feat:clean up export logics and add notes

This commit is contained in:
zpeng11 2025-08-24 02:00:32 -04:00
parent e4d1894a8f
commit 48d52778ce
3 changed files with 70 additions and 36 deletions

View File

@ -1025,8 +1025,28 @@ def fbank_onnx(
) -> Tensor: ) -> Tensor:
r"""ONNX-compatible fbank function with hardcoded parameters from traced call: r"""ONNX-compatible fbank function with hardcoded parameters from traced call:
num_mel_bins=80, sample_frequency=16000, dither=0 num_mel_bins=80, sample_frequency=16000, dither=0
blackman_coeff: float = 0.42,
All other parameters use their traced default values. channel: int = -1,
energy_floor: float = 1.0,
frame_length: float = 25.0,
frame_shift: float = 10.0,
high_freq: float = 0.0,
htk_compat: bool = False,
low_freq: float = 20.0,
min_duration: float = 0.0,
preemphasis_coefficient: float = 0.97,
raw_energy: bool = True,
remove_dc_offset: bool = True,
round_to_power_of_two: bool = True,
snip_edges: bool = True,
subtract_mean: bool = False,
use_energy: bool = False,
use_log_fbank: bool = True,
use_power: bool = True,
vtln_high: float = -500.0,
vtln_low: float = 100.0,
vtln_warp: float = 1.0,
window_type: str = POVEY
Args: Args:
waveform (Tensor): Tensor of audio of size (c, n) where c is in the range [0,2) waveform (Tensor): Tensor of audio of size (c, n) where c is in the range [0,2)

