chore: add the ability of lru cache for api v3 to improve the inference speed when exchange model weights (#1058)

* chore: add the ability of lru cache for api v3 to improve the inference speed when exchange model weights

* chore: Dockerfile start api v3

* chore: api default port from 127.0.0.1 to 0.0.0.0

* chore: make gpu happy when do tts

* chore: rollback Dockerfile

* chore: fix

* chore: fix

---------

Co-authored-by: kevin.zhang <kevin.zhang@cardinfolink.com>
This commit is contained in:
Kevin Zhang 2024-05-19 17:15:56 +08:00 committed by GitHub
parent 2cafde159c
commit 50c3664496
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
2 changed files with 473 additions and 0 deletions

View File

@ -182,6 +182,12 @@ class TTS_Config:
def __repr__(self):
return self.__str__()
def __hash__(self):
return hash(self.configs_path)
def __eq__(self, other):
return isinstance(other, TTS_Config) and self.configs_path == other.configs_path
class TTS:
def __init__(self, configs: Union[dict, str, TTS_Config]):

467
api_v3.py Normal file
View File

@ -0,0 +1,467 @@
"""
# WebAPI文档 (3.0) - 使用了缓存技术初始化时使用LRU Cache TTS 实例,缓存加载模型的世界,达到减少切换不同语音时的推理时间
` python api_v2.py -a 127.0.0.1 -p 9880 -c GPT_SoVITS/configs/tts_infer.yaml `
## 执行参数:
`-a` - `绑定地址, 默认"127.0.0.1"`
`-p` - `绑定端口, 默认9880`
`-c` - `TTS配置文件路径, 默认"GPT_SoVITS/configs/tts_infer.yaml"`
## 调用:
### 推理
endpoint: `/tts`
GET:
```
http://127.0.0.1:9880/tts?text=先帝创业未半而中道崩殂今天下三分益州疲弊此诚危急存亡之秋也&text_lang=zh&ref_audio_path=archive_jingyuan_1.wav&prompt_lang=zh&prompt_text=我是罗浮云骑将军景元不必拘谨将军只是一时的身份你称呼我景元便可&text_split_method=cut5&batch_size=1&media_type=wav&streaming_mode=true
```
POST:
```json
{
"text": "", # str.(required) text to be synthesized
"text_lang": "", # str.(required) language of the text to be synthesized
"ref_audio_path": "", # str.(required) reference audio path.
"prompt_text": "", # str.(optional) prompt text for the reference audio
"prompt_lang": "", # str.(required) language of the prompt text for the reference audio
"top_k": 5, # int.(optional) top k sampling
"top_p": 1, # float.(optional) top p sampling
"temperature": 1, # float.(optional) temperature for sampling
"text_split_method": "cut5", # str.(optional) text split method, see text_segmentation_method.py for details.
"batch_size": 1, # int.(optional) batch size for inference
"batch_threshold": 0.75, # float.(optional) threshold for batch splitting.
"split_bucket": true, # bool.(optional) whether to split the batch into multiple buckets.
"speed_factor":1.0, # float.(optional) control the speed of the synthesized audio.
"fragment_interval":0.3, # float.(optional) to control the interval of the audio fragment.
"seed": -1, # int.(optional) random seed for reproducibility.
"media_type": "wav", # str.(optional) media type of the output audio, support "wav", "raw", "ogg", "aac".
"streaming_mode": false, # bool.(optional) whether to return a streaming response.
"parallel_infer": True, # bool.(optional) whether to use parallel inference.
"repetition_penalty": 1.35, # float.(optional) repetition penalty for T2S model.
"tts_infer_yaml_path": GPT_SoVITS/configs/tts_infer.yaml # str.(optional) tts infer yaml path
}
```
RESP:
成功: 直接返回 wav 音频流 http code 200
失败: 返回包含错误信息的 json, http code 400
### 命令控制
endpoint: `/control`
command:
"restart": 重新运行
"exit": 结束运行
GET:
```
http://127.0.0.1:9880/control?command=restart
```
POST:
```json
{
"command": "restart"
}
```
RESP:
### 切换GPT模型
endpoint: `/set_gpt_weights`
GET:
```
http://127.0.0.1:9880/set_gpt_weights?weights_path=GPT_SoVITS/pretrained_models/s1bert25hz-2kh-longer-epoch=68e-step=50232.ckpt
```
RESP:
成功: 返回"success", http code 200
失败: 返回包含错误信息的 json, http code 400
### 切换Sovits模型
endpoint: `/set_sovits_weights`
GET:
```
http://127.0.0.1:9880/set_sovits_weights?weights_path=GPT_SoVITS/pretrained_models/s2G488k.pth
```
RESP:
成功: 返回"success", http code 200
失败: 返回包含错误信息的 json, http code 400
"""
import os
import sys
import traceback
from typing import Generator
import torch
