feat:clean up export logics and add notes

This commit is contained in:
zpeng11 2025-08-24 02:00:32 -04:00
parent e4d1894a8f
commit 48d52778ce
3 changed files with 70 additions and 36 deletions

View File

@ -1025,8 +1025,28 @@ def fbank_onnx(
) -> Tensor:
r"""ONNX-compatible fbank function with hardcoded parameters from traced call:
num_mel_bins=80, sample_frequency=16000, dither=0
All other parameters use their traced default values.
blackman_coeff: float = 0.42,
channel: int = -1,
energy_floor: float = 1.0,
frame_length: float = 25.0,
frame_shift: float = 10.0,
high_freq: float = 0.0,
htk_compat: bool = False,
low_freq: float = 20.0,
min_duration: float = 0.0,
preemphasis_coefficient: float = 0.97,
raw_energy: bool = True,
remove_dc_offset: bool = True,
round_to_power_of_two: bool = True,
snip_edges: bool = True,
subtract_mean: bool = False,
use_energy: bool = False,
use_log_fbank: bool = True,
use_power: bool = True,
vtln_high: float = -500.0,
vtln_low: float = 100.0,
vtln_warp: float = 1.0,
window_type: str = POVEY
Args:
waveform (Tensor): Tensor of audio of size (c, n) where c is in the range [0,2)

