
|
||||
semantic_path=self.train_semantic_path,
|
||||
max_sec=self.config["data"]["max_sec"],
|
||||
pad_val=self.config["data"]["pad_val"],
|
||||
padding_on_left=self.config["train"]["padding_on_left"],
|
||||
)
|
||||
self._dev_dataset = self._train_dataset
|
||||
# self._dev_dataset = Text2SemanticDataset(
|
||||
|
@ -55,9 +55,10 @@ class Text2SemanticDataset(Dataset):
|
||||
min_ps_ratio: int = 3,
|
||||
# max value of phoneme/sec
|
||||
max_ps_ratio: int = 25,
|
||||
padding_on_left:bool=False,
|
||||
) -> None:
|
||||
super().__init__()
|
||||
|
||||
self.padding_on_left=padding_on_left
|
||||
self.semantic_data = pd.read_csv(
|
||||
semantic_path, delimiter="\t", encoding="utf-8"
|
||||
)
|
||||
@ -164,7 +165,9 @@ class Text2SemanticDataset(Dataset):
|
||||
# if len(semantic_ids) > 1000:###########3
|
||||
# num_deleted_bigger += 1
|
||||
# continue
|
||||
|
||||
if (len(semantic_ids)+len(phoneme_ids)) > 1000:###########3
|
||||
num_deleted_bigger += 1
|
||||
continue
|
||||
ps_ratio = len(phoneme_ids) / (len(semantic_ids) / self.hz)
|
||||
|
||||
if (
|
||||
@ -173,6 +176,7 @@ class Text2SemanticDataset(Dataset):
|
||||
num_deleted_ps += 1
|
||||
# print(item_name)
|
||||
continue
|
||||
idx_len=[]
|
||||
|
||||
self.semantic_phoneme.append((semantic_ids, phoneme_ids))
|
||||
idx += 1
|
||||
@ -253,8 +257,8 @@ class Text2SemanticDataset(Dataset):
|
||||
phoneme_ids_lens: List[int] = []
|
||||
semantic_ids: List[torch.Tensor] = []
|
||||
semantic_ids_lens: List[int] = []
|
||||
# return
|
||||
|
||||
if not self.padding_on_left:
|
||||
for item in examples:
|
||||
sample_index.append(item["idx"])
|
||||
phoneme_ids.append(np.array(item["phoneme_ids"], dtype=np.int64))
|
||||
@ -294,6 +298,33 @@ class Text2SemanticDataset(Dataset):
|
||||
"bert_feature": bert_padded,
|
||||
}
|
||||
|
||||
else:
|
||||
for item in examples:
|
||||
sample_index.append(item["idx"])
|
||||
phoneme_ids.append(torch.LongTensor(np.array(item["phoneme_ids"], dtype=np.int64)))
|
||||
semantic_ids.append(torch.LongTensor(np.array(item["semantic_ids"], dtype=np.int64)))
|
||||
phoneme_ids_lens.append(item["phoneme_ids_len"])
|
||||
semantic_ids_lens.append(item["semantic_ids_len"])
|
||||
|
||||
phoneme_ids_lens = torch.tensor(phoneme_ids_lens)
|
||||
semantic_ids_lens = torch.tensor(semantic_ids_lens)
|
||||
bert_features: List[torch.Tensor] = [item["bert_feature"] for item in examples]
|
||||
|
||||
return {
|
||||
# List[int]
|
||||
"ids": sample_index,
|
||||
# List[torch.Tensor] (B, max_phoneme_length)
|
||||
"phoneme_ids": phoneme_ids,
|
||||
# torch.Tensor (B)
|
||||
"phoneme_ids_len": phoneme_ids_lens,
|
||||
# List[torch.Tensor] (B, max_semantic_ids_length)
|
||||
"semantic_ids": semantic_ids,
|
||||
# torch.Tensor (B)
|
||||
"semantic_ids_len": semantic_ids_lens,
|
||||
# List[torch.Tensor] (B, 1024, max_phoneme_length)
|
||||
"bert_feature": bert_features,
|
||||
}
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
root_dir = "/data/docker/liujing04/gpt-vits/prepare/dump_mix/"
|
||||
|
@ -14,7 +14,7 @@ from AR.modules.optim import ScaledAdam
|
||||
|
||||
class Text2SemanticLightningModule(LightningModule):
|
||||
def __init__(self, config, output_dir, is_train=True, flash_attn_enabled:bool = False):
|
||||
super().__init__()
|
||||
super(Text2SemanticLightningModule,self).__init__()
|
||||
self.config = config
|
||||
self.top_k = 3
|
||||
self.model = Text2SemanticDecoder(config=config, top_k=self.top_k,flash_attn_enabled=flash_attn_enabled)
|
||||
@ -35,7 +35,14 @@ class Text2SemanticLightningModule(LightningModule):
|
||||
def training_step(self, batch: Dict, batch_idx: int):
|
||||
opt = self.optimizers()
|
||||
scheduler = self.lr_schedulers()
|
||||
forward=self.model.forward if self.config["train"].get("if_dpo",False)==True else self.model.forward_old
|
||||
forward=None
|
||||
if self.config["train"].get("if_dpo",False):
|
||||
forward=self.model.forward
|
||||
elif self.config["train"].get("padding_on_left",False):
|
||||
forward=self.model.forward_old_padding_on_left
|
||||
else:
|
||||
forward=self.model.forward_old
|
||||
|
||||
loss, acc = forward(
|
||||
batch["phoneme_ids"],
|
||||
batch["phoneme_ids_len"],
|
||||
@ -56,6 +63,7 @@ class Text2SemanticLightningModule(LightningModule):
|
||||
on_epoch=True,
|
||||
prog_bar=True,
|
||||
sync_dist=True,
|
||||
batch_size=batch["phoneme_ids_len"].shape[0],
|
||||
)
|
||||
self.log(
|
||||
"lr",
|
||||
@ -63,6 +71,7 @@ class Text2SemanticLightningModule(LightningModule):
