Merge a889187b84da1ed91b7d99d2a317f930926374f8 into 9da7e17efe05041e31d3c3f42c8730ae890397f2

This commit is contained in:
Ναρουσέ·μ·γιουμεμί·Χινακάννα 2025-04-03 16:43:23 +08:00 committed by GitHub
commit 46b56cdc1a
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
6 changed files with 1082 additions and 591 deletions

View File

@ -1,5 +1,4 @@
# modified from https://github.com/yangdongchao/SoundStorm/blob/master/soundstorm/s1/AR/models/t2s_lightning_module.py
# reference: https://github.com/lifeiteng/vall-e
# modified from https://github.com/feng-yufei/shared_debugging_code/blob/main/model/t2s_lightning_module.py
import os, sys
now_dir = os.getcwd()

View File

@ -1,81 +1,88 @@
# modified from https://github.com/yangdongchao/SoundStorm/blob/master/soundstorm/s1/AR/models/t2s_model.py
# reference: https://github.com/lifeiteng/vall-e
import math
from typing import List, Optional
import torch
from tqdm import tqdm
from AR.modules.embedding_onnx import SinePositionalEmbedding
from AR.modules.embedding_onnx import TokenEmbedding
from AR.modules.transformer_onnx import LayerNorm
from AR.modules.transformer_onnx import TransformerEncoder
from AR.modules.transformer_onnx import TransformerEncoderLayer
from AR.models.utils import (
sample,
)
from AR.modules.embedding import TokenEmbedding
from AR.modules.transformer import LayerNorm
from AR.modules.transformer import TransformerEncoder
from AR.modules.transformer import TransformerEncoderLayer
from torch import nn
from torch.nn import functional as F
from torchmetrics.classification import MulticlassAccuracy
from torch.distributions import Exponential
ISONNXEXPORT = False
default_config = {
"embedding_dim": 512,
"hidden_dim": 512,
"num_head": 8,
"num_layers": 12,
"num_codebook": 8,
"p_dropout": 0.0,
"vocab_size": 1024 + 1,
"phoneme_vocab_size": 512,
"EOS": 1024,
"model": {
"vocab_size": 1025,
"phoneme_vocab_size": 512,
"embedding_dim": 1024,
"hidden_dim": 1024,
"head": 16,
"linear_units": 2048,
"n_layer": 16,
"dropout": 0,
"EOS": 1024,
}
}
inf_tensor_value = torch.FloatTensor([-float("Inf")]).float()
def multinomial_sample_one_no_sync(
probs_sort,
): # Does multinomial sampling without a cuda synchronization
q = -torch.log(torch.rand_like(probs_sort)) #https://github.com/RVC-Boss/GPT-SoVITS/pull/835
return torch.argmax(probs_sort / q, dim=-1, keepdim=True).to(dtype=torch.long)
def logits_to_probs(
logits,
previous_tokens = None,
temperature: float = 1.0,
top_k = None,
top_p = None,
repetition_penalty: float = 1.0,
previous_tokens: torch.Tensor,
temperature: torch.Tensor,
top_k: torch.Tensor,
top_p: torch.Tensor,
repetition_penalty: torch.Tensor
):
previous_tokens = previous_tokens.squeeze()
if previous_tokens is not None and repetition_penalty != 1.0:
previous_tokens = previous_tokens.long()
score = torch.gather(logits, dim=0, index=previous_tokens)
score = torch.where(
score < 0, score * repetition_penalty, score / repetition_penalty
)
logits.scatter_(dim=0, index=previous_tokens, src=score)
# if previous_tokens is not None:
# previous_tokens = previous_tokens.squeeze()
# print(logits.shape,previous_tokens.shape)
# pdb.set_trace()
previous_tokens = previous_tokens.long()
score = torch.gather(logits, dim=1, index=previous_tokens)
score = torch.where(
score < 0, score * repetition_penalty, score / repetition_penalty
)
logits.scatter_(dim=1, index=previous_tokens, src=score)
if top_p is not None and top_p < 1.0:
sorted_logits, sorted_indices = torch.sort(logits, descending=True)
cum_probs = torch.cumsum(
torch.nn.functional.softmax(sorted_logits, dim=-1), dim=-1
)
sorted_indices_to_remove = cum_probs > top_p
sorted_indices_to_remove[0] = False # keep at least one option
indices_to_remove = sorted_indices_to_remove.scatter(
dim=0, index=sorted_indices, src=sorted_indices_to_remove
)
logits = logits.masked_fill(indices_to_remove, -float("Inf"))
sorted_logits, sorted_indices = torch.sort(logits, descending=True)
cum_probs = torch.cumsum(
torch.nn.functional.softmax(sorted_logits, dim=-1), dim=-1
)
sorted_indices_to_remove = cum_probs > top_p
sorted_indices_to_remove[:, 0] = False # keep at least one option
indices_to_remove = sorted_indices_to_remove.scatter(
dim=1, index=sorted_indices, src=sorted_indices_to_remove
)
logits = logits.masked_fill(indices_to_remove, -float("Inf"))
logits = logits / max(temperature, 1e-5)
logits = logits / torch.clamp_min(temperature, 1e-5)
if top_k is not None:
v, _ = torch.topk(logits, top_k)
pivot = v.select(-1, -1).unsqueeze(-1)
logits = torch.where(logits < pivot, inf_tensor_value, logits)
v, _ = torch.topk(logits, top_k)
pivot = v[: , -1].unsqueeze(-1)
