diff --git a/api.py b/api.py new file mode 100644 index 0000000..41ddbf6 --- /dev/null +++ b/api.py @@ -0,0 +1,324 @@ +import argparse +import os +import signal +import sys +from time import time as ttime +import torch +import librosa +import soundfile as sf +from fastapi import FastAPI, Request, HTTPException +from fastapi.responses import StreamingResponse +import uvicorn +from transformers import AutoModelForMaskedLM, AutoTokenizer +import numpy as np +from feature_extractor import cnhubert +from io import BytesIO +from module.models import SynthesizerTrn +from AR.models.t2s_lightning_module import Text2SemanticLightningModule +from text import cleaned_text_to_sequence +from text.cleaner import clean_text +from module.mel_processing import spectrogram_torch +from my_utils import load_audio + +DEFAULT_PORT = 9880 +DEFAULT_CNHUBERT = "GPT_SoVITS/pretrained_models/chinese-hubert-base" +DEFAULT_BERT = "GPT_SoVITS/pretrained_models/chinese-roberta-wwm-ext-large" +DEFAULT_HALF = True + +DEFAULT_GPT = "GPT_SoVITS/pretrained_models/s1bert25hz-2kh-longer-epoch=68e-step=50232.ckpt" +DEFAULT_SOVITS = "GPT_SoVITS/pretrained_models/s2G488k.pth" + +AVAILABLE_COMPUTE = "cuda" if torch.cuda.is_available() else "cpu" + +parser = argparse.ArgumentParser(description="GPT-SoVITS api") + +parser.add_argument("-g", "--gpt_path", type=str, default="", help="GPT模型路径") +parser.add_argument("-s", "--sovits_path", type=str, default="", help="SoVITS模型路径") + +parser.add_argument("-dr", "--default_refer_path", type=str, default="", + help="默认参考音频路径, 请求缺少参考音频时调用") +parser.add_argument("-dt", "--default_refer_text", type=str, default="", help="默认参考音频文本") +parser.add_argument("-dl", "--default_refer_language", type=str, default="", help="默认参考音频语种") + +parser.add_argument("-d", "--device", type=str, default=AVAILABLE_COMPUTE, help="cuda / cpu") +parser.add_argument("-p", "--port", type=int, default=DEFAULT_PORT, help="default: 9880") +parser.add_argument("-a", "--bind_addr", type=str, default="127.0.0.1", help="default: 127.0.0.1") +parser.add_argument("-hp", "--half_precision", action='store_true', default=False) + +parser.add_argument("-hb", "--hubert_path", type=str, default=DEFAULT_CNHUBERT) +parser.add_argument("-b", "--bert_path", type=str, default=DEFAULT_BERT) + +args = parser.parse_args() + +gpt_path = args.gpt_path +sovits_path = args.sovits_path + +default_refer_path = args.default_refer_path +default_refer_text = args.default_refer_text +default_refer_language = args.default_refer_language +has_preset = False + +device = args.device +port = args.port +host = args.bind_addr +is_half = args.half_precision + +cnhubert_base_path = args.hubert_path +bert_path = args.bert_path + +if gpt_path == "": + gpt_path = DEFAULT_GPT + print("[WARN] 未指定GPT模型路径") +if sovits_path == "": + sovits_path = DEFAULT_SOVITS + print("[WARN] 未指定SoVITS模型路径") + +if default_refer_path == "" or default_refer_text == "" or default_refer_language == "": + default_refer_path, default_refer_text, default_refer_language = "", "", "" + print("[INFO] 未指定默认参考音频") + has_preset = False +else: + print(f"[INFO] 默认参考音频路径: {default_refer_path}") + print(f"[INFO] 默认参考音频文本: {default_refer_text}") + print(f"[INFO] 默认参考音频语种: {default_refer_language}") + has_preset = True + +cnhubert.cnhubert_base_path = cnhubert_base_path +tokenizer = AutoTokenizer.from_pretrained(bert_path) +bert_model = AutoModelForMaskedLM.from_pretrained(bert_path) +# bert_model = AutoModelForSequenceClassification.from_pretrained(bert_path, config=bert_path+"/config.json") +if (is_half == True): + bert_model = bert_model.half().to(device) +else: + bert_model = bert_model.to(device) + + +# bert_model=bert_model.to(device) +def get_bert_feature(text, word2ph): + with torch.no_grad(): + inputs = tokenizer(text, return_tensors="pt") + for i in inputs: + inputs[i] = inputs[i].to(device) #####输入是long不用管精度问题,精度随bert_model + res = bert_model(**inputs, output_hidden_states=True) + res = torch.cat(res["hidden_states"][-3:-2], -1)[0].cpu()[1:-1] + assert len(word2ph) == len(text) + phone_level_feature = [] + for i in range(len(word2ph)): + repeat_feature = res[i].repeat(word2ph[i], 1) + phone_level_feature.append(repeat_feature) + phone_level_feature = torch.cat(phone_level_feature, dim=0) + # if(is_half==True):phone_level_feature=phone_level_feature.half() + return phone_level_feature.T + + +n_semantic = 1024 +dict_s2 = torch.load(sovits_path, map_location="cpu") +hps = dict_s2["config"] + + +class DictToAttrRecursive: + def __init__(self, input_dict): + for key, value in input_dict.items(): + if isinstance(value, dict): + # 如果值是字典,递归调用构造函数 + setattr(self, key, DictToAttrRecursive(value)) + else: + setattr(self, key, value) + + +hps = DictToAttrRecursive(hps) +hps.model.semantic_frame_rate = "25hz" +dict_s1 = torch.load(gpt_path, map_location="cpu") +config = dict_s1["config"] +ssl_model = cnhubert.get_model() +if is_half: + ssl_model = ssl_model.half().to(device) +else: + ssl_model = ssl_model.to(device) + +vq_model = SynthesizerTrn( + hps.data.filter_length // 2 + 1, + hps.train.segment_size // hps.data.hop_length, + n_speakers=hps.data.n_speakers, + **hps.model) +if is_half: + vq_model = vq_model.half().to(device) +else: + vq_model = vq_model.to(device) +vq_model.eval() +print(vq_model.load_state_dict(dict_s2["weight"], strict=False)) +hz = 50 +max_sec = config['data']['max_sec'] +t2s_model = Text2SemanticLightningModule(config, "ojbk", is_train=False) +t2s_model.load_state_dict(dict_s1["weight"]) +if is_half: + t2s_model = t2s_model.half() +t2s_model = t2s_model.to(device) +t2s_model.eval() +total = sum([param.nelement() for param in t2s_model.parameters()]) +print("Number of parameter: %.2fM" % (total / 1e6)) + + +def get_spepc(hps, filename): + audio = load_audio(filename, int(hps.data.sampling_rate)) + audio = torch.FloatTensor(audio) + audio_norm = audio + audio_norm = audio_norm.unsqueeze(0) + spec = spectrogram_torch(audio_norm, hps.data.filter_length, hps.data.sampling_rate, hps.data.hop_length, + hps.data.win_length, center=False) + return spec + + +dict_language = { + "中文": "zh", + "英文": "en", + "日文": "ja", + "ZH": "zh", + "EN": "en", + "JA": "ja", + "zh": "zh", + "en": "en", + "ja": "ja" +} + + +def get_tts_wav(ref_wav_path, prompt_text, prompt_language, text, text_language): + t0 = ttime() + prompt_text = prompt_text.strip("\n") + prompt_language, text = prompt_language, text.strip("\n") + with torch.no_grad(): + wav16k, sr = librosa.load(ref_wav_path, sr=16000) # 派蒙 + wav16k = torch.from_numpy(wav16k) + if (is_half == True): + wav16k = wav16k.half().to(device) + else: + wav16k = wav16k.to(device) + ssl_content = ssl_model.model(wav16k.unsqueeze(0))["last_hidden_state"].transpose(1, 2) # .float() + codes = vq_model.extract_latent(ssl_content) + prompt_semantic = codes[0, 0] + t1 = ttime() + prompt_language = dict_language[prompt_language] + text_language = dict_language[text_language] + phones1, word2ph1, norm_text1 = clean_text(prompt_text, prompt_language) + phones1 = cleaned_text_to_sequence(phones1) + texts = text.split("\n") + audio_opt = [] + zero_wav = np.zeros(int(hps.data.sampling_rate * 0.3), dtype=np.float16 if is_half == True else