|
||||
on_epoch=True,
|
||||
prog_bar=True,
|
||||
sync_dist=True,
|
||||
batch_size=batch["phoneme_ids_len"].shape[0],
|
||||
)
|
||||
self.log(
|
||||
f"top_{self.top_k}_acc",
|
||||
@ -71,7 +80,10 @@ class Text2SemanticLightningModule(LightningModule):
|
||||
on_epoch=True,
|
||||
prog_bar=True,
|
||||
sync_dist=True,
|
||||
batch_size=batch["phoneme_ids_len"].shape[0],
|
||||
)
|
||||
if torch.cuda.is_available():
|
||||
torch.cuda.empty_cache()
|
||||
|
||||
def validation_step(self, batch: Dict, batch_idx: int):
|
||||
return
|
||||
|
@ -1,5 +1,6 @@
|
||||
# modified from https://github.com/yangdongchao/SoundStorm/blob/master/soundstorm/s1/AR/models/t2s_model.py
|
||||
# reference: https://github.com/lifeiteng/vall-e
|
||||
import math
|
||||
import os, sys
|
||||
now_dir = os.getcwd()
|
||||
sys.path.append(now_dir)
|
||||
@ -38,7 +39,6 @@ default_config = {
|
||||
"EOS": 1024,
|
||||
}
|
||||
|
||||
|
||||
@torch.jit.script
|
||||
class T2SMLP:
|
||||
def __init__(self, w1, b1, w2, b2):
|
||||
@ -363,6 +363,7 @@ class Text2SemanticDecoder(nn.Module):
|
||||
|
||||
return loss, acc
|
||||
|
||||
#padding on right
|
||||
def forward_old(self, x, x_lens, y, y_lens, bert_feature):
|
||||
"""
|
||||
x: phoneme_ids
|
||||
@ -425,6 +426,91 @@ class Text2SemanticDecoder(nn.Module):
|
||||
acc = self.ar_accuracy_metric(logits.detach(), targets).item()
|
||||
return loss, acc
|
||||
|
||||
def forward_old_padding_on_left(self,
|
||||
x:List[torch.Tensor],
|
||||
x_lens:torch.LongTensor,
|
||||
y:List[torch.Tensor],
|
||||
y_lens:torch.LongTensor,
|
||||
bert_feature:List[torch.Tensor]):
|
||||
"""
|
||||
x: phoneme_ids
|
||||
y: semantic_ids
|
||||
"""
|
||||
device = x[0].device
|
||||
x_len = x_lens.max()
|
||||
y_len = y_lens.max()
|
||||
batch_size = len(x)
|
||||
|
||||
xy_pos = torch.zeros((batch_size, x_len+y_len, self.embedding_dim)).to(device)
|
||||
targets:List[torch.LongTensor] = []
|
||||
xy_attn_mask_list = []
|
||||
for i in range(batch_size):
|
||||
padding_len = (x_len-x_lens[i])+(y_len-y_lens[i])
|
||||
|
||||
x_item=self.ar_text_embedding(x[i].unsqueeze(0))
|
||||
if bert_feature[i] is not None:
|
||||
x_item = x_item + self.bert_proj(bert_feature[i].transpose(0, 1).unsqueeze(0))
|
||||
|
||||
# x_item = F.pad(x_item, (0, 0, padding_len, 0), value=0)
|
||||
x_item = self.ar_text_position(x_item).squeeze(0)
|
||||
y_item = self.ar_audio_position(self.ar_audio_embedding(y[i].unsqueeze(0))).squeeze(0)
|
||||
|
||||
xy_pos[i, padding_len:padding_len+x_lens[i],:] = x_item
|
||||
xy_pos[i, padding_len+x_lens[i]:,:] = y_item
|
||||
target = torch.zeros(y_lens[i], dtype=torch.long).to(device)
|
||||
target[:-1] = y[i][1:]
|
||||
target[-1] = self.EOS
|
||||
targets.append(target.unsqueeze(0))
|
||||
|
||||
x_attn_mask = torch.zeros((x_len+(y_len-y_lens[i]), x_len+y_len), dtype=torch.bool).to(device)
|
||||
x_attn_mask[:, -y_lens[i]:] = True
|
||||
y_attn_mask = F.pad(
|
||||
torch.triu(
|
||||
torch.ones(y_lens[i], y_lens[i], dtype=torch.bool).to(device),
|
||||
diagonal=1,
|
||||
),
|
||||
(x_len+(y_len-y_lens[i]), 0),
|
||||
value=False,
|
||||
)
|
||||
attn_mask = torch.concat([x_attn_mask, y_attn_mask], dim=0)
|
||||
if padding_len>0:
|
||||
attn_mask[:, :padding_len] = True
|
||||
xy_attn_mask_list.append(attn_mask)
|
||||
|
||||
xy_attn_mask = torch.stack(xy_attn_mask_list, dim=0)
|
||||
new_attn_mask = torch.zeros_like(xy_attn_mask, dtype=xy_pos.dtype)
|
||||
new_attn_mask.masked_fill_(xy_attn_mask, torch.finfo(xy_pos.dtype).min)
|
||||
xy_attn_mask = new_attn_mask
|
||||
xy_attn_mask = (xy_attn_mask.view(batch_size, 1, x_len+y_len, x_len+y_len)
|
||||
.expand(-1, self.num_head, -1, -1)
|
||||
.reshape(batch_size * self.num_head, x_len+y_len, x_len+y_len))
|
||||
|
||||
|
||||
# x 和完整的 y 一次性输入模型
|
||||
# xy_pos = torch.concat([x, y_pos], dim=1)
|
||||
xy_dec, _ = self.h(
|
||||
(xy_pos, None),
|
||||
mask=xy_attn_mask,
|
||||
)
|
||||
logits = [self.ar_predict_layer(xy_dec[i, -y_lens[i]:, :].unsqueeze(0)).permute(0, 2, 1) for i in range(batch_size)]
|
||||
|
||||
# loss
|
||||
# from feiteng: 每次 duration 越多, 梯度更新也应该更多, 所以用 sum
|
||||
loss = None
|
||||
acc = None
|
||||
for i in range(batch_size):
|
||||
if loss is None:
|
||||
loss = F.cross_entropy(logits[i], targets[i], reduction="sum")
|
||||
acc = self.ar_accuracy_metric(logits[i].detach(), targets[i].detach()).item()
|
||||
else:
|
||||
loss += F.cross_entropy(logits[i], targets[i], reduction="sum")