logits = torch.where(logits < pivot, -float("Inf"), logits)
probs = torch.nn.functional.softmax(logits, dim=-1)
return probs
def multinomial_sample_one_no_sync(
probs_sort
): # Does multinomial sampling without a cuda synchronization
q = torch.randn_like(probs_sort)
return torch.argmax(probs_sort / q, dim=-1, keepdim=True).to(dtype=torch.int)
def sample(
logits,
previous_tokens,
previous_tokens: Optional[torch.Tensor] = None,
**sampling_kwargs,
):
probs = logits_to_probs(
@ -84,125 +91,326 @@ def sample(
idx_next = multinomial_sample_one_no_sync(probs)
return idx_next, probs
# @torch.jit.script ## 使用的话首次推理会非常慢,而且推理速度不稳定
# Efficient implementation equivalent to the following:
def scaled_dot_product_attention(query:torch.Tensor, key:torch.Tensor, value:torch.Tensor, attn_mask:Optional[torch.Tensor]=None, scale:Optional[torch.Tensor]=None) -> torch.Tensor:
B, H, L, S =query.size(0), query.size(1), query.size(-2), key.size(-2)
if scale is None:
scale_factor = torch.tensor(1 / math.sqrt(query.size(-1)))
else:
scale_factor = scale
attn_bias = torch.zeros(B, H, L, S, dtype=query.dtype, device=query.device)
class OnnxEncoder(nn.Module):
def __init__(self, ar_text_embedding, bert_proj, ar_text_position):
super().__init__()
self.ar_text_embedding = ar_text_embedding
self.bert_proj = bert_proj
self.ar_text_position = ar_text_position
if attn_mask is not None:
if attn_mask.dtype == torch.bool:
attn_bias = attn_bias.masked_fill(attn_mask, float("-inf"))
else:
attn_bias = attn_bias + attn_mask
attn_weight = query @ key.transpose(-2, -1) * scale_factor
attn_weight += attn_bias
attn_weight = torch.softmax(attn_weight, dim=-1)
if attn_mask is not None:
if attn_mask.dtype == torch.bool:
attn_weight = attn_weight.masked_fill(attn_mask, 0)
else:
attn_mask = attn_mask.clone()
attn_mask[attn_mask!=float("-inf")] =0
attn_mask[attn_mask==float("-inf")] =1
attn_weight = attn_weight.masked_fill(attn_mask, 0)
return attn_weight @ value
@torch.jit.script
class T2SMLP:
def __init__(self, w1, b1, w2, b2):
self.w1 = w1
self.b1 = b1
self.w2 = w2
self.b2 = b2
def forward(self, x):
x = F.relu(F.linear(x, self.w1, self.b1))
x = F.linear(x, self.w2, self.b2)
return x
@torch.jit.script
class T2SBlock:
def __init__(
self,
num_heads,
hidden_dim: int,
mlp: T2SMLP,
qkv_w,
qkv_b,
out_w,
out_b,
norm_w1,
norm_b1,
norm_eps1,
norm_w2,
norm_b2,
norm_eps2,
):
self.num_heads = num_heads
self.mlp = mlp
self.hidden_dim: int = hidden_dim
self.qkv_w = qkv_w
self.qkv_b = qkv_b
self.out_w = out_w
self.out_b = out_b
self.norm_w1 = norm_w1
self.norm_b1 = norm_b1
self.norm_eps1 = norm_eps1
self.norm_w2 = norm_w2
self.norm_b2 = norm_b2
self.norm_eps2 = norm_eps2
self.false = torch.tensor(False, dtype=torch.bool)
@torch.jit.ignore
def to_mask(self, x:torch.Tensor, padding_mask:Optional[torch.Tensor]):
if padding_mask is None:
return x
if padding_mask.dtype == torch.bool:
return x.masked_fill(padding_mask, 0)
else:
return x * padding_mask
def process_prompt(self, x:torch.Tensor, attn_mask : torch.Tensor, padding_mask:Optional[torch.Tensor]=None, torch_sdpa:bool=True):
q, k, v = F.linear(self.to_mask(x, padding_mask), self.qkv_w, self.qkv_b).chunk(3, dim=-1)
batch_size = q.shape[0]
q_len = q.shape[1]
kv_len = k.shape[1]
q = self.to_mask(q, padding_mask)
k_cache = self.to_mask(k, padding_mask)
v_cache = self.to_mask(v, padding_mask)
q = q.view(batch_size, q_len, self.num_heads, -1).transpose(1, 2)
k = k_cache.view(batch_size, kv_len, self.num_heads, -1).transpose(1, 2)
v = v_cache.view(batch_size, kv_len, self.num_heads, -1).transpose(1, 2)
if torch_sdpa:
attn = F.scaled_dot_product_attention(q, k, v, ~attn_mask)
else:
attn = scaled_dot_product_attention(q, k, v, attn_mask)
attn = attn.transpose(1, 2).reshape(batch_size, q_len, -1)
attn = F.linear(self.to_mask(attn, padding_mask), self.out_w, self.out_b)
x = x + attn
x = F.layer_norm(
x, [self.hidden_dim], self.norm_w1, self.norm_b1, self.norm_eps1
)
x = x + self.mlp.forward(x)
x = F.layer_norm(
x,
[self.hidden_dim],
self.norm_w2,
self.norm_b2,
self.norm_eps2,
)
return x, k_cache, v_cache
def forward(self, x, bert_feature):
x = self.ar_text_embedding(x)
x = x + self.bert_proj(bert_feature.transpose(1, 2))
return self.ar_text_position(x)
def decode_next_token(self, x, k_cache, v_cache):
q, k, v = F.linear(x, self.qkv_w, self.qkv_b).chunk(3, dim=-1)
k_cache = torch.cat([k_cache, k], dim=1)
v_cache = torch.cat([v_cache, v], dim=1)
batch_size = q.shape[0]
q_len = q.shape[1]
kv_len = k_cache.shape[1]
q = q.view(batch_size, q_len, self.num_heads, -1).transpose(1, 2)
k = k_cache.view(batch_size, kv_len, self.num_heads, -1).transpose(1, 2)
v = v_cache.view(batch_size, kv_len, self.num_heads, -1).transpose(1, 2)