now_dir = os.getcwd()
sys.path.append(now_dir)
sys.path.append("%s/GPT_SoVITS" % (now_dir))
import argparse
import subprocess
import wave
import signal
import numpy as np
import soundfile as sf
from fastapi import Response
from fastapi.responses import JSONResponse
from fastapi import FastAPI
import uvicorn
from io import BytesIO
from GPT_SoVITS.TTS_infer_pack.TTS import TTS, TTS_Config
from GPT_SoVITS.TTS_infer_pack.text_segmentation_method import get_method_names as get_cut_method_names
from fastapi.responses import StreamingResponse
from pydantic import BaseModel
from functools import lru_cache
cut_method_names = get_cut_method_names()
parser = argparse.ArgumentParser(description="GPT-SoVITS api")
parser.add_argument("-a", "--bind_addr", type=str, default="0.0.0.0", help="default: 0.0.0.0")
parser.add_argument("-p", "--port", type=int, default="9880", help="default: 9880")
args = parser.parse_args()
port = args.port
host = args.bind_addr
argv = sys.argv
APP = FastAPI()
class TTS_Request(BaseModel):
text: str = None
text_lang: str = None
ref_audio_path: str = None
prompt_lang: str = None
prompt_text: str = ""
top_k: int = 5
top_p: float = 1
temperature: float = 1
text_split_method: str = "cut5"
batch_size: int = 1
batch_threshold: float = 0.75
split_bucket: bool = True
speed_factor: float = 1.0
fragment_interval: float = 0.3
seed: int = -1
media_type: str = "wav"
streaming_mode: bool = False
parallel_infer: bool = True
repetition_penalty: float = 1.35
tts_infer_yaml_path: str = None
"""推理时需要加载的声音模型的yaml配置文件路径GPT_SoVITS/configs/tts_infer.yaml"""
@lru_cache(maxsize=10)
def get_tts_instance(tts_config: TTS_Config) -> TTS:
print(f"load tts config from {tts_config.configs_path}")
return TTS(tts_config)
def pack_ogg(io_buffer: BytesIO, data: np.ndarray, rate: int):
"""modify from https://github.com/RVC-Boss/GPT-SoVITS/pull/894/files"""
with sf.SoundFile(io_buffer, mode='w', samplerate=rate, channels=1, format='ogg') as audio_file:
audio_file.write(data)
return io_buffer
def pack_raw(io_buffer: BytesIO, data: np.ndarray, rate: int):
io_buffer.write(data.tobytes())
return io_buffer
def pack_wav(io_buffer: BytesIO, data: np.ndarray, rate: int):
io_buffer = BytesIO()
sf.write(io_buffer, data, rate, format='wav')
return io_buffer
def pack_aac(io_buffer: BytesIO, data: np.ndarray, rate: int):
process = subprocess.Popen([
'ffmpeg',
'-f', 's16le', # 输入16位有符号小端整数PCM
'-ar', str(rate), # 设置采样率
'-ac', '1', # 单声道
'-i', 'pipe:0', # 从管道读取输入
'-c:a', 'aac', # 音频编码器为AAC
'-b:a', '192k', # 比特率
'-vn', # 不包含视频
'-f', 'adts', # 输出AAC数据流格式
'pipe:1' # 将输出写入管道
], stdin=subprocess.PIPE, stdout=subprocess.PIPE, stderr=subprocess.PIPE)
out, _ = process.communicate(input=data.tobytes())
io_buffer.write(out)
return io_buffer
def pack_audio(io_buffer: BytesIO, data: np.ndarray, rate: int, media_type: str):
if media_type == "ogg":
io_buffer = pack_ogg(io_buffer, data, rate)
elif media_type == "aac":
io_buffer = pack_aac(io_buffer, data, rate)
elif media_type == "wav":
io_buffer = pack_wav(io_buffer, data, rate)
else:
io_buffer = pack_raw(io_buffer, data, rate)
io_buffer.seek(0)
return io_buffer
# from https://huggingface.co/spaces/coqui/voice-chat-with-mistral/blob/main/app.py
def wave_header_chunk(frame_input=b"", channels=1, sample_width=2, sample_rate=32000):
# This will create a wave header then append the frame input
# It should be first on a streaming wav file
# Other frames better should not have it (else you will hear some artifacts each chunk start)
wav_buf = BytesIO()
with wave.open(wav_buf, "wb") as vfout:
vfout.setnchannels(channels)
vfout.setsampwidth(sample_width)
vfout.setframerate(sample_rate)
vfout.writeframes(frame_input)
wav_buf.seek(0)
return wav_buf.read()
def handle_control(command: str):
if command == "restart":
os.execl(sys.executable, sys.executable, *argv)
elif command == "exit":
os.kill(os.getpid(), signal.SIGTERM)
exit(0)
def check_params(req: dict, tts_config: TTS_Config):
text: str = req.get("text", "")