|
||||
acc += self.ar_accuracy_metric(logits[i].detach(), targets[i].detach()).item()
|
||||
acc /= batch_size
|
||||
|
||||
# loss = F.cross_entropy(logits, targets, reduction="sum")
|
||||
# acc = self.ar_accuracy_metric(logits.detach(), targets).item()
|
||||
return loss, acc
|
||||
|
||||
# 需要看下这个函数和 forward 的区别以及没有 semantic 的时候 prompts 输入什么
|
||||
def infer(
|
||||
self,
|
||||
@ -512,85 +598,80 @@ class Text2SemanticDecoder(nn.Module):
|
||||
top_p: int = 100,
|
||||
early_stop_num: int = -1,
|
||||
temperature: float = 1.0,
|
||||
repetition_penalty: float = 1.35,
|
||||
dtype:torch.dtype = torch.float32,
|
||||
):
|
||||
# 先对phones进行embedding、对bert_features进行project,再pad到相同长度,以缓解复读问题。(可能还有其他因素导致复读)
|
||||
max_len = 0
|
||||
for x_item, bert_item in zip(x, bert_feature):
|
||||
max_len = max(max_len, x_item.shape[0], bert_item.shape[1])
|
||||
x_list = [self.ar_text_embedding(item) for item in x]
|
||||
x_list = [F.pad(item,(0,0,0,max_len-item.shape[0]),value=0) if item.shape[0]<max_len else item for item in x_list]
|
||||
x = torch.stack(x_list, dim=0)
|
||||
|
||||
bert_features_list = [self.bert_proj(item.transpose(0, 1)) for item in bert_feature]
|
||||
bert_features_list = [F.pad(item,(0,0,0,max_len-item.shape[0]), value=0) if item.shape[0]<max_len else item for item in bert_features_list]
|
||||
bert_feature = torch.stack(bert_features_list, dim=0)
|
||||
device = x[0].device
|
||||
x_len = x_lens.max()
|
||||
batch_size = len(x)
|
||||
|
||||
# bert_feature = self.bert_proj(bert_feature.transpose(1, 2))
|
||||
# x = self.ar_text_embedding(x)
|
||||
x = x + bert_feature
|
||||
x = self.ar_text_position(x)
|
||||
|
||||
# AR Decoder
|
||||
y = prompts
|
||||
|
||||
x_len = x.shape[1]
|
||||
x_attn_mask = torch.zeros((x_len, x_len), dtype=torch.bool)
|
||||
stop = False
|
||||
# print(1111111,self.num_layers)
|
||||
|
||||
k_cache = None
|
||||
v_cache = None
|
||||
################### first step ##########################
|
||||
if y is not None:
|
||||
y_emb = self.ar_audio_embedding(y)
|
||||
y_len = y_emb.shape[1]
|
||||
prefix_len = y.shape[1]
|
||||
y_pos = self.ar_audio_position(y_emb)
|
||||
xy_pos = torch.concat([x, y_pos], dim=1)
|
||||
ref_free = False
|
||||
else:
|
||||
if y is None:
|
||||
y_emb = None
|
||||
y_len = 0
|
||||
prefix_len = 0
|
||||
y_pos = None
|
||||
xy_pos = x
|
||||
y = torch.zeros(x.shape[0], 0, dtype=torch.int, device=x.device)
|
||||
y = torch.zeros(batch_size, 0, dtype=torch.int, device=device)
|
||||
ref_free = True
|
||||
|
||||
else:
|
||||
y_emb = self.ar_audio_embedding(y)
|
||||
y_len = y_emb.shape[1]
|
||||
prefix_len = y.shape[1]
|
||||
y_pos = self.ar_audio_position(y_emb)
|
||||
ref_free = False
|
||||
|
||||
##### create mask #####
|
||||
bsz = x.shape[0]
|
||||
src_len = x_len + y_len
|
||||
y_lens = torch.LongTensor([y_len]*bsz).to(x.device)
|
||||
y_mask = make_pad_mask(y_lens)
|
||||
x_mask = make_pad_mask(x_lens)
|
||||
|
||||
# (bsz, x_len + y_len)
|
||||
xy_padding_mask = torch.concat([x_mask, y_mask], dim=1)
|
||||
xy_pos = torch.zeros((batch_size, x_len+y_len, self.embedding_dim),dtype=dtype).to(device)
|
||||
# ar_xy_padding_mask = torch.zeros((batch_size, x_len+y_len), device=device, dtype=torch.bool)
|
||||
xy_attn_mask_list = []
|
||||
for i in range(batch_size):
|
||||
padding_len = (x_len-x_lens[i])
|
||||
|
||||
x_mask = F.pad(
|
||||
x_attn_mask,
|
||||
(0, y_len), ###xx的纯0扩展到xx纯0+xy纯1,(x,x+y)
|
||||
value=True,
|
||||
)
|
||||
y_mask = F.pad( ###yy的右上1扩展到左边xy的0,(y,x+y)
|
||||
torch.triu(torch.ones(y_len, y_len, dtype=torch.bool), diagonal=1),
|
||||
x_item=self.ar_text_embedding(x[i].unsqueeze(0))
|
||||
if bert_feature[i] is not None:
|
||||
x_item = x_item + self.bert_proj(bert_feature[i].transpose(0, 1).unsqueeze(0))
|
||||
|
||||
# x_item = F.pad(x_item, (0, 0, padding_len, 0), value=0)
|
||||
x_item = self.ar_text_position(x_item).squeeze(0)
|
||||
|
||||
xy_pos[i, padding_len:padding_len+x_lens[i],:] = x_item
|
||||
if not ref_free:
|
||||
xy_pos[i, padding_len+x_lens[i]:,:] = y_pos[i]
|
||||
|
||||
x_attn_mask = torch.zeros((x_len, x_len+y_len), dtype=torch.bool).to(device)
|
||||
if not ref_free:
|
||||
x_attn_mask[:, -y_len:] = True
|
||||
y_attn_mask = F.pad(
|
||||
torch.triu(
|
||||
torch.ones(y_len, y_len, dtype=torch.bool).to(device),
|
||||
diagonal=1,
|
||||
),
|
||||
(x_len, 0),
|
||||
value=False,
|
||||
)
|
||||
attn_mask = torch.concat([x_attn_mask, y_attn_mask], dim=0)
|
||||