attn = F.scaled_dot_product_attention(q, k, v)
attn = attn.transpose(1, 2).reshape(batch_size, q_len, -1)
attn = F.linear(attn, self.out_w, self.out_b)
x = x + attn
x = F.layer_norm(
x, [self.hidden_dim], self.norm_w1, self.norm_b1, self.norm_eps1
)
x = x + self.mlp.forward(x)
x = F.layer_norm(
x,
[self.hidden_dim],
self.norm_w2,
self.norm_b2,
self.norm_eps2,
)
return x, k_cache, v_cache
class T2SFirstStageDecoder(nn.Module):
def __init__(self, ar_audio_embedding, ar_audio_position, h, ar_predict_layer, loss_fct, ar_accuracy_metric,
top_k, early_stop_num, num_layers):
@torch.jit.script
class T2STransformer:
def __init__(self, num_blocks : int, blocks: List[T2SBlock]):
self.num_blocks : int = num_blocks
self.blocks = blocks
def process_prompt(
self, x:torch.Tensor, attn_mask : torch.Tensor,
padding_mask : Optional[torch.Tensor]=None,
torch_sdpa:bool=True
):
k_cache : List[torch.Tensor] = []
v_cache : List[torch.Tensor] = []
for i in range(self.num_blocks):
x, k_cache_, v_cache_ = self.blocks[i].process_prompt(x, attn_mask, padding_mask, torch_sdpa)
k_cache.append(k_cache_)
v_cache.append(v_cache_)
return x, k_cache, v_cache
def decode_next_token(
self, x:torch.Tensor,
k_cache,
v_cache,
):
K_Cache = []
V_Cache = []
for i in range(self.num_blocks):
x, k, v = self.blocks[i].decode_next_token(x, k_cache[i], v_cache[i])
K_Cache.append(k)
V_Cache.append(v)
K_Cache = torch.stack(K_Cache, dim=0)
V_Cache = torch.stack(V_Cache, dim=0)
return x, K_Cache, V_Cache
class SinePositionalEmbedding(nn.Module):
def __init__(
self,
embedding_dim: int,
dropout: float = 0.0,
scale: bool = False,
alpha: bool = False,
):
super().__init__()
self.ar_audio_embedding = ar_audio_embedding
self.ar_audio_position = ar_audio_position
self.h = h
self.ar_predict_layer = ar_predict_layer
self.loss_fct = loss_fct
self.ar_accuracy_metric = ar_accuracy_metric
self.embedding_dim = embedding_dim
self.x_scale = math.sqrt(embedding_dim) if scale else 1.0
self.alpha = nn.Parameter(torch.ones(1), requires_grad=alpha)
self.dropout = torch.nn.Dropout(p=dropout)
self.reverse = False
self.pe = None
self.extend_pe(torch.tensor(0.0).expand(1, 114514))
def extend_pe(self, x):
if self.pe is not None:
if self.pe.size(1) >= x.size(1):
if self.pe.dtype != x.dtype or self.pe.device != x.device:
self.pe = self.pe.to(dtype=x.dtype, device=x.device)
return
pe = torch.zeros(x.size(1), self.embedding_dim)
if self.reverse:
position = torch.arange(
x.size(1) - 1, -1, -1.0, dtype=torch.float32
).unsqueeze(1)
else:
position = torch.arange(0, x.size(1), dtype=torch.float32).unsqueeze(1)
div_term = torch.exp(
torch.arange(0, self.embedding_dim, 2, dtype=torch.float32)
* -(math.log(10000.0) / self.embedding_dim)
)
pe[:, 0::2] = torch.sin(position * div_term)
pe[:, 1::2] = torch.cos(position * div_term)
pe = pe.unsqueeze(0)
self.pe = pe.to(device=x.device, dtype=x.dtype).detach()
def forward(self, x: torch.Tensor, x_size) -> torch.Tensor:
output = x.unsqueeze(-1) if x.ndim == 2 else x
output[:,:x_size,:] = output[:,:x_size,:] * self.x_scale + self.alpha * self.pe[:, : x_size]
return self.dropout(output)
class PromptProcessor(nn.Module):
def __init__(self, cache_len, model, top_k):
super(PromptProcessor, self).__init__()
self.top_k = top_k
self.early_stop_num = early_stop_num
self.num_layers = num_layers
def forward(self, x, prompt):
y = prompt
x_example = x[:,:,0] * 0.0
#N, 1, 512
cache = {
"all_stage": self.num_layers,
"k": None,
"v": None,
"y_emb": None,
"first_infer": 1,
"stage": 0,
}
self.model = model
self.ar_text_embedding = model.ar_text_embedding
self.ar_text_position = model.ar_text_position
self.ar_audio_embedding = model.ar_audio_embedding
self.ar_audio_position = model.ar_audio_position
self.bert_proj = model.bert_proj
cache_len = torch.tensor(cache_len)
self.register_buffer("cache_len", cache_len, persistent=False)
def forward(self, x, x_len, y, y_len, bert_feature, top_p, repetition_penalty, temperature):
bsz = x.size(0)
src_len = x_len + y_len
x_emb = self.ar_text_embedding(x)
x_emb = x_emb + self.bert_proj(bert_feature)
x_pos = self.ar_text_position(x_emb, x_len)
x_attn_mask = torch.zeros((x_len, x_len), dtype=torch.bool)
y_emb = self.ar_audio_embedding(y)
y_pos = self.ar_audio_position(y_emb, y_len)
y_attn_mask = F.pad(torch.triu(torch.ones(y_len, y_len, dtype=torch.bool), diagonal=1),(x_len, 0),value=False)
cache["y_emb"] = y_emb
y_pos = self.ar_audio_position(y_emb)
xy_pos = torch.concat([x_pos, y_pos], dim=1)
xy_pos = torch.concat([x, y_pos], dim=1)
x_attn_mask_pad = F.pad(x_attn_mask,(0, y_len),value=True)
xy_attn_mask = torch.concat([x_attn_mask_pad, y_attn_mask], dim=0).unsqueeze(0)\