View File

@ -11,8 +11,17 @@ from onnx import helper, TensorProto
cnhubert_base_path = "GPT_SoVITS/pretrained_models/chinese-hubert-base"
from transformers import HubertModel, HubertConfig
import os
from tqdm import tqdm
import json
from text import cleaned_text_to_sequence
import onnxsim
def simplify_onnx_model(onnx_model_path: str):
# Load the ONNX model
model = onnx.load(onnx_model_path)
# Simplify the model
model_simplified, _ = onnxsim.simplify(model)
# Save the simplified model
onnx.save(model_simplified, onnx_model_path)
def spectrogram_torch(y, n_fft, sampling_rate, hop_size, win_size, center=False):
@ -102,7 +111,7 @@ class T2SInitStep(nn.Module):
bert = bert.unsqueeze(0)
prompt = prompt_semantic.unsqueeze(0)
[y, k, v, y_emb, x_example] = self.fsdc(self.encoder(all_phoneme_ids, bert), prompt, top_k=top_k, top_p=top_p, repetition_penalty=repetition_penalty, temperature=temperature)
fake_logits = torch.randn((1, 1025), dtype=torch.float32) # Dummy logits for ONNX export
fake_logits = torch.zeros((1, 1025), dtype=torch.float32) # Dummy logits for ONNX export
fake_samples = torch.zeros((1, 1), dtype=torch.int32) # Dummy samples for ONNX export
return y, k, v, y_emb, x_example, fake_logits, fake_samples
@ -113,7 +122,7 @@ class T2SStageStep(nn.Module):
def forward(self, iy, ik, iv, iy_emb, ix_example, top_k=None, top_p=None, repetition_penalty=None, temperature=None):
[y, k, v, y_emb, logits, samples] = self.stage_decoder(iy, ik, iv, iy_emb, ix_example, top_k=top_k, top_p=top_p, repetition_penalty=repetition_penalty, temperature=temperature)
fake_x_example = torch.randn((1, 512), dtype=torch.float32) # Dummy x_example for ONNX export
fake_x_example = torch.zeros((1, 512), dtype=torch.float32) # Dummy x_example for ONNX export
return y, k, v, y_emb, fake_x_example, logits, samples
class T2SModel(nn.Module):
@ -134,22 +143,18 @@ class T2SModel(nn.Module):
self.init_step = T2SInitStep(self.t2s_model, self.vits_model)
self.first_stage_decoder = self.t2s_model.first_stage_decoder
self.stage_decoder = self.t2s_model.stage_decoder
# self.t2s_model = torch.jit.script(self.t2s_model)
def forward(self, ref_seq, text_seq, ref_bert, text_bert, ssl_content, top_k=None, top_p=None, repetition_penalty=None, temperature=None):
early_stop_num = self.t2s_model.early_stop_num
# [1,N] [1,N] [N, 1024] [N, 1024] [1, 768, N]
y, k, v, y_emb, x_example, fake_logits, fake_samples = self.init_step(ref_seq, text_seq, ref_bert, text_bert, ssl_content, top_k=top_k, top_p=top_p, repetition_penalty=repetition_penalty, temperature=temperature)
for idx in tqdm(range(1, 20)): # This is a fake one! do take this as reference
# [1, N] [N_layer, N, 1, 512] [N_layer, N, 1, 512] [1, N, 512] [1] [1, N, 512] [1, N]
for idx in range(5): # This is a fake one! DO NOT take this as reference
enco = self.stage_decoder(y, k, v, y_emb, x_example, top_k=top_k, top_p=top_p, repetition_penalty=repetition_penalty, temperature=temperature)
y, k, v, y_emb, logits, samples = enco
if torch.argmax(logits, dim=-1)[0] == self.t2s_model.EOS or samples[0, 0] == self.t2s_model.EOS:
break
# if torch.argmax(logits, dim=-1)[0] == self.t2s_model.EOS or samples[0, 0] == self.t2s_model.EOS:
# break
return y[:, -idx:].unsqueeze(0)
return y[:, -5:].unsqueeze(0)
def export(self, ref_seq, text_seq, ref_bert, text_bert, ssl_content, project_name, top_k=None, top_p=None, repetition_penalty=None, temperature=None):
torch.onnx.export(
@ -167,13 +172,14 @@ class T2SModel(nn.Module):
},
opset_version=16,
)
simplify_onnx_model(f"onnx/{project_name}/{project_name}_t2s_init_step.onnx")
y, k, v, y_emb, x_example, fake_logits, fake_samples = self.init_step(ref_seq, text_seq, ref_bert, text_bert, ssl_content, top_k=top_k, top_p=top_p, repetition_penalty=repetition_penalty, temperature=temperature)
stage_step = T2SStageStep(self.stage_decoder)
torch.onnx.export(
stage_step,
(y, k, v, y_emb, x_example, top_k, top_p, repetition_penalty, temperature),
f"onnx/{project_name}/{project_name}_t2s_sdec.onnx",
f"onnx/{project_name}/{project_name}_t2s_stage_step.onnx",
input_names=["iy", "ik", "iv", "iy_emb", "ix_example", "top_k", "top_p", "repetition_penalty", "temperature"],
output_names=["y", "k", "v", "y_emb","x_example", "logits", "samples"],
dynamic_axes={
@ -187,6 +193,7 @@ class T2SModel(nn.Module):
verbose=False,
opset_version=16,
)
simplify_onnx_model(f"onnx/{project_name}/{project_name}_t2s_stage_step.onnx")
class VitsModel(nn.Module):
@ -248,6 +255,7 @@ class GptSoVits(nn.Module):
opset_version=17,
verbose=False,
)
simplify_onnx_model(f"onnx/{project_name}/{project_name}_vits.onnx")
class AudioPreprocess(nn.Module):