if padding_len>0:
|
||||
attn_mask[:, :padding_len] = True
|
||||
xy_attn_mask_list.append(attn_mask)
|
||||
|
||||
xy_attn_mask = torch.stack(xy_attn_mask_list, dim=0)
|
||||
new_attn_mask = torch.zeros_like(xy_attn_mask, dtype=xy_pos.dtype)
|
||||
new_attn_mask.masked_fill_(xy_attn_mask, torch.finfo(xy_pos.dtype).min)
|
||||
xy_attn_mask = new_attn_mask
|
||||
xy_attn_mask = (xy_attn_mask.view(batch_size, 1, x_len+y_len, x_len+y_len)
|
||||
.expand(-1, self.num_head, -1, -1))
|
||||
|
||||
xy_mask = torch.concat([x_mask, y_mask], dim=0).view(1 , src_len, src_len).expand(bsz, -1, -1).to(x.device)
|
||||
# xy_mask = torch.triu(torch.ones(src_len, src_len, dtype=torch.bool, device=x.device), diagonal=1)
|
||||
xy_padding_mask = xy_padding_mask.view(bsz, 1, src_len).expand(-1, src_len, src_len)
|
||||
xy_attn_mask = xy_mask.logical_or(xy_padding_mask)
|
||||
xy_attn_mask = xy_attn_mask.unsqueeze(1).expand(-1, self.num_head, -1, -1)
|
||||
new_attn_mask = torch.zeros_like(xy_attn_mask, dtype=x.dtype)
|
||||
xy_attn_mask = new_attn_mask.masked_fill(xy_attn_mask, float("-inf"))
|
||||
|
||||
###### decode #####
|
||||
y_list = [None]*y.shape[0]
|
||||
batch_idx_map = list(range(y.shape[0]))
|
||||
idx_list = [None]*y.shape[0]
|
||||
y_list = [None]*batch_size
|
||||
batch_idx_map = list(range(batch_size))
|
||||
idx_list = [None]*batch_size
|
||||
for idx in tqdm(range(1500)):
|
||||
if idx == 0:
|
||||
xy_dec, k_cache, v_cache = self.t2s_transformer.process_prompt(xy_pos, xy_attn_mask)
|
||||
@ -606,7 +687,7 @@ class Text2SemanticDecoder(nn.Module):
|
||||
logits = logits[:, :-1]
|
||||
|
||||
samples = sample(
|
||||
logits, y, top_k=top_k, top_p=top_p, repetition_penalty=1.35, temperature=temperature
|
||||
logits, y, top_k=top_k, top_p=top_p, repetition_penalty=repetition_penalty, temperature=temperature
|
||||
)[0]
|
||||
|
||||
y = torch.concat([y, samples], dim=1)
|
||||
@ -659,12 +740,12 @@ class Text2SemanticDecoder(nn.Module):
|
||||
xy_pos = y_emb * self.ar_audio_position.x_scale + self.ar_audio_position.alpha * self.ar_audio_position.pe[:, y_len + idx].to( dtype= y_emb.dtype,device=y_emb.device)
|
||||
|
||||
if (None in idx_list):
|
||||
for i in range(x.shape[0]):
|
||||
for i in range(batch_size):
|
||||
if idx_list[i] is None:
|
||||
idx_list[i] = 1500-1 ###如果没有生成到EOS,就用最大长度代替
|
||||
|
||||
if ref_free:
|
||||
return y_list, [0]*x.shape[0]
|
||||
return y_list, [0]*batch_size
|
||||
return y_list, idx_list
|
||||
|
||||
def infer_panel_batch_only(
|
||||
@ -677,6 +758,8 @@ class Text2SemanticDecoder(nn.Module):
|
||||
top_p: int = 100,
|
||||
early_stop_num: int = -1,
|
||||
temperature: float = 1.0,
|
||||
repetition_penalty: float = 1.35,
|
||||
**kwargs
|
||||
):
|
||||
# 先对phones进行embedding、对bert_features进行project,再pad到相同长度,以缓解复读问题。(可能还有其他因素导致复读)
|
||||
max_len = 0
|
||||
@ -772,7 +855,7 @@ class Text2SemanticDecoder(nn.Module):
|
||||
if(idx==0):###第一次跑不能EOS否则没有了
|
||||
logits = logits[:, :-1] ###刨除1024终止符号的概率
|
||||
samples = sample(
|
||||
logits, y, top_k=top_k, top_p=top_p, repetition_penalty=1.35, temperature=temperature
|
||||
logits, y, top_k=top_k, top_p=top_p, repetition_penalty=repetition_penalty, temperature=temperature
|
||||
)[0]
|
||||
# 本次生成的 semantic_ids 和之前的 y 构成新的 y
|
||||
# print(samples.shape)#[1,1]#第一个1是bs
|
||||
@ -855,3 +938,297 @@ class Text2SemanticDecoder(nn.Module):
|
||||
if ref_free:
|
||||
return y_list, [0]*x.shape[0]
|
||||
return y_list, idx_list
|
||||
|
||||
# padding on right
|
||||
def infer_panel_batch_infer_with_flash_attn_old(
|
||||
self,
|
||||
x:List[torch.LongTensor], #####全部文本token
|
||||
x_lens:torch.LongTensor,
|
||||
prompts:torch.LongTensor, ####参考音频token
|
||||
bert_feature:List[torch.LongTensor],
|
||||
top_k: int = -100,
|
||||
top_p: int = 100,
|
||||
early_stop_num: int = -1,
|
||||
temperature: float = 1.0,
|
||||
repetition_penalty: float = 1.35,
|
||||
**kwargs
|
||||
):
|
||||
# 先对phones进行embedding、对bert_features进行project,再pad到相同长度,以缓解复读问题。(可能还有其他因素导致复读)
|
||||
max_len = 0
|
||||
for x_item, bert_item in zip(x, bert_feature):
|
||||
max_len = max(max_len, x_item.shape[0], bert_item.shape[1])
|
||||
x_list = [self.ar_text_embedding(item) for item in x]
|
||||
x_list = [F.pad(item,(0,0,0,max_len-item.shape[0]),value=0) if item.shape[0]<max_len else item for item in x_list]
|
||||
x = torch.stack(x_list, dim=0)
|
||||
|
||||
bert_features_list = [self.bert_proj(item.transpose(0, 1)) for item in bert_feature]
|
||||