View File

@ -11,8 +11,17 @@ from onnx import helper, TensorProto
cnhubert_base_path = "GPT_SoVITS/pretrained_models/chinese-hubert-base" cnhubert_base_path = "GPT_SoVITS/pretrained_models/chinese-hubert-base"
from transformers import HubertModel, HubertConfig from transformers import HubertModel, HubertConfig
import os import os
from tqdm import tqdm import json
from text import cleaned_text_to_sequence from text import cleaned_text_to_sequence
import onnxsim
def simplify_onnx_model(onnx_model_path: str):
# Load the ONNX model
model = onnx.load(onnx_model_path)
# Simplify the model
model_simplified, _ = onnxsim.simplify(model)
# Save the simplified model
onnx.save(model_simplified, onnx_model_path)
def spectrogram_torch(y, n_fft, sampling_rate, hop_size, win_size, center=False): def spectrogram_torch(y, n_fft, sampling_rate, hop_size, win_size, center=False):
@ -102,7 +111,7 @@ class T2SInitStep(nn.Module):
bert = bert.unsqueeze(0) bert = bert.unsqueeze(0)
prompt = prompt_semantic.unsqueeze(0) prompt = prompt_semantic.unsqueeze(0)
[y, k, v, y_emb, x_example] = self.fsdc(self.encoder(all_phoneme_ids, bert), prompt, top_k=top_k, top_p=top_p, repetition_penalty=repetition_penalty, temperature=temperature) [y, k, v, y_emb, x_example] = self.fsdc(self.encoder(all_phoneme_ids, bert), prompt, top_k=top_k, top_p=top_p, repetition_penalty=repetition_penalty, temperature=temperature)
fake_logits = torch.randn((1, 1025), dtype=torch.float32) # Dummy logits for ONNX export fake_logits = torch.zeros((1, 1025), dtype=torch.float32) # Dummy logits for ONNX export
fake_samples = torch.zeros((1, 1), dtype=torch.int32) # Dummy samples for ONNX export fake_samples = torch.zeros((1, 1), dtype=torch.int32) # Dummy samples for ONNX export
return y, k, v, y_emb, x_example, fake_logits, fake_samples return y, k, v, y_emb, x_example, fake_logits, fake_samples
@ -113,7 +122,7 @@ class T2SStageStep(nn.Module):
def forward(self, iy, ik, iv, iy_emb, ix_example, top_k=None, top_p=None, repetition_penalty=None, temperature=None): def forward(self, iy, ik, iv, iy_emb, ix_example, top_k=None, top_p=None, repetition_penalty=None, temperature=None):
[y, k, v, y_emb, logits, samples] = self.stage_decoder(iy, ik, iv, iy_emb, ix_example, top_k=top_k, top_p=top_p, repetition_penalty=repetition_penalty, temperature=temperature) [y, k, v, y_emb, logits, samples] = self.stage_decoder(iy, ik, iv, iy_emb, ix_example, top_k=top_k, top_p=top_p, repetition_penalty=repetition_penalty, temperature=temperature)
fake_x_example = torch.randn((1, 512), dtype=torch.float32) # Dummy x_example for ONNX export fake_x_example = torch.zeros((1, 512), dtype=torch.float32) # Dummy x_example for ONNX export
return y, k, v, y_emb, fake_x_example, logits, samples return y, k, v, y_emb, fake_x_example, logits, samples
class T2SModel(nn.Module): class T2SModel(nn.Module):
@ -134,22 +143,18 @@ class T2SModel(nn.Module):
self.init_step = T2SInitStep(self.t2s_model, self.vits_model) self.init_step = T2SInitStep(self.t2s_model, self.vits_model)
self.first_stage_decoder = self.t2s_model.first_stage_decoder self.first_stage_decoder = self.t2s_model.first_stage_decoder
self.stage_decoder = self.t2s_model.stage_decoder self.stage_decoder = self.t2s_model.stage_decoder
# self.t2s_model = torch.jit.script(self.t2s_model)
def forward(self, ref_seq, text_seq, ref_bert, text_bert, ssl_content, top_k=None, top_p=None, repetition_penalty=None, temperature=None): def forward(self, ref_seq, text_seq, ref_bert, text_bert, ssl_content, top_k=None, top_p=None, repetition_penalty=None, temperature=None):
early_stop_num = self.t2s_model.early_stop_num
# [1,N] [1,N] [N, 1024] [N, 1024] [1, 768, N] # [1,N] [1,N] [N, 1024] [N, 1024] [1, 768, N]
y, k, v, y_emb, x_example, fake_logits, fake_samples = self.init_step(ref_seq, text_seq, ref_bert, text_bert, ssl_content, top_k=top_k, top_p=top_p, repetition_penalty=repetition_penalty, temperature=temperature) y, k, v, y_emb, x_example, fake_logits, fake_samples = self.init_step(ref_seq, text_seq, ref_bert, text_bert, ssl_content, top_k=top_k, top_p=top_p, repetition_penalty=repetition_penalty, temperature=temperature)
for idx in tqdm(range(1, 20)): # This is a fake one! do take this as reference for idx in range(5): # This is a fake one! DO NOT take this as reference