@ -347,7 +355,7 @@ def combineInitStepAndStageStep(init_step_onnx_path, stage_step_onnx_path, combi
print(f"Combined model saved to {combined_onnx_path}")
def export(vits_path, gpt_path, project_name, voice_model_version="v2"):
def export(vits_path, gpt_path, project_name, voice_model_version, t2s_model_combine=False, export_audio_preprocessor=True):
vits = VitsModel(vits_path, version=voice_model_version)
gpt = T2SModel(gpt_path, vits)
gpt_sovits = GptSoVits(vits, gpt)
@ -409,7 +417,7 @@ def export(vits_path, gpt_path, project_name, voice_model_version="v2"):
)
ref_bert = torch.randn((ref_seq.shape[1], 1024)).float()
text_bert = torch.randn((text_seq.shape[1], 1024)).float()
ref_audio32k = torch.randn((1, 32000 * 5)).float() - 0.5
ref_audio32k = torch.randn((1, 32000 * 5)).float() - 0.5 # 5 seconds of dummy audio
top_k = torch.LongTensor([15])
top_p = torch.FloatTensor([1.0])
repetition_penalty = torch.FloatTensor([1.0])
@ -422,7 +430,8 @@ def export(vits_path, gpt_path, project_name, voice_model_version="v2"):
# exit()
gpt_sovits.export(ref_seq, text_seq, ref_bert, text_bert, ssl_content.float(), spectrum.float(), sv_emb.float(), project_name, top_k=top_k, top_p=top_p, repetition_penalty=repetition_penalty, temperature=temperature)
torch.onnx.export(preprocessor, (ref_audio32k,), f"onnx/{project_name}/{project_name}_audio_preprocess.onnx",
if export_audio_preprocessor:
torch.onnx.export(preprocessor, (ref_audio32k,), f"onnx/{project_name}/{project_name}_audio_preprocess.onnx",
input_names=["audio32k"],
output_names=["hubert_ssl_output", "spectrum", "sv_emb"],
dynamic_axes={
@ -430,6 +439,11 @@ def export(vits_path, gpt_path, project_name, voice_model_version="v2"):
"hubert_ssl_output": {2: "hubert_length"},
"spectrum": {2: "spectrum_length"}
})
simplify_onnx_model(f"onnx/{project_name}/{project_name}_audio_preprocess.onnx")
if t2s_model_combine:
combineInitStepAndStageStep(f'onnx/{project_name}/{project_name}_t2s_init_step.onnx', f'onnx/{project_name}/{project_name}_t2s_stage_step.onnx', f'onnx/{project_name}/{project_name}_t2s_combined.onnx')
if __name__ == "__main__":
try:
@ -437,32 +451,31 @@ if __name__ == "__main__":
except:
pass
# 因为io太频繁可能导致模型导出出错(wsl非常明显),请自行重试
gpt_path = "GPT_SoVITS/pretrained_models/s1bert25hz-2kh-longer-epoch=68e-step=50232.ckpt"
vits_path = "GPT_SoVITS/pretrained_models/s2G488k.pth"
exp_path = "v1_export"
version = "v1"
export(vits_path, gpt_path, exp_path, version, t2s_model_combine = True)
gpt_path = "GPT_SoVITS/pretrained_models/gsv-v2final-pretrained/s1bert25hz-5kh-longer-epoch=12-step=369668.ckpt"
vits_path = "GPT_SoVITS/pretrained_models/gsv-v2final-pretrained/s2G2333k.pth"
exp_path = "v2_export"
version = "v2"
export(vits_path, gpt_path, exp_path, version, t2s_model_combine = True)
# gpt_path = "GPT_SoVITS/pretrained_models/s1bert25hz-2kh-longer-epoch=68e-step=50232.ckpt"
# vits_path = "GPT_SoVITS/pretrained_models/s2G488k.pth"
# exp_path = "v1_export"
# version = "v1"
# export(vits_path, gpt_path, exp_path, version)
# gpt_path = "GPT_SoVITS/pretrained_models/gsv-v2final-pretrained/s1bert25hz-5kh-longer-epoch=12-step=369668.ckpt"
# vits_path = "GPT_SoVITS/pretrained_models/gsv-v2final-pretrained/s2G2333k.pth"
# exp_path = "v2_export"
# version = "v2"
# export(vits_path, gpt_path, exp_path, version)
# combineInitStepAndStageStep('onnx/v2_export/v2_export_t2s_init_step.onnx', 'onnx/v2_export/v2_export_t2s_sdec.onnx', 'onnx/v2_export/v2_export_t2s_combined.onnx')
# gpt_path = "GPT_SoVITS/pretrained_models/s1v3.ckpt"
# vits_path = "GPT_SoVITS/pretrained_models/v2Pro/s2Gv2Pro.pth"
# exp_path = "v2pro_export"
# version = "v2Pro"
# export(vits_path, gpt_path, exp_path, version)
gpt_path = "GPT_SoVITS/pretrained_models/s1v3.ckpt"
vits_path = "GPT_SoVITS/pretrained_models/v2Pro/s2Gv2Pro.pth"
exp_path = "v2pro_export"
version = "v2Pro"
export(vits_path, gpt_path, exp_path, version, t2s_model_combine = True)
gpt_path = "GPT_SoVITS/pretrained_models/gsv-v2final-pretrained/s1bert25hz-5kh-longer-epoch=12-step=369668.ckpt"
vits_path = "GPT_SoVITS/pretrained_models/v2Pro/s2Gv2ProPlus.pth"
exp_path = "v2proplus_export"
version = "v2ProPlus"
export(vits_path, gpt_path, exp_path, version)
combineInitStepAndStageStep('onnx/v2proplus_export/v2proplus_export_t2s_init_step.onnx', 'onnx/v2proplus_export/v2proplus_export_t2s_sdec.onnx', 'onnx/v2proplus_export/v2proplus_export_t2s_combined.onnx')
export(vits_path, gpt_path, exp_path, version, t2s_model_combine = True)

View File

@ -10,6 +10,7 @@ ffmpeg-python
onnx
onnxruntime; platform_machine == "aarch64" or platform_machine == "arm64"
onnxruntime-gpu; platform_machine == "x86_64" or platform_machine == "AMD64"
onnxsim
tqdm
funasr==1.0.27
cn2an