bert_features_list = [F.pad(item,(0,0,0,max_len-item.shape[0]), value=0) if item.shape[0]<max_len else item for item in bert_features_list]
|
||||
bert_feature = torch.stack(bert_features_list, dim=0)
|
||||
|
||||
# bert_feature = self.bert_proj(bert_feature.transpose(1, 2))
|
||||
# x = self.ar_text_embedding(x)
|
||||
x = x + bert_feature
|
||||
x = self.ar_text_position(x)
|
||||
|
||||
# AR Decoder
|
||||
y = prompts
|
||||
|
||||
x_len = x.shape[1]
|
||||
x_attn_mask = torch.zeros((x_len, x_len), dtype=torch.bool)
|
||||
stop = False
|
||||
# print(1111111,self.num_layers)
|
||||
|
||||
k_cache = None
|
||||
v_cache = None
|
||||
################### first step ##########################
|
||||
if y is not None:
|
||||
y_emb = self.ar_audio_embedding(y)
|
||||
y_len = y_emb.shape[1]
|
||||
prefix_len = y.shape[1]
|
||||
y_pos = self.ar_audio_position(y_emb)
|
||||
xy_pos = torch.concat([x, y_pos], dim=1)
|
||||
ref_free = False
|
||||
else:
|
||||
y_emb = None
|
||||
y_len = 0
|
||||
prefix_len = 0
|
||||
y_pos = None
|
||||
xy_pos = x
|
||||
y = torch.zeros(x.shape[0], 0, dtype=torch.int, device=x.device)
|
||||
ref_free = True
|
||||
|
||||
|
||||
##### create mask #####
|
||||
bsz = x.shape[0]
|
||||
src_len = x_len + y_len
|
||||
y_lens = torch.LongTensor([y_len]*bsz).to(x.device)
|
||||
y_mask = make_pad_mask(y_lens)
|
||||
x_mask = make_pad_mask(x_lens)
|
||||
|
||||
# (bsz, x_len + y_len)
|
||||
xy_padding_mask = torch.concat([x_mask, y_mask], dim=1)
|
||||
|
||||
x_mask = F.pad(
|
||||
x_attn_mask,
|
||||
(0, y_len), ###xx的纯0扩展到xx纯0+xy纯1,(x,x+y)
|
||||
value=True,
|
||||
)
|
||||
y_mask = F.pad( ###yy的右上1扩展到左边xy的0,(y,x+y)
|
||||
torch.triu(torch.ones(y_len, y_len, dtype=torch.bool), diagonal=1),
|
||||
(x_len, 0),
|
||||
value=False,
|
||||
)
|
||||
|
||||
xy_mask = torch.concat([x_mask, y_mask], dim=0).view(1 , src_len, src_len).expand(bsz, -1, -1).to(x.device)
|
||||
# xy_mask = torch.triu(torch.ones(src_len, src_len, dtype=torch.bool, device=x.device), diagonal=1)
|
||||
xy_padding_mask = xy_padding_mask.view(bsz, 1, src_len).expand(-1, src_len, src_len)
|
||||
xy_attn_mask = xy_mask.logical_or(xy_padding_mask)
|
||||
xy_attn_mask = xy_attn_mask.unsqueeze(1).expand(-1, self.num_head, -1, -1)
|
||||
new_attn_mask = torch.zeros_like(xy_attn_mask, dtype=x.dtype)
|
||||
xy_attn_mask = new_attn_mask.masked_fill(xy_attn_mask, float("-inf"))
|
||||
|
||||
###### decode #####
|
||||
y_list = [None]*y.shape[0]
|
||||
batch_idx_map = list(range(y.shape[0]))
|
||||
idx_list = [None]*y.shape[0]
|
||||
for idx in tqdm(range(1500)):
|
||||
if idx == 0:
|
||||
xy_dec, k_cache, v_cache = self.t2s_transformer.process_prompt(xy_pos, xy_attn_mask)
|
||||
else:
|
||||
xy_dec, k_cache, v_cache = self.t2s_transformer.decode_next_token(xy_pos, k_cache, v_cache)
|
||||
|
||||
logits = self.ar_predict_layer(
|
||||
xy_dec[:, -1]
|
||||
)
|
||||
|
||||
if idx == 0:
|
||||
xy_attn_mask = None
|
||||
logits = logits[:, :-1]
|
||||
|
||||
samples = sample(
|
||||
logits, y, top_k=top_k, top_p=top_p, repetition_penalty=repetition_penalty, temperature=temperature
|
||||
)[0]
|
||||
|
||||
y = torch.concat([y, samples], dim=1)
|
||||
|
||||
####### 移除batch中已经生成完毕的序列,进一步优化计算量
|
||||
reserved_idx_of_batch_for_y = None
|
||||
if (self.EOS in samples[:, 0]) or \
|
||||
(self.EOS in torch.argmax(logits, dim=-1)): ###如果生成到EOS,则停止
|
||||
l = samples[:, 0]==self.EOS
|
||||
removed_idx_of_batch_for_y = torch.where(l==True)[0].tolist()
|
||||
reserved_idx_of_batch_for_y = torch.where(l==False)[0]
|
||||
# batch_indexs = torch.tensor(batch_idx_map, device=y.device)[removed_idx_of_batch_for_y]
|
||||
for i in removed_idx_of_batch_for_y:
|
||||
batch_index = batch_idx_map[i]
|
||||
idx_list[batch_index] = idx - 1
|
||||
y_list[batch_index] = y[i, :-1]
|
||||
|
||||
batch_idx_map = [batch_idx_map[i] for i in reserved_idx_of_batch_for_y.tolist()]
|
||||
|
||||
# 只保留batch中未生成完毕的序列
|
||||
if reserved_idx_of_batch_for_y is not None:
|
||||
# index = torch.LongTensor(batch_idx_map).to(y.device)
|
||||
y = torch.index_select(y, dim=0, index=reserved_idx_of_batch_for_y)
|
||||
if k_cache is not None :
|
||||
for i in range(len(k_cache)):
|
||||
k_cache[i] = torch.index_select(k_cache[i], dim=0, index=reserved_idx_of_batch_for_y)
|
||||
v_cache[i] = torch.index_select(v_cache[i], dim=0, index=reserved_idx_of_batch_for_y)
|
||||
|
||||
|
||||
if (early_stop_num != -1 and (y.shape[1] - prefix_len) > early_stop_num) or idx==1499:
|
||||