.expand(bsz * self.model.num_head, -1, -1)\
.view(bsz, self.model.num_head, src_len, src_len)\
.to(device=x.device, dtype=torch.bool)
y_example = y_pos[:,:,0] * 0.0
x_attn_mask = torch.matmul(x_example.transpose(0, 1) , x_example).bool()
y_attn_mask = torch.ones_like(torch.matmul(y_example.transpose(0, 1), y_example), dtype=torch.int64)
y_attn_mask = torch.cumsum(y_attn_mask, dim=1) - torch.cumsum(
torch.ones_like(y_example.transpose(0, 1), dtype=torch.int64), dim=0
)
y_attn_mask = y_attn_mask > 0
x_y_pad = torch.matmul(x_example.transpose(0, 1), y_example).bool()
y_x_pad = torch.matmul(y_example.transpose(0, 1), x_example).bool()
x_attn_mask_pad = torch.cat([x_attn_mask, torch.ones_like(x_y_pad)], dim=1)
y_attn_mask = torch.cat([y_x_pad, y_attn_mask], dim=1)
xy_attn_mask = torch.concat([x_attn_mask_pad, y_attn_mask], dim=0)
cache["k"] = torch.matmul(x_attn_mask_pad[0].float().unsqueeze(-1), torch.zeros((1, 512)))\
.unsqueeze(1).repeat(self.num_layers, 1, 1, 1)
cache["v"] = torch.matmul(x_attn_mask_pad[0].float().unsqueeze(-1), torch.zeros((1, 512)))\
.unsqueeze(1).repeat(self.num_layers, 1, 1, 1)
xy_dec = self.h(xy_pos, mask=xy_attn_mask, cache=cache)
logits = self.ar_predict_layer(xy_dec[:, -1])
samples = sample(logits[0], y, top_k=self.top_k, top_p=1.0, repetition_penalty=1.35)[0].unsqueeze(0)
y = torch.concat([y, samples], dim=1)
return y, cache["k"], cache["v"], cache["y_emb"], x_example
class T2SStageDecoder(nn.Module):
def __init__(self, ar_audio_embedding, ar_audio_position, h, ar_predict_layer, loss_fct, ar_accuracy_metric,
top_k, early_stop_num, num_layers):
super().__init__()
self.ar_audio_embedding = ar_audio_embedding
self.ar_audio_position = ar_audio_position
self.h = h
self.ar_predict_layer = ar_predict_layer
self.loss_fct = loss_fct
self.ar_accuracy_metric = ar_accuracy_metric
self.top_k = top_k
self.early_stop_num = early_stop_num
self.num_layers = num_layers
def forward(self, y, k, v, y_emb, x_example):
cache = {
"all_stage": self.num_layers,
"k": torch.nn.functional.pad(k, (0, 0, 0, 0, 0, 1)),
"v": torch.nn.functional.pad(v, (0, 0, 0, 0, 0, 1)),
"y_emb": y_emb,
"first_infer": 0,
"stage": 0,
}
y_emb = torch.cat(
[cache["y_emb"], self.ar_audio_embedding(y[:, -1:])], 1
)
cache["y_emb"] = y_emb
y_pos = self.ar_audio_position(y_emb)
xy_pos = y_pos[:, -1:]
xy_dec, k_cache, v_cache = self.model.t2s_transformer.process_prompt(xy_pos, xy_attn_mask, None)
y_example = y_pos[:,:,0] * 0.0
xy_attn_mask = torch.cat([x_example, y_example], dim=1)
xy_attn_mask = torch.zeros_like(xy_attn_mask, dtype=torch.bool)
xy_dec = self.h(xy_pos, mask=xy_attn_mask, cache=cache)
logits = self.ar_predict_layer(xy_dec[:, -1])
samples = sample(logits[0], y, top_k=self.top_k, top_p=1.0, repetition_penalty=1.35)[0].unsqueeze(0)
logits = self.model.ar_predict_layer(
xy_dec[:, -1]
)
samples = sample(
logits, y, top_k=self.top_k, top_p=top_p, repetition_penalty=repetition_penalty, temperature=temperature
)[0]
y = torch.concat([y, samples], dim=1)
return y, cache["k"], cache["v"], cache["y_emb"], logits, samples
y_emb = self.ar_audio_embedding(samples)
xy_pos = y_emb * self.ar_audio_position.x_scale + self.ar_audio_position.alpha * self.ar_audio_position.pe[:, y_len].to(dtype=y_emb.dtype,device=y_emb.device)
k_cache = torch.stack(k_cache, dim=0)
v_cache = torch.stack(v_cache, dim=0)
return y, k_cache, v_cache, xy_pos, y_len + 1, samples
class DecodeNextToken(nn.Module):
def __init__(self, cache_len, model, top_k):
super(DecodeNextToken, self).__init__()
self.top_k = top_k
self.model = model
self.ar_text_embedding = model.ar_text_embedding
self.ar_text_position = model.ar_text_position
self.ar_audio_embedding = model.ar_audio_embedding
self.ar_audio_position = model.ar_audio_position
cache_len = torch.tensor(cache_len)
self.register_buffer("cache_len", cache_len, persistent=False)
def forward(self, y, k_cache, v_cache, xy_pos, y_idx, top_p, repetition_penalty, temperature):
xy_dec, k_cache, v_cache = self.model.t2s_transformer.decode_next_token(xy_pos, k_cache, v_cache)
logits = self.model.ar_predict_layer(
xy_dec[:, -1]
)
samples = sample(
logits, y, top_k=self.top_k, top_p=top_p, repetition_penalty=repetition_penalty, temperature=temperature
)[0]
y = torch.concat([y, samples], dim=1)
y_emb = self.ar_audio_embedding(samples)
xy_pos = y_emb * self.ar_audio_position.x_scale + self.ar_audio_position.alpha * self.ar_audio_position.pe[:, y_idx].to(dtype=y_emb.dtype,device=y_emb.device)
return y, k_cache, v_cache, xy_pos, y_idx + 1, samples
class Text2SemanticDecoder(nn.Module):
@ -215,15 +423,24 @@ class Text2SemanticDecoder(nn.Module):