np.float32) + for text in texts: + phones2, word2ph2, norm_text2 = clean_text(text, text_language) + phones2 = cleaned_text_to_sequence(phones2) + if (prompt_language == "zh"): + bert1 = get_bert_feature(norm_text1, word2ph1).to(device) + else: + bert1 = torch.zeros((1024, len(phones1)), dtype=torch.float16 if is_half == True else torch.float32).to( + device) + if (text_language == "zh"): + bert2 = get_bert_feature(norm_text2, word2ph2).to(device) + else: + bert2 = torch.zeros((1024, len(phones2))).to(bert1) + bert = torch.cat([bert1, bert2], 1) + + all_phoneme_ids = torch.LongTensor(phones1 + phones2).to(device).unsqueeze(0) + bert = bert.to(device).unsqueeze(0) + all_phoneme_len = torch.tensor([all_phoneme_ids.shape[-1]]).to(device) + prompt = prompt_semantic.unsqueeze(0).to(device) + t2 = ttime() + with torch.no_grad(): + # pred_semantic = t2s_model.model.infer( + pred_semantic, idx = t2s_model.model.infer_panel( + all_phoneme_ids, + all_phoneme_len, + prompt, + bert, + # prompt_phone_len=ph_offset, + top_k=config['inference']['top_k'], + early_stop_num=hz * max_sec) + t3 = ttime() + # print(pred_semantic.shape,idx) + pred_semantic = pred_semantic[:, -idx:].unsqueeze(0) # .unsqueeze(0)#mq要多unsqueeze一次 + refer = get_spepc(hps, ref_wav_path) # .to(device) + if (is_half == True): + refer = refer.half().to(device) + else: + refer = refer.to(device) + # audio = vq_model.decode(pred_semantic, all_phoneme_ids, refer).detach().cpu().numpy()[0, 0] + audio = \ + vq_model.decode(pred_semantic, torch.LongTensor(phones2).to(device).unsqueeze(0), + refer).detach().cpu().numpy()[ + 0, 0] ###试试重建不带上prompt部分 + audio_opt.append(audio) + audio_opt.append(zero_wav) + t4 = ttime() + print("%.3f\t%.3f\t%.3f\t%.3f" % (t1 - t0, t2 - t1, t3 - t2, t4 - t3)) + yield hps.data.sampling_rate, (np.concatenate(audio_opt, 0) * 32768).astype(np.int16) + + +def restart(): + python = sys.executable + os.execl(python, python, *sys.argv) + + +def handle(command, refer_wav_path, prompt_text, prompt_language, text, text_language): + if command == "/restart": + restart() + elif command == "/exit": + os.kill(os.getpid(), signal.SIGTERM) + exit(0) + + if ( + refer_wav_path == "" or refer_wav_path is None + or prompt_text == "" or prompt_text is None + or prompt_language == "" or prompt_language is None + ): + refer_wav_path, prompt_text, prompt_language = ( + default_refer_path, + default_refer_text, + default_refer_language, + ) + if not has_preset: + raise HTTPException(status_code=400, detail="未指定参考音频且接口无预设") + + with torch.no_grad(): + gen = get_tts_wav( + refer_wav_path, prompt_text, prompt_language, text, text_language + ) + sampling_rate, audio_data = next(gen) + + wav = BytesIO() + sf.write(wav, audio_data, sampling_rate, format="wav") + wav.seek(0) + + torch.cuda.empty_cache() + return StreamingResponse(wav, media_type="audio/wav") + + +app = FastAPI() + + +@app.post("/") +async def tts_endpoint(request: Request): + json_post_raw = await request.json() + return handle( + json_post_raw.get("command"), + json_post_raw.get("refer_wav_path"), + json_post_raw.get("prompt_text"), + json_post_raw.get("prompt_language"), + json_post_raw.get("text"), + json_post_raw.get("text_language"), + ) + + +@app.get("/") +async def tts_endpoint( + command: str = None, + refer_wav_path: str = None, + prompt_text: str = None, + prompt_language: str = None, + text: str = None, + text_language: str = None, +): + return handle(command, refer_wav_path, prompt_text, prompt_language, text, text_language) + + +if __name__ == "__main__": + uvicorn.run(app, host=host, port=port, workers=1)