print("use early stop num:", early_stop_num)
|
||||
stop = True
|
||||
for i, batch_index in enumerate(batch_idx_map):
|
||||
batch_index = batch_idx_map[i]
|
||||
idx_list[batch_index] = idx
|
||||
y_list[batch_index] = y[i, :-1]
|
||||
|
||||
if not (None in idx_list):
|
||||
stop = True
|
||||
|
||||
if stop:
|
||||
if y.shape[1]==0:
|
||||
y = torch.concat([y, torch.zeros_like(samples)], dim=1)
|
||||
print("bad zero prediction")
|
||||
print(f"T2S Decoding EOS [{prefix_len} -> {y.shape[1]}]")
|
||||
break
|
||||
|
||||
####################### update next step ###################################
|
||||
y_emb = self.ar_audio_embedding(y[:, -1:])
|
||||
xy_pos = y_emb * self.ar_audio_position.x_scale + self.ar_audio_position.alpha * self.ar_audio_position.pe[:, y_len + idx].to( dtype= y_emb.dtype,device=y_emb.device)
|
||||
|
||||
if (None in idx_list):
|
||||
for i in range(x.shape[0]):
|
||||
if idx_list[i] is None:
|
||||
idx_list[i] = 1500-1 ###如果没有生成到EOS,就用最大长度代替
|
||||
|
||||
if ref_free:
|
||||
return y_list, [0]*x.shape[0]
|
||||
return y_list, idx_list
|
||||
|
||||
def infer_panel_old(
|
||||
self,
|
||||
x, #####全部文本token
|
||||
x_lens,
|
||||
prompts, ####参考音频token
|
||||
bert_feature,
|
||||
top_k: int = -100,
|
||||
top_p: int = 100,
|
||||
early_stop_num: int = -1,
|
||||
temperature: float = 1.0,
|
||||
):
|
||||
x = self.ar_text_embedding(x)
|
||||
x = x + self.bert_proj(bert_feature.transpose(1, 2))
|
||||
x = self.ar_text_position(x)
|
||||
|
||||
# AR Decoder
|
||||
y = prompts
|
||||
|
||||
x_len = x.shape[1]
|
||||
x_attn_mask = torch.zeros((x_len, x_len), dtype=torch.bool)
|
||||
stop = False
|
||||
# print(1111111,self.num_layers)
|
||||
cache = {
|
||||
"all_stage": self.num_layers,
|
||||
"k": [None] * self.num_layers, ###根据配置自己手写
|
||||
"v": [None] * self.num_layers,
|
||||
# "xy_pos":None,##y_pos位置编码每次都不一样的没法缓存,每次都要重新拼xy_pos.主要还是写法原因,其实是可以历史统一一样的,但也没啥计算量就不管了
|
||||
"y_emb": None, ##只需要对最新的samples求emb,再拼历史的就行
|
||||
# "logits":None,###原版就已经只对结尾求再拼接了,不用管
|
||||
# "xy_dec":None,###不需要,本来只需要最后一个做logits
|
||||
"first_infer": 1,
|
||||
"stage": 0,
|
||||
}
|
||||
################### first step ##########################
|
||||
if y is not None:
|
||||
y_emb = self.ar_audio_embedding(y)
|
||||
y_len = y_emb.shape[1]
|
||||
prefix_len = y.shape[1]
|
||||
y_pos = self.ar_audio_position(y_emb)
|
||||
xy_pos = torch.concat([x, y_pos], dim=1)
|
||||
cache["y_emb"] = y_emb
|
||||
ref_free = False
|
||||
else:
|
||||
y_emb = None
|
||||
y_len = 0
|
||||
prefix_len = 0
|
||||
y_pos = None
|
||||
xy_pos = x
|
||||
y = torch.zeros(x.shape[0], 0, dtype=torch.int, device=x.device)
|
||||
ref_free = True
|
||||
|
||||
x_attn_mask_pad = F.pad(
|
||||
x_attn_mask,
|
||||
(0, y_len), ###xx的纯0扩展到xx纯0+xy纯1,(x,x+y)
|
||||
value=True,
|
||||
)
|
||||
y_attn_mask = F.pad( ###yy的右上1扩展到左边xy的0,(y,x+y)
|
||||
torch.triu(torch.ones(y_len, y_len, dtype=torch.bool), diagonal=1),
|
||||
(x_len, 0),
|
||||
value=False,
|
||||
)
|
||||
xy_attn_mask = torch.concat([x_attn_mask_pad, y_attn_mask], dim=0).to(
|
||||
x.device
|
||||
)
|
||||
|
||||
|
||||
for idx in tqdm(range(1500)):
|
||||
|
||||
xy_dec, _ = self.h((xy_pos, None), mask=xy_attn_mask, cache=cache)
|
||||
logits = self.ar_predict_layer(
|
||||
xy_dec[:, -1]
|
||||
) ##不用改,如果用了cache的默认就是只有一帧,取最后一帧一样的
|
||||
# samples = topk_sampling(logits, top_k=top_k, top_p=1.0, temperature=temperature)
|
||||
if(idx==0):###第一次跑不能EOS否则没有了
|
||||
logits = logits[:, :-1] ###刨除1024终止符号的概率
|
||||
samples = sample(
|
||||
logits[0], y, top_k=top_k, top_p=top_p, repetition_penalty=1.35, temperature=temperature
|
||||
)[0].unsqueeze(0)
|
||||
# 本次生成的 semantic_ids 和之前的 y 构成新的 y
|
||||
# print(samples.shape)#[1,1]#第一个1是bs
|
||||
y = torch.concat([y, samples], dim=1)
|
||||
|
||||
if early_stop_num != -1 and (y.shape[1] - prefix_len) > early_stop_num:
|
||||
print("use early stop num:", early_stop_num)
|
||||
stop = True
|
||||
|
||||
if torch.argmax(logits, dim=-1)[0] == self.EOS or samples[0, 0] == self.EOS:
|
||||
# print(torch.argmax(logits, dim=-1)[0] == self.EOS, samples[0, 0] == self.EOS)
|
||||
stop = True
|
||||
if stop:
|
||||
# if prompts.shape[1] == y.shape[1]:
|
||||
# y = torch.concat([y, torch.zeros_like(samples)], dim=1)
|
||||
# print("bad zero prediction")
|
||||
if y.shape[1]==0:
|
||||
y = torch.concat([y, torch.zeros_like(samples)], dim=1)
|
||||
print("bad zero prediction")
|
||||
print(f"T2S Decoding EOS [{prefix_len} -> {y.shape[1]}]")
|
||||
break
|