self.norm_first = norm_first
self.vocab_size = config["model"]["vocab_size"]
self.phoneme_vocab_size = config["model"]["phoneme_vocab_size"]
self.p_dropout = float(config["model"]["dropout"])
self.p_dropout = config["model"]["dropout"]
self.EOS = config["model"]["EOS"]
self.norm_first = norm_first
assert self.EOS == self.vocab_size - 1
self.bert_proj = nn.Linear(1024, self.embedding_dim)
self.ar_text_embedding = TokenEmbedding(self.embedding_dim, self.phoneme_vocab_size, self.p_dropout)
self.ar_text_position = SinePositionalEmbedding(self.embedding_dim, dropout=0.1, scale=False, alpha=True)
self.ar_audio_embedding = TokenEmbedding(self.embedding_dim, self.vocab_size, self.p_dropout)
self.ar_audio_position = SinePositionalEmbedding(self.embedding_dim, dropout=0.1, scale=False, alpha=True)
self.ar_text_embedding = TokenEmbedding(
self.embedding_dim, self.phoneme_vocab_size, self.p_dropout
)
self.ar_text_position = SinePositionalEmbedding(
self.embedding_dim, dropout=0.1, scale=False, alpha=True
)
self.ar_audio_embedding = TokenEmbedding(
self.embedding_dim, self.vocab_size, self.p_dropout
)
self.ar_audio_position = SinePositionalEmbedding(
self.embedding_dim, dropout=0.1, scale=False, alpha=True
)
self.h = TransformerEncoder(
TransformerEncoderLayer(
d_model=self.model_dim,
@ -236,8 +453,10 @@ class Text2SemanticDecoder(nn.Module):
num_layers=self.num_layers,
norm=LayerNorm(self.model_dim) if norm_first else None,
)
self.ar_predict_layer = nn.Linear(self.model_dim, self.vocab_size, bias=False)
self.loss_fct = nn.CrossEntropyLoss(reduction="sum")
self.ar_accuracy_metric = MulticlassAccuracy(
self.vocab_size,
top_k=top_k,
@ -245,38 +464,127 @@ class Text2SemanticDecoder(nn.Module):
multidim_average="global",
ignore_index=self.EOS,
)
self.top_k = torch.LongTensor([1])
self.early_stop_num = torch.LongTensor([-1])
def init_onnx(self):
self.onnx_encoder = OnnxEncoder(self.ar_text_embedding, self.bert_proj, self.ar_text_position)
self.first_stage_decoder = T2SFirstStageDecoder(self.ar_audio_embedding, self.ar_audio_position, self.h,
self.ar_predict_layer, self.loss_fct, self.ar_accuracy_metric, self.top_k, self.early_stop_num,
self.num_layers)
self.stage_decoder = T2SStageDecoder(self.ar_audio_embedding, self.ar_audio_position, self.h,
self.ar_predict_layer, self.loss_fct, self.ar_accuracy_metric, self.top_k, self.early_stop_num,
self.num_layers)
blocks = []
def forward(self, x, prompts, bert_feature):
early_stop_num = self.early_stop_num
prefix_len = prompts.shape[1]
for i in range(self.num_layers):
layer = self.h.layers[i]
t2smlp = T2SMLP(
layer.linear1.weight,
layer.linear1.bias,
layer.linear2.weight,
layer.linear2.bias
)
x = self.onnx_encoder(x, bert_feature)
y, k, v, y_emb, stage, x_example = self.first_stage_decoder(x, prompts)
block = T2SBlock(
self.num_head,
self.model_dim,
t2smlp,
layer.self_attn.in_proj_weight,
layer.self_attn.in_proj_bias,
layer.self_attn.out_proj.weight,
layer.self_attn.out_proj.bias,
layer.norm1.weight,
layer.norm1.bias,
layer.norm1.eps,
layer.norm2.weight,
layer.norm2.bias,
layer.norm2.eps
)
blocks.append(block)
self.t2s_transformer = T2STransformer(self.num_layers, blocks)
def infer_panel_naive(
self,
x:torch.LongTensor, #####全部文本token
x_lens:torch.LongTensor,
prompts:torch.LongTensor, ####参考音频token
bert_feature:torch.LongTensor,
top_k: int = -100,
top_p: int = 100,
early_stop_num: int = -1,
temperature: float = 1.0,
repetition_penalty: float = 1.35,
**kwargs
):
x = self.ar_text_embedding(x)
x = x + self.bert_proj(bert_feature.transpose(1, 2))
x = self.ar_text_position(x)
y = prompts
x_len = x.shape[1]
x_attn_mask = torch.zeros((x_len, x_len), dtype=torch.bool)
stop = False
for idx in range(1, 1500):
enco = self.stage_decoder(y, k, v, y_emb, stage, x_example)
y, k, v, y_emb, stage, logits, samples = enco
k_cache = None
v_cache = None
y_emb = self.ar_audio_embedding(y)
y_len = y_emb.shape[1]
prefix_len = y.shape[1]
y_pos = self.ar_audio_position(y_emb)
xy_pos = torch.concat([x, y_pos], dim=1)
bsz = x.shape[0]
src_len = x_len + y_len
x_attn_mask_pad = F.pad(
x_attn_mask,
(0, y_len),
value=True,
)
y_attn_mask = F.pad(
torch.triu(torch.ones(y_len, y_len, dtype=torch.bool), diagonal=1),
(x_len, 0),
value=False,
)
xy_attn_mask = torch.concat([x_attn_mask_pad, y_attn_mask], dim=0)\
.unsqueeze(0)\
.expand(bsz*self.num_head, -1, -1)\
.view(bsz, self.num_head, src_len, src_len)\
.to(device=x.device, dtype=torch.bool)
for idx in tqdm(range(1500)):
if xy_attn_mask is not None:
xy_dec, k_cache, v_cache = self.t2s_transformer.process_prompt(xy_pos, xy_attn_mask, None)
else:
xy_dec, k_cache, v_cache = self.t2s_transformer.decode_next_token(xy_pos, k_cache, v_cache)
