From 5c08bd92beaf6b1e7fb077541f43e3408f0c66a9 Mon Sep 17 00:00:00 2001 From: Erythrocyte3803 <2544390577@qq.com> Date: Mon, 29 Jan 2024 14:00:39 +0900 Subject: [PATCH] =?UTF-8?q?=E6=8C=89=E7=85=A7=E6=A0=87=E7=82=B9=E7=AC=A6?= =?UTF-8?q?=E5=8F=B7=E5=88=86=E5=8F=A5=EF=BC=8C=E4=B8=AD=E8=8B=B1=E6=96=87?= =?UTF-8?q?=E9=80=9A=E7=94=A8?= MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8 Content-Transfer-Encoding: 8bit --- GPT_SoVITS/inference_webui.py | 260 ++++++++++++++++++++-------------- gweight.txt | 1 - sweight.txt | 1 - test.py | 17 --- 4 files changed, 151 insertions(+), 128 deletions(-) delete mode 100644 gweight.txt delete mode 100644 sweight.txt delete mode 100644 test.py diff --git a/GPT_SoVITS/inference_webui.py b/GPT_SoVITS/inference_webui.py index 3a1d62cd..37663e3e 100644 --- a/GPT_SoVITS/inference_webui.py +++ b/GPT_SoVITS/inference_webui.py @@ -1,4 +1,21 @@ -import os,re,logging +import torch +import librosa +from tools.i18n.i18n import I18nAuto +from my_utils import load_audio +from module.mel_processing import spectrogram_torch +from time import time as ttime +from text.cleaner import clean_text +from text import cleaned_text_to_sequence +from AR.models.t2s_lightning_module import Text2SemanticLightningModule +from module.models import SynthesizerTrn +from feature_extractor import cnhubert +import numpy as np +from transformers import AutoModelForMaskedLM, AutoTokenizer +import gradio as gr +import pdb +import os +import re +import logging logging.getLogger("markdown_it").setLevel(logging.ERROR) logging.getLogger("urllib3").setLevel(logging.ERROR) logging.getLogger("httpcore").setLevel(logging.ERROR) @@ -7,23 +24,23 @@ logging.getLogger("asyncio").setLevel(logging.ERROR) logging.getLogger("charset_normalizer").setLevel(logging.ERROR) logging.getLogger("torchaudio._extension").setLevel(logging.ERROR) -import pdb if os.path.exists("./gweight.txt"): - with open("./gweight.txt", 'r',encoding="utf-8") as file: + with open("./gweight.txt", 'r', encoding="utf-8") as file: gweight_data = file.read() gpt_path = os.environ.get( - "gpt_path", gweight_data) + "gpt_path", gweight_data) else: gpt_path = os.environ.get( - "gpt_path", "GPT_SoVITS/pretrained_models/s1bert25hz-2kh-longer-epoch=68e-step=50232.ckpt") + "gpt_path", "GPT_SoVITS/pretrained_models/s1bert25hz-2kh-longer-epoch=68e-step=50232.ckpt") if os.path.exists("./sweight.txt"): - with open("./sweight.txt", 'r',encoding="utf-8") as file: + with open("./sweight.txt", 'r', encoding="utf-8") as file: sweight_data = file.read() sovits_path = os.environ.get("sovits_path", sweight_data) else: - sovits_path = os.environ.get("sovits_path", "GPT_SoVITS/pretrained_models/s2G488k.pth") + sovits_path = os.environ.get( + "sovits_path", "GPT_SoVITS/pretrained_models/s2G488k.pth") # gpt_path = os.environ.get( # "gpt_path", "pretrained_models/s1bert25hz-2kh-longer-epoch=68e-step=50232.ckpt" # ) @@ -37,28 +54,15 @@ bert_path = os.environ.get( infer_ttswebui = os.environ.get("infer_ttswebui", 9872) infer_ttswebui = int(infer_ttswebui) is_share = os.environ.get("is_share", "False") -is_share=eval(is_share) +is_share = eval(is_share) if "_CUDA_VISIBLE_DEVICES" in os.environ: os.environ["CUDA_VISIBLE_DEVICES"] = os.environ["_CUDA_VISIBLE_DEVICES"] is_half = eval(os.environ.get("is_half", "True")) -import gradio as gr -from transformers import AutoModelForMaskedLM, AutoTokenizer -import numpy as np -import librosa,torch -from feature_extractor import cnhubert -cnhubert.cnhubert_base_path=cnhubert_base_path +cnhubert.cnhubert_base_path = cnhubert_base_path -from module.models import SynthesizerTrn -from AR.models.t2s_lightning_module import Text2SemanticLightningModule -from text import cleaned_text_to_sequence -from text.cleaner import clean_text -from time import time as ttime -from module.mel_processing import spectrogram_torch -from my_utils import load_audio -from tools.i18n.i18n import I18nAuto i18n = I18nAuto() -os.environ['PYTORCH_ENABLE_MPS_FALLBACK'] = '1' # 确保直接启动推理UI时也能够设置。 +os.environ['PYTORCH_ENABLE_MPS_FALLBACK'] = '1' # 确保直接启动推理UI时也能够设置。 if torch.cuda.is_available(): device = "cuda" @@ -74,6 +78,7 @@ if is_half == True: else: bert_model = bert_model.to(device) + def get_bert_feature(text, word2ph): with torch.no_grad(): inputs = tokenizer(text, return_tensors="pt") @@ -89,6 +94,7 @@ def get_bert_feature(text, word2ph): phone_level_feature = torch.cat(phone_level_feature, dim=0) return phone_level_feature.T + class DictToAttrRecursive(dict): def __init__(self, input_dict): super().__init__(input_dict) @@ -123,10 +129,11 @@ if is_half == True: else: ssl_model = ssl_model.to(device) + def change_sovits_weights(sovits_path): - global vq_model,hps - dict_s2=torch.load(sovits_path,map_location="cpu") - hps=dict_s2["config"] + global vq_model, hps + dict_s2 = torch.load(sovits_path, map_location="cpu") + hps = dict_s2["config"] hps = DictToAttrRecursive(hps) hps.model.semantic_frame_rate = "25hz" vq_model = SynthesizerTrn( @@ -135,7 +142,7 @@ def change_sovits_weights(sovits_path): n_speakers=hps.data.n_speakers, **hps.model ) - if("pretrained"not in sovits_path): + if ("pretrained"not in sovits_path): del vq_model.enc_q if is_half == True: vq_model = vq_model.half().to(device) @@ -143,11 +150,15 @@ def change_sovits_weights(sovits_path): vq_model = vq_model.to(device) vq_model.eval() print(vq_model.load_state_dict(dict_s2["weight"], strict=False)) - with open("./sweight.txt","w",encoding="utf-8")as f:f.write(sovits_path) + with open("./sweight.txt", "w", encoding="utf-8")as f: + f.write(sovits_path) + + change_sovits_weights(sovits_path) + def change_gpt_weights(gpt_path): - global hz,max_sec,t2s_model,config + global hz, max_sec, t2s_model, config hz = 50 dict_s1 = torch.load(gpt_path, map_location="cpu") config = dict_s1["config"] @@ -160,9 +171,13 @@ def change_gpt_weights(gpt_path): t2s_model.eval() total = sum([param.nelement() for param in t2s_model.parameters()]) print("Number of parameter: %.2fM" % (total / 1e6)) - with open("./gweight.txt","w",encoding="utf-8")as f:f.write(gpt_path) + with open("./gweight.txt", "w", encoding="utf-8")as f: + f.write(gpt_path) + + change_gpt_weights(gpt_path) + def get_spepc(hps, filename): audio = load_audio(filename, int(hps.data.sampling_rate)) audio = torch.FloatTensor(audio) @@ -179,10 +194,10 @@ def get_spepc(hps, filename): return spec -dict_language={ - i18n("中文"):"zh", - i18n("英文"):"en", - i18n("日文"):"ja" +dict_language = { + i18n("中文"): "zh", + i18n("英文"): "en", + i18n("日文"): "ja" } @@ -246,6 +261,7 @@ def nonen_clean_text_inf(text, language): return phones, word2ph, norm_text + def nonen_get_bert_inf(text, language): textlist, langlist = splite_en_inf(text, language) print(textlist) @@ -261,25 +277,31 @@ def nonen_get_bert_inf(text, language): return bert -splits = {",","。","?","!",",",".","?","!","~",":",":","—","…",} + +splits = {",", "。", "?", "!", ",", ".", "?", "!", "~", ":", ":", "—", "…", } + + def get_first(text): pattern = "[" + "".join(re.escape(sep) for sep in splits) + "]" text = re.split(pattern, text)[0].strip() return text -def get_tts_wav(ref_wav_path, prompt_text, prompt_language, text, text_language,how_to_cut=i18n("不切")): + +def get_tts_wav(ref_wav_path, prompt_text, prompt_language, text, text_language, how_to_cut=i18n("不切")): t0 = ttime() prompt_text = prompt_text.strip("\n") - if(prompt_text[-1]not in splits):prompt_text+="。"if prompt_text!="en"else "." + if (prompt_text[-1]not in splits): + prompt_text += "。"if prompt_text != "en"else "." text = text.strip("\n") - if(len(get_first(text))<4):text+="。"if text!="en"else "." + if (len(get_first(text)) < 4): + text += "。"if text != "en"else "." zero_wav = np.zeros( int(hps.data.sampling_rate * 0.3), dtype=np.float16 if is_half == True else np.float32, ) with torch.no_grad(): wav16k, sr = librosa.load(ref_wav_path, sr=16000) - if(wav16k.shape[0]>160000 or wav16k.shape[0]<48000): + if (wav16k.shape[0] > 160000 or wav16k.shape[0] < 48000): raise OSError(i18n("参考音频在3~10秒范围外,请更换!")) wav16k = torch.from_numpy(wav16k) zero_wav_torch = torch.from_numpy(zero_wav) @@ -289,7 +311,7 @@ def get_tts_wav(ref_wav_path, prompt_text, prompt_language, text, text_language, else: wav16k = wav16k.to(device) zero_wav_torch = zero_wav_torch.to(device) - wav16k=torch.cat([wav16k,zero_wav_torch]) + wav16k = torch.cat([wav16k, zero_wav_torch]) ssl_content = ssl_model.model(wav16k.unsqueeze(0))[ "last_hidden_state" ].transpose( @@ -302,24 +324,32 @@ def get_tts_wav(ref_wav_path, prompt_text, prompt_language, text, text_language, text_language = dict_language[text_language] if prompt_language == "en": - phones1, word2ph1, norm_text1 = clean_text_inf(prompt_text, prompt_language) + phones1, word2ph1, norm_text1 = clean_text_inf( + prompt_text, prompt_language) else: - phones1, word2ph1, norm_text1 = nonen_clean_text_inf(prompt_text, prompt_language) - if(how_to_cut==i18n("凑四句一切")):text=cut1(text) - elif(how_to_cut==i18n("凑50字一切")):text=cut2(text) - elif(how_to_cut==i18n("按中文句号。