||||
|
||||
####################### update next step ###################################
|
||||
cache["first_infer"] = 0
|
||||
if cache["y_emb"] is not None:
|
||||
y_emb = torch.cat(
|
||||
[cache["y_emb"], self.ar_audio_embedding(y[:, -1:])], dim = 1
|
||||
)
|
||||
cache["y_emb"] = y_emb
|
||||
y_pos = self.ar_audio_position(y_emb)
|
||||
xy_pos = y_pos[:, -1:]
|
||||
else:
|
||||
y_emb = self.ar_audio_embedding(y[:, -1:])
|
||||
cache["y_emb"] = y_emb
|
||||
y_pos = self.ar_audio_position(y_emb)
|
||||
xy_pos = y_pos
|
||||
y_len = y_pos.shape[1]
|
||||
|
||||
###最右边一列(是错的)
|
||||
# xy_attn_mask=torch.ones((1, x_len+y_len), dtype=torch.bool,device=xy_pos.device)
|
||||
# xy_attn_mask[:,-1]=False
|
||||
###最下面一行(是对的)
|
||||
xy_attn_mask = torch.zeros(
|
||||
(1, x_len + y_len), dtype=torch.bool, device=xy_pos.device
|
||||
)
|
||||
if ref_free:
|
||||
return y[:, :-1], 0
|
||||
return y[:, :-1], idx-1
|
@ -11,7 +11,7 @@ def sequence_mask(length, max_length=None):
|
||||
return x.unsqueeze(0) < length.unsqueeze(1)
|
||||
|
||||
|
||||
def make_pad_mask(lengths: torch.Tensor, max_len: int = 0) -> torch.Tensor:
|
||||
def make_pad_mask(lengths: torch.Tensor, max_len: int = 0, padding_left:bool=False) -> torch.Tensor:
|
||||
"""
|
||||
Args:
|
||||
lengths:
|
||||
@ -35,7 +35,9 @@ def make_pad_mask(lengths: torch.Tensor, max_len: int = 0) -> torch.Tensor:
|
||||
n = lengths.size(0)
|
||||
seq_range = torch.arange(0, max_len, device=lengths.device)
|
||||
expaned_lengths = seq_range.unsqueeze(0).expand(n, max_len)
|
||||
|
||||
if padding_left:
|
||||
return expaned_lengths < (max_len-lengths.unsqueeze(-1))
|
||||
else:
|
||||
return expaned_lengths >= lengths.unsqueeze(-1)
|
||||
|
||||
|
||||
|
@ -63,7 +63,7 @@ def set_seed(seed:int):
|
||||
if torch.cuda.is_available():
|
||||
torch.cuda.manual_seed(seed)
|
||||
torch.cuda.manual_seed_all(seed)
|
||||
# torch.backends.cudnn.deterministic = True
|
||||
torch.backends.cudnn.deterministic = True
|
||||
# torch.backends.cudnn.benchmark = False
|
||||
# torch.backends.cudnn.enabled = True
|
||||
except:
|
||||
@ -435,8 +435,7 @@ class TTS:
|
||||
device:torch.device=torch.device("cpu"),
|
||||
precision:torch.dtype=torch.float32,
|
||||
):
|
||||
# 但是这里不能套,反而会负优化
|
||||
# with torch.no_grad():
|
||||
|
||||
_data:list = []
|
||||
index_and_len_list = []
|
||||
for idx, item in enumerate(data):
|
||||
@ -484,8 +483,7 @@ class TTS:
|
||||
norm_text_batch = []
|
||||
bert_max_len = 0
|
||||
phones_max_len = 0
|
||||
# 但是这里也不能套,反而会负优化
|
||||
# with torch.no_grad():
|
||||
|
||||
for item in item_list:
|
||||
if prompt_data is not None:
|
||||
all_bert_features = torch.cat([prompt_data["bert_features"], item["bert_features"]], 1)\
|
||||
@ -533,6 +531,12 @@ class TTS:
|
||||
# all_bert_features_list = [F.pad(item,(0,0,0,max_len-item.shape[0]), value=0) for item in all_bert_features_list]
|
||||
# all_bert_features_batch = torch.stack(all_bert_features_list, dim=0)
|
||||
|
||||
#### padding on left
|
||||
# all_phones_list = [F.pad(item,(max_len-item.shape[0],0),value=0) for item in all_phones_list]
|
||||
# all_phones_batch = torch.stack(all_phones_list, dim=0)
|
||||
# all_bert_features_list = [F.pad(item,(max_len-item.shape[1],0,0,0), value=0) for item in all_bert_features_list]
|
||||
# all_bert_features_batch = torch.stack(all_bert_features_list, dim=0)
|
||||
|
||||
batch = {
|
||||
"phones": phones_batch,
|
||||
"phones_len": torch.LongTensor(phones_len_list).to(device),
|
||||
@ -569,7 +573,6 @@ class TTS:
|
||||
'''
|
||||
self.stop_flag = True
|
||||
|
||||
# 使用装饰器
|
||||
@torch.no_grad()
|
||||
def run(self, inputs:dict):
|
||||
"""
|
||||
@ -586,9 +589,10 @@ class TTS:
|
||||
"top_k": 5, # int. top k sampling
|
||||
"top_p": 1, # float. top p sampling
|
||||
"temperature": 1, # float. temperature for sampling
|
||||
"repetition_penalty": 1.35, # float. repetition penalty for sampling of T2S model.
|
||||
"text_split_method": "cut0", # str. text split method, see text_segmentation_method.py for details.
|
||||
"batch_size": 1, # int. batch size for inference
|
||||
"batch_threshold": 0.75, # float. threshold for batch splitting.
|
||||
"batch_threshold": 1, # float. threshold for batch splitting.
|
||||
"split_bucket: True, # bool. whether to split the batch into multiple buckets.
|
||||
"return_fragment": False, # bool. step by step return the audio fragment.
|
||||
"speed_factor":1.0, # float. control the speed of the synthesized audio.