logits = self.ar_predict_layer(
xy_dec[:, -1]
)
if idx == 0:
xy_attn_mask = None
if(idx<11):###至少预测出10个token不然不给停止0.4s
logits = logits[:, :-1]
samples = sample(
logits, y, top_k=top_k, top_p=top_p, repetition_penalty=repetition_penalty, temperature=temperature
)[0]
y = torch.concat([y, samples], dim=1)
if early_stop_num != -1 and (y.shape[1] - prefix_len) > early_stop_num:
print("use early stop num:", early_stop_num)
stop = True
if torch.argmax(logits, dim=-1)[0] == self.EOS or samples[0, 0] == self.EOS:
stop = True
if stop:
if y.shape[1] == 0:
y = torch.concat([y, torch.zeros_like(samples)], dim=1)
print("bad zero prediction")
print(f"T2S Decoding EOS [{prefix_len} -> {y.shape[1]}]")
break
y[0, -1] = 0
return y, idx
####################### update next step ###################################
y_emb = self.ar_audio_embedding(y[:, -1:])
xy_pos = y_emb * self.ar_audio_position.x_scale + self.ar_audio_position.alpha * self.ar_audio_position.pe[:, y_len + idx].to(dtype=y_emb.dtype,device=y_emb.device)
return y[:, :-1], idx
def infer(self, x, prompts, bert_feature):
top_k = self.top_k
early_stop_num = self.early_stop_num

View File

@ -48,16 +48,17 @@ class SinePositionalEmbedding(nn.Module):
self.dropout = torch.nn.Dropout(p=dropout)
self.reverse = False
self.div_term = torch.exp(torch.arange(0, self.embedding_dim, 2) * -(math.log(10000.0) / self.embedding_dim))
self.pe = self.extend_pe(2000)
def extend_pe(self, x):
position = torch.cumsum(torch.ones_like(x[:,:,0]), dim=1).transpose(0, 1)
position = torch.cumsum(torch.ones((x,1)), dim=0)
scpe = (position * self.div_term).unsqueeze(0)
pe = torch.cat([torch.sin(scpe), torch.cos(scpe)]).permute(1, 2, 0)
pe = pe.contiguous().view(1, -1, self.embedding_dim)
return pe
def forward(self, x: torch.Tensor) -> torch.Tensor:
pe = self.extend_pe(x)
pe = self.pe[:,:x.size(1),:]
output = x.unsqueeze(-1) if x.ndim == 2 else x
output = output * self.x_scale + self.alpha * pe
return self.dropout(output)

306
GPT_SoVITS/export_onnx.py Normal file
View File

@ -0,0 +1,306 @@
import os
import json
import onnx
import torch
import onnxsim
from torch.nn import Module
from feature_extractor import cnhubert
from onnxruntime import InferenceSession
from pytorch_lightning import LightningModule
from transformers import AutoTokenizer, AutoModelForMaskedLM
import AR.models.t2s_model_onnx as t2s
from module.models_onnx import SynthesizerTrn
root_path = os.path.dirname(os.path.abspath(__file__))
onnx_path = os.path.join(root_path, "onnx")
if not os.path.exists(onnx_path):
os.makedirs(onnx_path)
class BertWrapper(Module):
def __init__(self):
bert_path = os.environ.get(
"bert_path", "GPT_SoVITS/pretrained_models/chinese-roberta-wwm-ext-large"
)
super(BertWrapper, self).__init__()
self.model = AutoModelForMaskedLM.from_pretrained(bert_path)
self.tokenizer = AutoTokenizer.from_pretrained(bert_path)
def forward(self, input_ids):
attention_mask = torch.ones_like(input_ids)
token_type_ids = torch.zeros_like(input_ids)
res = self.model(input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, output_hidden_states=True)
return torch.cat(res["hidden_states"][-3:-2], -1)[0].cpu()[1:-1]
def export_onnx(self):
vocab_dict = { k: v for k, v in self.tokenizer.get_vocab().items() }
vocab_path = os.path.join(onnx_path, "Vocab.json")
with open(vocab_path, "w") as f:
json.dump(vocab_dict, f, indent=4)
dummy_input = torch.randint(0, 100, (1, 20)).long()
torch.onnx.export(
self,
dummy_input,
os.path.join(onnx_path, "Bert.onnx"),
input_names=["input_ids"],
output_names=["output"],
dynamic_axes={"input_ids": {0: "batch_size", 1: "sequence_length"}},
opset_version=18,
)
sim, _ = onnxsim.simplify(os.path.join(onnx_path, "Bert.onnx"))
onnx.save_model(sim, os.path.join(onnx_path, "Bert.onnx"))
print("Exported BERT to ONNX format.")
class CnHubertWrapper(Module):
def __init__(self):
super(CnHubertWrapper, self).__init__()
cnhubert_base_path = os.environ.get(
"cnhubert_base_path", "GPT_SoVITS/pretrained_models/chinese-hubert-base"
)
cnhubert.cnhubert_base_path = cnhubert_base_path
self.model = cnhubert.get_model().model
def forward(self, signal):
return self.model(signal)["last_hidden_state"]
def export_onnx(self):
dummy_input = torch.randn(1, 16000 * 10)
torch.onnx.export(
self,
dummy_input,
os.path.join(onnx_path, "CnHubert.onnx"),
input_names=["signal"],
output_names=["output"],
dynamic_axes={"signal": {0: "batch_size", 1: "sequence_length"}},
opset_version=18,
)
sim, _ = onnxsim.simplify(os.path.join(onnx_path, "CnHubert.onnx"))
onnx.save_model(sim, os.path.join(onnx_path, "CnHubert.onnx"))
print("Exported CN-Hubert to ONNX format.")