切")):text=cut3(text) - elif(how_to_cut==i18n("按英文句号.切")):text=cut4(text) - elif(how_to_cut==i18n("按中文标点分句切")):text=cut5(text) - elif(how_to_cut==i18n("按英文标点分句切")):text=cut6(text) - text = text.replace("\n\n","\n").replace("\n\n","\n").replace("\n\n","\n") - if(text[-1]not in splits):text+="。"if text_language!="en"else "." - texts=text.split("\n") + phones1, word2ph1, norm_text1 = nonen_clean_text_inf( + prompt_text, prompt_language) + if (how_to_cut == i18n("凑四句一切")): + text = cut1(text) + elif (how_to_cut == i18n("凑50字一切")): + text = cut2(text) + elif (how_to_cut == i18n("按中文句号。切")): + text = cut3(text) + elif (how_to_cut == i18n("按英文句号.切")): + text = cut4(text) + elif (how_to_cut == i18n("按标点符号分句切")): + text = cut5(text) + text = text.replace("\n\n", "\n").replace( + "\n\n", "\n").replace("\n\n", "\n") + if (text[-1]not in splits): + text += "。"if text_language != "en"else "." + texts = text.split("\n") audio_opt = [] if prompt_language == "en": bert1 = get_bert_inf(phones1, word2ph1, norm_text1, prompt_language) else: bert1 = nonen_get_bert_inf(prompt_text, prompt_language) - + for text in texts: # 解决输入目标文本的空行导致报错的问题 if (len(text.strip()) == 0): @@ -327,7 +357,8 @@ def get_tts_wav(ref_wav_path, prompt_text, prompt_language, text, text_language, if text_language == "en": phones2, word2ph2, norm_text2 = clean_text_inf(text, text_language) else: - phones2, word2ph2, norm_text2 = nonen_clean_text_inf(text, text_language) + phones2, word2ph2, norm_text2 = nonen_clean_text_inf( + text, text_language) if text_language == "en": bert2 = get_bert_inf(phones2, word2ph2, norm_text2, text_language) @@ -336,7 +367,8 @@ def get_tts_wav(ref_wav_path, prompt_text, prompt_language, text, text_language, bert = torch.cat([bert1, bert2], 1) - all_phoneme_ids = torch.LongTensor(phones1 + phones2).to(device).unsqueeze(0) + all_phoneme_ids = torch.LongTensor( + phones1 + phones2).to(device).unsqueeze(0) bert = bert.to(device).unsqueeze(0) all_phoneme_len = torch.tensor([all_phoneme_ids.shape[-1]]).to(device) prompt = prompt_semantic.unsqueeze(0).to(device) @@ -365,12 +397,13 @@ def get_tts_wav(ref_wav_path, prompt_text, prompt_language, text, text_language, # audio = vq_model.decode(pred_semantic, all_phoneme_ids, refer).detach().cpu().numpy()[0, 0] audio = ( vq_model.decode( - pred_semantic, torch.LongTensor(phones2).to(device).unsqueeze(0), refer + pred_semantic, torch.LongTensor( + phones2).to(device).unsqueeze(0), refer ) .detach() .cpu() .numpy()[0, 0] - ) ###试试重建不带上prompt部分 + ) # 试试重建不带上prompt部分 audio_opt.append(audio) audio_opt.append(zero_wav) t4 = ttime() @@ -379,6 +412,7 @@ def get_tts_wav(ref_wav_path, prompt_text, prompt_language, text, text_language, np.int16 ) + def split(todo_text): todo_text = todo_text.replace("……", "。").replace("——", ",") if todo_text[-1] not in splits: @@ -406,7 +440,7 @@ def cut1(inp): if len(split_idx) > 1: opts = [] for idx in range(len(split_idx) - 1): - opts.append("".join(inps[split_idx[idx] : split_idx[idx + 1]])) + opts.append("".join(inps[split_idx[idx]: split_idx[idx + 1]])) else: opts = [inp] return "\n".join(opts) @@ -430,7 +464,7 @@ def cut2(inp): if tmp_str != "": opts.append(tmp_str) # print(opts) - if len(opts)>1 and len(opts[-1]) < 50: ##如果最后一个太短了,和前一个合一起 + if len(opts) > 1 and len(opts[-1]) < 50: # 如果最后一个太短了,和前一个合一起 opts[-2] = opts[-2] + opts[-1] opts = opts[:-1] return "\n".join(opts) @@ -440,29 +474,22 @@ def cut3(inp): inp = inp.strip("\n") return "\n".join(["%s。" % item for item in inp.strip("。").split("。")]) + def cut4(inp): inp = inp.strip("\n") return "\n".join(["%s." % item for item in inp.strip(".").split(".")]) -def cut5(inp): - if not re.search(r'[^\w\s]', inp[-1]): - inp += '。' - inp = inp.strip("\n") - punds = r'[、,。?!;:]' - items = re.split(f'({punds})', inp) - items = ["".join(group) for group in zip(items[::2], items[1::2])] - opt = "\n".join(items) - return opt -def cut6(inp): - if not re.search(r'[^\w\s]', inp[-1]): - inp += '.' - inp = inp.strip("\n") - punds = r'[,.;?!]' - items = re.split(f'({punds})', inp) - items = ["".join(group) for group in zip(items[::2], items[1::2])] - opt = "\n".join(items) - return opt +def cut5(inp): + if not re.search(r'[^\w\s]', inp[-1]): + inp += '。' + inp = inp.strip("\n") + punds = r'[,.;?!、,。?!;:]' + items = re.split(f'({punds})', inp) + items = ["".join(group) for group in zip(items[::2], items[1::2])] + opt = "\n".join(items) + return opt + def custom_sort_key(s): # 使用正则表达式提取字符串中的数字部分和非数字部分 @@ -471,55 +498,71 @@ def custom_sort_key(s): parts = [int(part) if part.isdigit() else part for part in parts] return parts + def change_choices(): SoVITS_names, GPT_names = get_weights_names() - return {"choices": sorted(SoVITS_names,key=custom_sort_key), "__type__": "update"}, {"choices": sorted(GPT_names,key=custom_sort_key), "__type__": "update"} + return {"choices": sorted(SoVITS_names, key=custom_sort_key), "__type__": "update"}, {"choices": sorted(GPT_names, key=custom_sort_key), "__type__": "update"} + + +pretrained_sovits_name = "GPT_SoVITS/pretrained_models/s2G488k.pth" +pretrained_gpt_name = "GPT_SoVITS/pretrained_models/s1bert25hz-2kh-longer-epoch=68e-step=50232.ckpt" +SoVITS_weight_root = "SoVITS_weights" +GPT_weight_root = "GPT_weights" +os.makedirs(SoVITS_weight_root, exist_ok=True) +os.makedirs(GPT_weight_root, exist_ok=True) + -pretrained_sovits_name="GPT_SoVITS/pretrained_models/s2G488k.pth" -pretrained_gpt_name="GPT_SoVITS/pretrained_models/s1bert25hz-2kh-longer-epoch=68e-step=50232.ckpt" -SoVITS_weight_root="SoVITS_weights" -GPT_weight_root="GPT_weights" -os.makedirs(SoVITS_weight_root,exist_ok=True) -os.makedirs(GPT_weight_root,exist_ok=True) def get_weights_names(): SoVITS_names = [pretrained_sovits_name] for name in os.listdir(SoVITS_weight_root): - if name.endswith(".pth"):SoVITS_names.append("%s/%s"%(SoVITS_weight_root,name)) + if name.endswith(".pth"): + SoVITS_names.append("%s/%s" % (SoVITS_weight_root, name)) GPT_names = [pretrained_gpt_name] for name in os.listdir(GPT_weight_root): - if name.endswith(".ckpt"): GPT_names.append("%s/%s"%(GPT_weight_root,name)) - return SoVITS_names,GPT_names -SoVITS_names,GPT_names = get_weights_names() + if name.endswith(".ckpt"): + GPT_names.append("%s/%s" % (GPT_weight_root, name)) + return SoVITS_names, GPT_names + + +SoVITS_names, GPT_names = get_weights_names() with gr.Blocks(title="GPT-SoVITS WebUI") as app: gr.Markdown( - value=i18n("本软件以MIT协议开源, 作者不对软件具备任何控制力, 使用软件者、传播软件导出的声音者自负全责.
如不认可该条款, 则不能使用或引用软件包内任何代码和文件. 详见根目录LICENSE.") + value=i18n( + "本软件以MIT协议开源, 作者不对软件具备任何控制力, 使用软件者、传播软件导出的声音者自负全责.
如不认可该条款, 则不能使用或引用软件包内任何代码和文件. 详见根目录LICENSE.") ) with gr.Group(): gr.Markdown(value=i18n("模型切换")) with gr.Row(): - GPT_dropdown = gr.Dropdown(label=i18n("GPT模型列表"), choices=sorted(GPT_names, key=custom_sort_key), value=gpt_path,interactive=True) - SoVITS_dropdown = gr.Dropdown(label=i18n("SoVITS模型列表"), choices=sorted(SoVITS_names, key=custom_sort_key), value=sovits_path,interactive=True) + GPT_dropdown = gr.Dropdown(label=i18n("GPT模型列表"), choices=sorted( + GPT_names, key=custom_sort_key), value=gpt_path, interactive=True) + SoVITS_dropdown = gr.Dropdown(label=i18n("SoVITS模型列表"), choices=sorted( + SoVITS_names, key=custom_sort_key), value=sovits_path, interactive=True) refresh_button = gr.Button(i18n("刷新模型路径"), variant="primary") - refresh_button.click(fn=change_choices, inputs=[], outputs=[SoVITS_dropdown, GPT_dropdown]) - SoVITS_dropdown.change(change_sovits_weights,[SoVITS_dropdown],[]) - GPT_dropdown.change(change_gpt_weights,[GPT_dropdown],[]) + refresh_button.click(fn=change_choices, inputs=[], outputs=[ + SoVITS_dropdown, GPT_dropdown]) + SoVITS_dropdown.change(change_sovits_weights, [ + SoVITS_dropdown], []) + GPT_dropdown.change(change_gpt_weights, [GPT_dropdown], []) gr.Markdown(value=i18n("*请上传并填写参考信息")) with gr.Row(): - inp_ref = gr.Audio(label=i18n("请上传3~10秒内参考音频,超过会报错!"), type="filepath") + inp_ref = gr.Audio(label=i18n( + "请上传3~10秒内参考音频,超过会报错!"), type="filepath") prompt_text = gr.Textbox(label=i18n("参考音频的文本"), value="") prompt_language = gr.Dropdown( - label=i18n("参考音频的语种"),choices=[i18n("中文"),i18n("英文"),i18n("日文")],value=i18n("中文") + label=i18n("参考音频的语种"), choices=[i18n("中文"), i18n("英文"), i18n("日文")], value=i18n("中文") ) - gr.Markdown(value=i18n("*请填写需要合成的目标文本。中英混合选中文,日英混合选日文,中日混合暂不支持,非目标语言文本自动遗弃。")) + gr.Markdown(value=i18n( + "*请填写需要合成的目标文本。中英混合选中文,日英混合选日文,中日混合暂不支持,非目标语言文本自动遗弃。")) with gr.Row(): text = gr.Textbox(label=i18n("需要合成的文本"), value="") text_language = gr.Dropdown( - label=i18n("需要合成的语种"),choices=[i18n("中文"),i18n("英文"),i18n("日文")],value=i18n("中文") + label=i18n("需要合成的语种"), choices=[i18n("中文"), i18n("英文"), i18n("日文")], value=i18n("中文") ) how_to_cut = gr.Radio( label=i18n("怎么切"), - choices=[i18n("不切"),i18n("凑四句一切"),i18n("凑50字一切"),i18n("按中文句号。