# [1, N] [N_layer, N, 1, 512] [N_layer, N, 1, 512] [1, N, 512] [1] [1, N, 512] [1, N]
enco = self.stage_decoder(y, k, v, y_emb, x_example, top_k=top_k, top_p=top_p, repetition_penalty=repetition_penalty, temperature=temperature) enco = self.stage_decoder(y, k, v, y_emb, x_example, top_k=top_k, top_p=top_p, repetition_penalty=repetition_penalty, temperature=temperature)
y, k, v, y_emb, logits, samples = enco y, k, v, y_emb, logits, samples = enco
if torch.argmax(logits, dim=-1)[0] == self.t2s_model.EOS or samples[0, 0] == self.t2s_model.EOS: # if torch.argmax(logits, dim=-1)[0] == self.t2s_model.EOS or samples[0, 0] == self.t2s_model.EOS:
break # break
return y[:, -idx:].unsqueeze(0) return y[:, -5:].unsqueeze(0)
def export(self, ref_seq, text_seq, ref_bert, text_bert, ssl_content, project_name, top_k=None, top_p=None, repetition_penalty=None, temperature=None): def export(self, ref_seq, text_seq, ref_bert, text_bert, ssl_content, project_name, top_k=None, top_p=None, repetition_penalty=None, temperature=None):
torch.onnx.export( torch.onnx.export(
@ -167,13 +172,14 @@ class T2SModel(nn.Module):
}, },
opset_version=16, opset_version=16,
) )
simplify_onnx_model(f"onnx/{project_name}/{project_name}_t2s_init_step.onnx")
y, k, v, y_emb, x_example, fake_logits, fake_samples = self.init_step(ref_seq, text_seq, ref_bert, text_bert, ssl_content, top_k=top_k, top_p=top_p, repetition_penalty=repetition_penalty, temperature=temperature) y, k, v, y_emb, x_example, fake_logits, fake_samples = self.init_step(ref_seq, text_seq, ref_bert, text_bert, ssl_content, top_k=top_k, top_p=top_p, repetition_penalty=repetition_penalty, temperature=temperature)
stage_step = T2SStageStep(self.stage_decoder) stage_step = T2SStageStep(self.stage_decoder)
torch.onnx.export( torch.onnx.export(
stage_step, stage_step,
(y, k, v, y_emb, x_example, top_k, top_p, repetition_penalty, temperature), (y, k, v, y_emb, x_example, top_k, top_p, repetition_penalty, temperature),
f"onnx/{project_name}/{project_name}_t2s_sdec.onnx", f"onnx/{project_name}/{project_name}_t2s_stage_step.onnx",
input_names=["iy", "ik", "iv", "iy_emb", "ix_example", "top_k", "top_p", "repetition_penalty", "temperature"], input_names=["iy", "ik", "iv", "iy_emb", "ix_example", "top_k", "top_p", "repetition_penalty", "temperature"],
output_names=["y", "k", "v", "y_emb","x_example", "logits", "samples"], output_names=["y", "k", "v", "y_emb","x_example", "logits", "samples"],
dynamic_axes={ dynamic_axes={
@ -187,6 +193,7 @@ class T2SModel(nn.Module):
verbose=False, verbose=False,
opset_version=16, opset_version=16,
) )
simplify_onnx_model(f"onnx/{project_name}/{project_name}_t2s_stage_step.onnx")
class VitsModel(nn.Module): class VitsModel(nn.Module):
@ -248,6 +255,7 @@ class GptSoVits(nn.Module):
opset_version=17, opset_version=17,
verbose=False, verbose=False,
) )
simplify_onnx_model(f"onnx/{project_name}/{project_name}_vits.onnx")
class AudioPreprocess(nn.Module): class AudioPreprocess(nn.Module):
@ -347,7 +355,7 @@ def combineInitStepAndStageStep(init_step_onnx_path, stage_step_onnx_path, combi
print(f"Combined model saved to {combined_onnx_path}") print(f"Combined model saved to {combined_onnx_path}")
def export(vits_path, gpt_path, project_name, voice_model_version="v2"): def export(vits_path, gpt_path, project_name, voice_model_version, t2s_model_combine=False, export_audio_preprocessor=True):
vits = VitsModel(vits_path, version=voice_model_version) vits = VitsModel(vits_path, version=voice_model_version)
gpt = T2SModel(gpt_path, vits) gpt = T2SModel(gpt_path, vits)
gpt_sovits = GptSoVits(vits, gpt) gpt_sovits = GptSoVits(vits, gpt)
@ -409,7 +417,7 @@ def export(vits_path, gpt_path, project_name, voice_model_version="v2"):
) )
ref_bert = torch.randn((ref_seq.shape[1], 1024)).float() ref_bert = torch.randn((ref_seq.shape[1], 1024)).float()
text_bert = torch.randn((text_seq.shape[1], 1024)).float() text_bert = torch.randn((text_seq.shape[1], 1024)).float()
ref_audio32k = torch.randn((1, 32000 * 5)).float() - 0.5 ref_audio32k = torch.randn((1, 32000 * 5)).float() - 0.5 # 5 seconds of dummy audio
top_k = torch.LongTensor([15]) top_k = torch.LongTensor([15])
top_p = torch.FloatTensor([1.0]) top_p = torch.FloatTensor([1.0])
repetition_penalty = torch.FloatTensor([1.0]) repetition_penalty = torch.FloatTensor([1.0])
@ -422,7 +430,8 @@ def export(vits_path, gpt_path, project_name, voice_model_version="v2"):