class Text2SemanticLightningModule(LightningModule):
def __init__(self, path, top_k=20, cache_size=2000):
super().__init__()
dict_s1 = torch.load(path, map_location="cpu")
config = dict_s1["config"]
self.model = t2s.Text2SemanticDecoder(config=config)
self.load_state_dict(dict_s1["weight"])
self.cache_size = cache_size
self.top_k = top_k
def export_ar(path, top_k=20, cache_size=2000):
model_l = Text2SemanticLightningModule(path, top_k=top_k, cache_size=cache_size)
model = model_l.model
x = torch.randint(0, 100, (1, 20)).long()
x_len = torch.tensor([20]).long()
y = torch.randint(0, 100, (1, 20)).long()
y_len = torch.tensor([20]).long()
bert_feature = torch.randn(1, 20, 1024)
top_p = torch.tensor([0.8])
repetition_penalty = torch.tensor([1.35])
temperature = torch.tensor([0.6])
prompt_processor = t2s.PromptProcessor(cache_len=cache_size, model=model, top_k=top_k)
decode_next_token = t2s.DecodeNextToken(cache_len=cache_size, model=model, top_k=top_k)
torch.onnx.export(
prompt_processor,
(x, x_len, y, y_len, bert_feature, top_p, repetition_penalty, temperature),
os.path.join(onnx_path, "PromptProcessor.onnx"),
input_names=["x", "x_len", "y", "y_len", "bert_feature", "top_p", "repetition_penalty", "temperature"],
output_names=["y", "k_cache", "v_cache", "xy_pos", "y_idx", "samples"],
dynamic_axes={
"x": {0: "batch_size", 1: "sequence_length"},
"y": {0: "batch_size", 1: "sequence_length"},
"bert_feature": {0: "batch_size", 1: "sequence_length"},
},
opset_version=18,
)
sim, _ = onnxsim.simplify(os.path.join(onnx_path, "PromptProcessor.onnx"))
onnx.save_model(sim, os.path.join(onnx_path, "PromptProcessor.onnx"))
y, k_cache, v_cache, xy_pos, y_idx, samples = prompt_processor(
x, x_len, y, y_len, bert_feature, top_p, repetition_penalty, temperature
)
torch.onnx.export(
decode_next_token,
(y, k_cache, v_cache, xy_pos, y_idx, top_p, repetition_penalty, temperature),
os.path.join(onnx_path, "DecodeNextToken.onnx"),
input_names=["y", "k_cache", "v_cache", "xy_pos", "y_idx", "top_p", "repetition_penalty", "temperature"],
output_names=["y", "k_cache", "v_cache", "xy_pos", "y_idx", "samples"],
dynamic_axes={
"y": {0: "batch_size", 1: "sequence_length"},
"k_cache": {1: "batch_size", 2: "sequence_length"},
"v_cache": {1: "batch_size", 2: "sequence_length"},
},
opset_version=18
)
sim, _ = onnxsim.simplify(os.path.join(onnx_path, "DecodeNextToken.onnx"))
onnx.save_model(sim, os.path.join(onnx_path, "DecodeNextToken.onnx"))
from io import BytesIO
def load_sovits_new(sovits_path):
f=open(sovits_path,"rb")
meta=f.read(2)
if meta!="PK":
data = b'PK' + f.read()
bio = BytesIO()
bio.write(data)
bio.seek(0)
return torch.load(bio, map_location="cpu", weights_only=False)
return torch.load(sovits_path,map_location="cpu", weights_only=False)
class DictToAttrRecursive(dict):
def __init__(self, input_dict):
super().__init__(input_dict)
for key, value in input_dict.items():
if isinstance(value, dict):
value = DictToAttrRecursive(value)
self[key] = value
setattr(self, key, value)
def __getattr__(self, item):
try:
return self[item]
except KeyError:
raise AttributeError(f"Attribute {item} not found")
def __setattr__(self, key, value):
if isinstance(value, dict):
value = DictToAttrRecursive(value)
super(DictToAttrRecursive, self).__setitem__(key, value)
super().__setattr__(key, value)
def __delattr__(self, item):
try:
del self[item]
except KeyError:
raise AttributeError(f"Attribute {item} not found")
def spectrogram_torch(y, n_fft, sampling_rate, hop_size, win_size, center=False):
hann_window = torch.hann_window(win_size).to(
dtype=y.dtype, device=y.device
)
y = torch.nn.functional.pad(
y.unsqueeze(1),
(int((n_fft - hop_size) / 2), int((n_fft - hop_size) / 2)),
mode="reflect",
)
y = y.squeeze(1)
spec = torch.stft(
y,
n_fft,
hop_length=hop_size,
win_length=win_size,
window=hann_window,
center=center,
pad_mode="reflect",
normalized=False,
onesided=True,
return_complex=False,
)
spec = torch.sqrt(spec.pow(2).sum(-1) + 1e-6)
return spec
class Extractor(Module):
def __init__(self, model):
super(Extractor, self).__init__()
self.model = model
def forward(self, x):
return self.model.extract_latent(x.transpose(1, 2))
class V1V2(Module):
def __init__(self, path):
super(V1V2, self).__init__()
dict_s2 = load_sovits_new(path)
hps = dict_s2["config"]
hps = DictToAttrRecursive(hps)
hps.model.semantic_frame_rate = "25hz"
if 'enc_p.text_embedding.weight'not in dict_s2['weight']:
hps.model.version = "v2"#v3model,v2sybomls
elif dict_s2['weight']['enc_p.text_embedding.weight'].shape[0] == 322:
hps.model.version = "v1"
else:
hps.model.version = "v2"
version=hps.model.version
# print("sovits版本:",hps.model.version)
vq_model = SynthesizerTrn(
hps.data.filter_length // 2 + 1,
hps.train.segment_size // hps.data.hop_length,
n_speakers=hps.data.n_speakers,
**hps.model
)
vq_model.load_state_dict(dict_s2["weight"], strict=False)
vq_model.eval()
self.vq_model = vq_model
self.hps = hps
self.ext = Extractor(self.vq_model)
def forward(self, text_seq, pred_semantic, ref_audio):
refer = spectrogram_torch(
ref_audio,
self.hps.data.filter_length,
self.hps.data.sampling_rate,
self.hps.data.hop_length,
self.hps.data.win_length,
center=False
)
return self.vq_model(pred_semantic.unsqueeze(0), text_seq, refer)[0, 0]
def export(self):
test_seq = torch.randint(0, 100, (1, 20)).long()