text_lang: str = req.get("text_lang", "")
ref_audio_path: str = req.get("ref_audio_path", "")
streaming_mode: bool = req.get("streaming_mode", False)
media_type: str = req.get("media_type", "wav")
prompt_lang: str = req.get("prompt_lang", "")
text_split_method: str = req.get("text_split_method", "cut5")
if ref_audio_path in [None, ""]:
return JSONResponse(status_code=400, content={"message": "ref_audio_path is required"})
if text in [None, ""]:
return JSONResponse(status_code=400, content={"message": "text is required"})
if (text_lang in [None, ""]):
return JSONResponse(status_code=400, content={"message": "text_lang is required"})
elif text_lang.lower() not in tts_config.languages:
return JSONResponse(status_code=400, content={"message": "text_lang is not supported"})
if (prompt_lang in [None, ""]):
return JSONResponse(status_code=400, content={"message": "prompt_lang is required"})
elif prompt_lang.lower() not in tts_config.languages:
return JSONResponse(status_code=400, content={"message": "prompt_lang is not supported"})
if media_type not in ["wav", "raw", "ogg", "aac"]:
return JSONResponse(status_code=400, content={"message": "media_type is not supported"})
elif media_type == "ogg" and not streaming_mode:
return JSONResponse(status_code=400, content={"message": "ogg format is not supported in non-streaming mode"})
if text_split_method not in cut_method_names:
return JSONResponse(status_code=400,
content={"message": f"text_split_method:{text_split_method} is not supported"})
return None
async def tts_handle(req: dict):
"""
Text to speech handler.
Args:
req (dict):
{
"text": "", # str.(required) text to be synthesized
"text_lang: "", # str.(required) language of the text to be synthesized
"ref_audio_path": "", # str.(required) reference audio path
"prompt_text": "", # str.(optional) prompt text for the reference audio
"prompt_lang": "", # str.(required) language of the prompt text for the reference audio
"top_k": 5, # int. top k sampling
"top_p": 1, # float. top p sampling
"temperature": 1, # float. temperature for sampling
"text_split_method": "cut5", # str. text split method, see text_segmentation_method.py for details.
"batch_size": 1, # int. batch size for inference
"batch_threshold": 0.75, # float. threshold for batch splitting.
"split_bucket: True, # bool. whether to split the batch into multiple buckets.
"speed_factor":1.0, # float. control the speed of the synthesized audio.
"fragment_interval":0.3, # float. to control the interval of the audio fragment.
"seed": -1, # int. random seed for reproducibility.
"media_type": "wav", # str. media type of the output audio, support "wav", "raw", "ogg", "aac".
"streaming_mode": False, # bool. whether to return a streaming response.
"parallel_infer": True, # bool.(optional) whether to use parallel inference.
"repetition_penalty": 1.35 # float.(optional) repetition penalty for T2S model.
}
returns:
StreamingResponse: audio stream response.
"""
streaming_mode = req.get("streaming_mode", False)
media_type = req.get("media_type", "wav")
tts_infer_yaml_path = req.get("tts_infer_yaml_path", "GPT_SoVITS/configs/tts_infer.yaml")
tts_config = TTS_Config(tts_infer_yaml_path)
check_res = check_params(req, tts_config)
if check_res is not None:
return check_res
if streaming_mode:
req["return_fragment"] = True
try:
tts_instance = get_tts_instance(tts_config)
move_to_gpu(tts_instance, tts_config)
tts_generator = tts_instance.run(req)
if streaming_mode:
def streaming_generator(tts_generator: Generator, media_type: str):
if media_type == "wav":
yield wave_header_chunk()
media_type = "raw"
for sr, chunk in tts_generator:
yield pack_audio(BytesIO(), chunk, sr, media_type).getvalue()
move_to_cpu(tts_instance)
# _media_type = f"audio/{media_type}" if not (streaming_mode and media_type in ["wav", "raw"]) else f"audio/x-{media_type}"
return StreamingResponse(streaming_generator(tts_generator, media_type, ), media_type=f"audio/{media_type}")
else:
sr, audio_data = next(tts_generator)