|
||||
@ -608,6 +612,7 @@ class TTS:
|
||||
top_k:int = inputs.get("top_k", 5)
|
||||
top_p:float = inputs.get("top_p", 1)
|
||||
temperature:float = inputs.get("temperature", 1)
|
||||
repetition_penalty: float = inputs.get("repetition_penalty", 1.35)
|
||||
text_split_method:str = inputs.get("text_split_method", "cut0")
|
||||
batch_size = inputs.get("batch_size", 1)
|
||||
batch_threshold = inputs.get("batch_threshold", 0.75)
|
||||
@ -618,9 +623,16 @@ class TTS:
|
||||
seed = inputs.get("seed", -1)
|
||||
seed = -1 if seed in ["", None] else seed
|
||||
actual_seed = set_seed(seed)
|
||||
padding_on_left = inputs.get("padding_on_left", False)
|
||||
|
||||
if padding_on_left:
|
||||
print("padding on left")
|
||||
self.t2s_model.model.infer_panel = self.t2s_model.model.infer_panel_batch_infer_with_flash_attn
|
||||
else:
|
||||
print("padding on right")
|
||||
self.t2s_model.model.infer_panel = self.t2s_model.model.infer_panel_batch_infer_with_flash_attn_old
|
||||
|
||||
if return_fragment:
|
||||
# split_bucket = False
|
||||
print(i18n("分段返回模式已开启"))
|
||||
if split_bucket:
|
||||
split_bucket = False
|
||||
@ -746,7 +758,6 @@ class TTS:
|
||||
else:
|
||||
prompt = self.prompt_cache["prompt_semantic"].expand(len(all_phoneme_ids), -1).to(self.configs.device)
|
||||
|
||||
|
||||
pred_semantic_list, idx_list = self.t2s_model.model.infer_panel(
|
||||
all_phoneme_ids,
|
||||
all_phoneme_lens,
|
||||
@ -756,7 +767,9 @@ class TTS:
|
||||
top_k=top_k,
|
||||
top_p=top_p,
|
||||
temperature=temperature,
|
||||
repetition_penalty = repetition_penalty,
|
||||
early_stop_num=self.configs.hz * self.configs.max_sec,
|
||||
dtype = self.precision,
|
||||
)
|
||||
t4 = ttime()
|
||||
t_34 += t4 - t3
|
||||
|
@ -89,12 +89,14 @@ sovits_path = tts_config.vits_weights_path
|
||||
def inference(text, text_lang,
|
||||
ref_audio_path, prompt_text,
|
||||
prompt_lang, top_k,
|
||||
top_p, temperature,
|
||||
top_p, temperature, repetition_penalty,
|
||||
text_split_method, batch_size,
|
||||
speed_factor, ref_text_free,
|
||||
split_bucket, fragment_interval,
|
||||
seed,
|
||||
seed, keep_random, padding_on_left
|
||||
):
|
||||
if keep_random:
|
||||
seed = random.randrange(1 << 32)
|
||||
actual_seed = seed if seed not in [-1, "", None] else random.randrange(1 << 32)
|
||||
inputs={
|
||||
"text": text,
|
||||
@ -105,6 +107,7 @@ def inference(text, text_lang,
|
||||
"top_k": top_k,
|
||||
"top_p": top_p,
|
||||
"temperature": temperature,
|
||||
"repetition_penalty": repetition_penalty,
|
||||
"text_split_method": cut_method[text_split_method],
|
||||
"batch_size":int(batch_size),
|
||||
"speed_factor":float(speed_factor),
|
||||
@ -112,6 +115,7 @@ def inference(text, text_lang,
|
||||
"return_fragment":False,
|
||||
"fragment_interval":fragment_interval,
|
||||
"seed":actual_seed,
|
||||
"padding_on_left":padding_on_left
|
||||
}
|
||||
for item in tts_pipeline.run(inputs):
|
||||
yield item, actual_seed
|
||||
@ -197,6 +201,7 @@ with gr.Blocks(title="GPT-SoVITS WebUI") as app:
|
||||
top_k = gr.Slider(minimum=1,maximum=100,step=1,label=i18n("top_k"),value=5,interactive=True)
|
||||
top_p = gr.Slider(minimum=0,maximum=1,step=0.05,label=i18n("top_p"),value=1,interactive=True)
|
||||
temperature = gr.Slider(minimum=0,maximum=1,step=0.05,label=i18n("temperature"),value=1,interactive=True)
|
||||
repetition_penalty = gr.Slider(minimum=0.5,maximum=4.0,step=0.01,label=i18n("repetition_penalty"),value=1.35,interactive=True)
|
||||
with gr.Column():
|
||||
how_to_cut = gr.Radio(
|
||||
label=i18n("怎么切"),
|
||||
@ -207,6 +212,8 @@ with gr.Blocks(title="GPT-SoVITS WebUI") as app:
|
||||
with gr.Row():
|
||||
split_bucket = gr.Checkbox(label=i18n("数据分桶(可能会降低一点计算量,选就对了)"), value=True, interactive=True, show_label=True)
|
||||
seed = gr.Number(label=i18n("随机种子"),value=-1)
|
||||
keep_random = gr.Checkbox(label=i18n("保持随机"), value=True, interactive=True, show_label=True)
|
||||
padding_on_left = gr.Checkbox(label=i18n("左侧补齐"), value=True, interactive=True, show_label=True)
|
||||
# with gr.Column():
|
||||
output = gr.Audio(label=i18n("输出的语音"))
|
||||
with gr.Row():
|
||||
@ -219,11 +226,11 @@ with gr.Blocks(title="GPT-SoVITS WebUI") as app:
|
||||
[
|
||||
text,text_language, inp_ref,
|
||||
prompt_text, prompt_language,
|
||||
top_k, top_p, temperature,
|
||||
top_k, top_p, temperature, repetition_penalty,
|
||||
how_to_cut, batch_size,
|
||||
speed_factor, ref_text_free,
|
||||
split_bucket,fragment_interval,
|
||||
seed
|
||||
seed, keep_random, padding_on_left
|
||||
],
|
||||
[output, seed],
|
||||
)
|
||||
|
@ -126,6 +126,7 @@ def main(args):
|
||||
benchmark=False,
|
||||
fast_dev_run=False,
|
||||
strategy = DDPStrategy(
|
||||
find_unused_parameters=True,
|
||||
process_group_backend="nccl" if platform.system() != "Windows" else "gloo"
|
||||
) if torch.cuda.is_available() else "auto",
|
||||
precision=config["train"]["precision"],
|
||||
|
Loading…
x
Reference in New Issue
Block a user