切"),i18n("按英文句号.切"),i18n("按中文标点分句切"),i18n("按英文标点分句切"),], + choices=[i18n("不切"), i18n("凑四句一切"), i18n("凑50字一切"), i18n( + "按中文句号。切"), i18n("按英文句号.切"), i18n("按标点符号分句切")], value=i18n("凑50字一切"), interactive=True, ) @@ -528,29 +571,28 @@ with gr.Blocks(title="GPT-SoVITS WebUI") as app: inference_button.click( get_tts_wav, - [inp_ref, prompt_text, prompt_language, text, text_language,how_to_cut], + [inp_ref, prompt_text, prompt_language, + text, text_language, how_to_cut], [output], ) - gr.Markdown(value=i18n("文本切分工具。太长的文本合成出来效果不一定好,所以太长建议先切。合成会根据文本的换行分开合成再拼起来。")) + gr.Markdown(value=i18n( + "文本切分工具。太长的文本合成出来效果不一定好,所以太长建议先切。合成会根据文本的换行分开合成再拼起来。")) with gr.Row(): - text_inp = gr.Textbox(label=i18n("需要合成的切分前文本"),value="") + text_inp = gr.Textbox(label=i18n("需要合成的切分前文本"), value="") with gr.Row(): - button1 = gr.Button(i18n("凑四句一切"), variant="primary") - button2 = gr.Button(i18n("凑50字一切"), variant="primary") + button1 = gr.Button(i18n("凑四句一切"), variant="primary") + button2 = gr.Button(i18n("凑50字一切"), variant="primary") with gr.Row(): - button3 = gr.Button(i18n("按中文句号。切"), variant="primary") - button4 = gr.Button(i18n("按英文句号.切"), variant="primary") - with gr.Row(): - button5 = gr.Button(i18n("按中文标点分句切"), variant="primary") - button6 = gr.Button(i18n("按英文标点分句切"), variant="primary") + button3 = gr.Button(i18n("按中文句号。切"), variant="primary") + button4 = gr.Button(i18n("按英文句号.切"), variant="primary") + button5 = gr.Button(i18n("按标点符号分句切"), variant="primary") text_opt = gr.Textbox(label=i18n("切分后文本"), value="") button1.click(cut1, [text_inp], [text_opt]) button2.click(cut2, [text_inp], [text_opt]) button3.click(cut3, [text_inp], [text_opt]) button4.click(cut4, [text_inp], [text_opt]) button5.click(cut5, [text_inp], [text_opt]) - button6.click(cut6, [text_inp], [text_opt]) gr.Markdown(value=i18n("后续将支持混合语种编码文本输入。")) app.queue(concurrency_count=511, max_size=1022).launch( diff --git a/gweight.txt b/gweight.txt deleted file mode 100644 index 6a330d58..00000000 --- a/gweight.txt +++ /dev/null @@ -1 +0,0 @@ -GPT_weights/na_xi_da-e50.ckpt \ No newline at end of file diff --git a/sweight.txt b/sweight.txt deleted file mode 100644 index 3765f316..00000000 --- a/sweight.txt +++ /dev/null @@ -1 +0,0 @@ -SoVITS_weights/na_xi_da_e20_s2020.pth \ No newline at end of file diff --git a/test.py b/test.py deleted file mode 100644 index 7ad88214..00000000 --- a/test.py +++ /dev/null @@ -1,17 +0,0 @@ -import re - -def add_period(text): - if not re.search(r'[^\w\s]', text[-1]): - text += '。' - return text - -def cut5(inp): - inp = add_period(inp) - inp = inp.strip("\n") - punds = r'[、,。?!;:]' - items = re.split(f'({punds})', inp) - items = ["".join(group) for group in zip(items[::2], items[1::2])] - opt = "\n".join(items) - return opt - -print(cut5("测试")) \ No newline at end of file