audio_data = pack_audio(BytesIO(), audio_data, sr, media_type).getvalue()
move_to_cpu(tts_instance)
return Response(audio_data, media_type=f"audio/{media_type}")
except Exception as e:
return JSONResponse(status_code=400, content={"message": f"tts failed", "Exception": str(e)})
def move_to_cpu(tts):
cpu_device = torch.device('cpu')
tts.set_device(cpu_device)
print("Moved TTS models to CPU to save GPU memory.")
def move_to_gpu(tts: TTS, tts_config: TTS_Config):
tts.set_device(tts_config.device)
print("Moved TTS models back to GPU for performance.")
@APP.get("/control")
async def control(command: str = None):
if command is None:
return JSONResponse(status_code=400, content={"message": "command is required"})
handle_control(command)
@APP.get("/tts")
async def tts_get_endpoint(
text: str = None,
text_lang: str = None,
ref_audio_path: str = None,
prompt_lang: str = None,
prompt_text: str = "",
top_k: int = 5,
top_p: float = 1,
temperature: float = 1,
text_split_method: str = "cut0",
batch_size: int = 1,
batch_threshold: float = 0.75,
split_bucket: bool = True,
speed_factor: float = 1.0,
fragment_interval: float = 0.3,
seed: int = -1,
media_type: str = "wav",
streaming_mode: bool = False,
parallel_infer: bool = True,
repetition_penalty: float = 1.35,
tts_infer_yaml_path: str = "GPT_SoVITS/configs/tts_infer.yaml"
):
req = {
"text": text,
"text_lang": text_lang.lower(),
"ref_audio_path": ref_audio_path,
"prompt_text": prompt_text,
"prompt_lang": prompt_lang.lower(),
"top_k": top_k,
"top_p": top_p,
"temperature": temperature,
"text_split_method": text_split_method,
"batch_size": int(batch_size),
"batch_threshold": float(batch_threshold),
"speed_factor": float(speed_factor),
"split_bucket": split_bucket,
"fragment_interval": fragment_interval,
"seed": seed,
"media_type": media_type,
"streaming_mode": streaming_mode,
"parallel_infer": parallel_infer,
"repetition_penalty": float(repetition_penalty),
"tts_infer_yaml_path": tts_infer_yaml_path
}
return await tts_handle(req)
@APP.post("/tts")
async def tts_post_endpoint(request: TTS_Request):
req = request.dict()
return await tts_handle(req)
@APP.get("/set_refer_audio")
async def set_refer_audio(refer_audio_path: str = None, tts_infer_yaml_path: str = "GPT_SoVITS/configs/tts_infer.yaml"):
try:
tts_config = TTS_Config(tts_infer_yaml_path)
tts_instance = get_tts_instance(tts_config)
tts_instance.set_ref_audio(refer_audio_path)
except Exception as e:
return JSONResponse(status_code=400, content={"message": f"set refer audio failed", "Exception": str(e)})
return JSONResponse(status_code=200, content={"message": "success"})
@APP.get("/set_gpt_weights")
async def set_gpt_weights(weights_path: str = None, tts_infer_yaml_path: str = "GPT_SoVITS/configs/tts_infer.yaml"):
try:
if weights_path in ["", None]:
return JSONResponse(status_code=400, content={"message": "gpt weight path is required"})
tts_config = TTS_Config(tts_infer_yaml_path)
tts_instance = get_tts_instance(tts_config)
tts_instance.init_t2s_weights(weights_path)
except Exception as e:
return JSONResponse(status_code=400, content={"message": f"change gpt weight failed", "Exception": str(e)})
return JSONResponse(status_code=200, content={"message": "success"})
@APP.get("/set_sovits_weights")
async def set_sovits_weights(weights_path: str = None, tts_infer_yaml_path: str = "GPT_SoVITS/configs/tts_infer.yaml"):
try:
if weights_path in ["", None]:
return JSONResponse(status_code=400, content={"message": "sovits weight path is required"})
tts_config = TTS_Config(tts_infer_yaml_path)
tts_instance = get_tts_instance(tts_config)
tts_instance.init_vits_weights(weights_path)
except Exception as e:
return JSONResponse(status_code=400, content={"message": f"change sovits weight failed", "Exception": str(e)})
return JSONResponse(status_code=200, content={"message": "success"})
if __name__ == "__main__":
try:
uvicorn.run(APP, host=host, port=port, workers=1)
except Exception as e:
traceback.print_exc()
os.kill(os.getpid(), signal.SIGTERM)
exit(0)