# exit() # exit()
gpt_sovits.export(ref_seq, text_seq, ref_bert, text_bert, ssl_content.float(), spectrum.float(), sv_emb.float(), project_name, top_k=top_k, top_p=top_p, repetition_penalty=repetition_penalty, temperature=temperature) gpt_sovits.export(ref_seq, text_seq, ref_bert, text_bert, ssl_content.float(), spectrum.float(), sv_emb.float(), project_name, top_k=top_k, top_p=top_p, repetition_penalty=repetition_penalty, temperature=temperature)
torch.onnx.export(preprocessor, (ref_audio32k,), f"onnx/{project_name}/{project_name}_audio_preprocess.onnx", if export_audio_preprocessor:
torch.onnx.export(preprocessor, (ref_audio32k,), f"onnx/{project_name}/{project_name}_audio_preprocess.onnx",
input_names=["audio32k"], input_names=["audio32k"],
output_names=["hubert_ssl_output", "spectrum", "sv_emb"], output_names=["hubert_ssl_output", "spectrum", "sv_emb"],
dynamic_axes={ dynamic_axes={
@ -430,6 +439,11 @@ def export(vits_path, gpt_path, project_name, voice_model_version="v2"):
"hubert_ssl_output": {2: "hubert_length"}, "hubert_ssl_output": {2: "hubert_length"},
"spectrum": {2: "spectrum_length"} "spectrum": {2: "spectrum_length"}
}) })
simplify_onnx_model(f"onnx/{project_name}/{project_name}_audio_preprocess.onnx")
if t2s_model_combine:
combineInitStepAndStageStep(f'onnx/{project_name}/{project_name}_t2s_init_step.onnx', f'onnx/{project_name}/{project_name}_t2s_stage_step.onnx', f'onnx/{project_name}/{project_name}_t2s_combined.onnx')
if __name__ == "__main__": if __name__ == "__main__":
try: try:
@ -437,32 +451,31 @@ if __name__ == "__main__":
except: except:
pass pass
# 因为io太频繁可能导致模型导出出错(wsl非常明显),请自行重试
gpt_path = "GPT_SoVITS/pretrained_models/s1bert25hz-2kh-longer-epoch=68e-step=50232.ckpt"
vits_path = "GPT_SoVITS/pretrained_models/s2G488k.pth"
exp_path = "v1_export"
version = "v1"
export(vits_path, gpt_path, exp_path, version, t2s_model_combine = True)
# gpt_path = "GPT_SoVITS/pretrained_models/s1bert25hz-2kh-longer-epoch=68e-step=50232.ckpt" gpt_path = "GPT_SoVITS/pretrained_models/gsv-v2final-pretrained/s1bert25hz-5kh-longer-epoch=12-step=369668.ckpt"
# vits_path = "GPT_SoVITS/pretrained_models/s2G488k.pth" vits_path = "GPT_SoVITS/pretrained_models/gsv-v2final-pretrained/s2G2333k.pth"
# exp_path = "v1_export" exp_path = "v2_export"
# version = "v1" version = "v2"
# export(vits_path, gpt_path, exp_path, version) export(vits_path, gpt_path, exp_path, version, t2s_model_combine = True)
# gpt_path = "GPT_SoVITS/pretrained_models/gsv-v2final-pretrained/s1bert25hz-5kh-longer-epoch=12-step=369668.ckpt" gpt_path = "GPT_SoVITS/pretrained_models/s1v3.ckpt"
# vits_path = "GPT_SoVITS/pretrained_models/gsv-v2final-pretrained/s2G2333k.pth" vits_path = "GPT_SoVITS/pretrained_models/v2Pro/s2Gv2Pro.pth"
# exp_path = "v2_export" exp_path = "v2pro_export"
# version = "v2" version = "v2Pro"
# export(vits_path, gpt_path, exp_path, version) export(vits_path, gpt_path, exp_path, version, t2s_model_combine = True)
# combineInitStepAndStageStep('onnx/v2_export/v2_export_t2s_init_step.onnx', 'onnx/v2_export/v2_export_t2s_sdec.onnx', 'onnx/v2_export/v2_export_t2s_combined.onnx')
# gpt_path = "GPT_SoVITS/pretrained_models/s1v3.ckpt"
# vits_path = "GPT_SoVITS/pretrained_models/v2Pro/s2Gv2Pro.pth"
# exp_path = "v2pro_export"
# version = "v2Pro"
# export(vits_path, gpt_path, exp_path, version)
gpt_path = "GPT_SoVITS/pretrained_models/gsv-v2final-pretrained/s1bert25hz-5kh-longer-epoch=12-step=369668.ckpt" gpt_path = "GPT_SoVITS/pretrained_models/gsv-v2final-pretrained/s1bert25hz-5kh-longer-epoch=12-step=369668.ckpt"
vits_path = "GPT_SoVITS/pretrained_models/v2Pro/s2Gv2ProPlus.pth" vits_path = "GPT_SoVITS/pretrained_models/v2Pro/s2Gv2ProPlus.pth"
exp_path = "v2proplus_export" exp_path = "v2proplus_export"
version = "v2ProPlus" version = "v2ProPlus"
export(vits_path, gpt_path, exp_path, version) export(vits_path, gpt_path, exp_path, version, t2s_model_combine = True)
combineInitStepAndStageStep('onnx/v2proplus_export/v2proplus_export_t2s_init_step.onnx', 'onnx/v2proplus_export/v2proplus_export_t2s_sdec.onnx', 'onnx/v2proplus_export/v2proplus_export_t2s_combined.onnx')

View File

@ -10,6 +10,7 @@ ffmpeg-python
onnx onnx
onnxruntime; platform_machine == "aarch64" or platform_machine == "arm64" onnxruntime; platform_machine == "aarch64" or platform_machine == "arm64"
onnxruntime-gpu; platform_machine == "x86_64" or platform_machine == "AMD64" onnxruntime-gpu; platform_machine == "x86_64" or platform_machine == "AMD64"
onnxsim
tqdm tqdm
funasr==1.0.27 funasr==1.0.27
cn2an cn2an