pred_semantic = torch.randint(0, 100, (1, 20)).long()
ref_audio = torch.randn(1, 16000 * 10)
torch.onnx.export(
self,
(test_seq, pred_semantic, ref_audio),
os.path.join(onnx_path, "GptSoVitsV1V2.onnx"),
input_names=["text_seq", "pred_semantic", "ref_audio"],
output_names=["output"],
dynamic_axes={
"text_seq": {0: "batch_size", 1: "sequence_length"},
"pred_semantic": {0: "batch_size", 1: "sequence_length"},
"ref_audio": {0: "batch_size", 1: "sequence_length"},
},
opset_version=18,
)
sim, _ = onnxsim.simplify(os.path.join(onnx_path, "GptSoVitsV1V2.onnx"))
onnx.save_model(sim, os.path.join(onnx_path, "GptSoVitsV1V2.onnx"))
ref_units = torch.randn(1, 20, 768)
torch.onnx.export(
self.ext,
ref_units,
os.path.join(onnx_path, "Extractor.onnx"),
input_names=["ref_units"],
output_names=["output"],
dynamic_axes={
"ref_units": {0: "batch_size", 1: "sequence_length"},
},
opset_version=18,
)
if __name__ == "__main__":
#CnHubertWrapper().export_onnx()
#BertWrapper().export_onnx()
V1V2("D:\\VSGIT\GPT-SoVITS-main\\GPT_SoVITS\\GPT-SoVITS-v3lora-20250228\\GPT_SoVITS\\t\\SoVITS_weights\\小特.pth").export()
'''export_ar(
"D:\\VSGIT\GPT-SoVITS-main\\GPT_SoVITS\\GPT-SoVITS-v3lora-20250228\\GPT_SoVITS\\t\\GPT_weights\\小特.ckpt",
top_k=10,
cache_size=1500,
)'''

View File

@ -1,24 +1,28 @@
import warnings
warnings.filterwarnings("ignore")
import copy
import math
from typing import Optional
import os
import pdb
import torch
from torch import nn
from torch.nn import functional as F
from module import commons
from module import modules
from module import attentions_onnx as attentions
from f5_tts.model import DiT
from module import attentions
#from f5_tts.model.backbones.dit import DiT
from torch.nn import Conv1d, ConvTranspose1d, AvgPool1d, Conv2d
from torch.nn.utils import weight_norm, remove_weight_norm, spectral_norm
from module.commons import init_weights, get_padding
from module.mrte_model import MRTE
from module.quantize import ResidualVectorQuantizer
# from text import symbols
from text import symbols as symbols_v1
from text import symbols2 as symbols_v2
from torch.cuda.amp import autocast
import contextlib,random
class StochasticDurationPredictor(nn.Module):
@ -186,7 +190,7 @@ class TextEncoder(nn.Module):
kernel_size,
p_dropout,
latent_channels=192,
version="v2",
version = "v2",
):
super().__init__()
self.out_channels = out_channels
@ -220,7 +224,7 @@ class TextEncoder(nn.Module):
symbols = symbols_v2.symbols
self.text_embedding = nn.Embedding(len(symbols), hidden_channels)
self.mrte = attentions.MRTE()
self.mrte = MRTE()
self.encoder2 = attentions.Encoder(
hidden_channels,
@ -233,7 +237,7 @@ class TextEncoder(nn.Module):
self.proj = nn.Conv1d(hidden_channels, out_channels * 2, 1)
def forward(self, y, text, ge, speed=1):
def forward(self, y, text, ge, speed=1,test=None):
y_mask = torch.ones_like(y[:1,:1,:])
y = self.ssl_proj(y * y_mask) * y_mask
@ -244,16 +248,35 @@ class TextEncoder(nn.Module):
text = self.text_embedding(text).transpose(1, 2)
text = self.encoder_text(text * text_mask, text_mask)
y = self.mrte(y, y_mask, text, text_mask, ge)
y = self.encoder2(y * y_mask, y_mask)
if(speed!=1):
y = F.interpolate(y, size=int(y.shape[-1] / speed)+1, mode="linear")
y_mask = F.interpolate(y_mask, size=y.shape[-1], mode="nearest")
stats = self.proj(y) * y_mask
m, logs = torch.split(stats, self.out_channels, dim=1)
return y, m, logs, y_mask
def extract_latent(self, x):
x = self.ssl_proj(x)
quantized, codes, commit_loss, quantized_list = self.quantizer(x)
return codes.transpose(0, 1)
def decode_latent(self, codes, y_mask, refer, refer_mask, ge):
quantized = self.quantizer.decode(codes)
y = self.vq_proj(quantized) * y_mask
y = self.encoder_ssl(y * y_mask, y_mask)
y = self.mrte(y, y_mask, refer, refer_mask, ge)
y = self.encoder2(y * y_mask, y_mask)
stats = self.proj(y) * y_mask
m, logs = torch.split(stats, self.out_channels, dim=1)
return y, m, logs, y_mask, quantized
class ResidualCouplingBlock(nn.Module):
def __init__(
@ -465,7 +488,7 @@ class Generator(torch.nn.Module):
if gin_channels != 0:
self.cond = nn.Conv1d(gin_channels, upsample_initial_channel, 1)
def forward(self, x, g:Optional[torch.Tensor]=None):
def forward(self, x, g=None):
x = self.conv_pre(x)
if g is not None:
x = x + self.cond(g)
@ -923,7 +946,7 @@ class SynthesizerTrn(nn.Module):
# self.enc_p.encoder_text.requires_grad_(False)
# self.enc_p.mrte.requires_grad_(False)
def forward(self, codes, text, refer,noise_scale=0.5, speed=1):
def forward(self, codes, text, refer, noise_scale=0.5):
refer_mask = torch.ones_like(refer[:1,:1,:])
if (self.version == "v1"):
ge = self.ref_enc(refer * refer_mask, refer_mask)
@ -935,79 +958,98 @@ class SynthesizerTrn(nn.Module):
dquantized = torch.cat([quantized, quantized]).permute(1, 2, 0)
quantized = dquantized.contiguous().view(1, self.ssl_dim, -1)
x, m_p, logs_p, y_mask = self.enc_p(
quantized, text, ge, speed
_, m_p, logs_p, y_mask = self.enc_p(
quantized, text, ge
)
z_p = m_p + torch.randn_like(m_p) * torch.exp(logs_p) * noise_scale
z = self.flow(z_p, y_mask, g=ge, reverse=True)
o = self.dec((z * y_mask)[:, :, :], g=ge)
return o
def extract_latent(self, x):
ssl = self.ssl_proj(x)
quantized, codes, commit_loss, quantized_list = self.quantizer(ssl)
_, codes, _, _ = self.quantizer(ssl)
return codes.transpose(0, 1)
class CFM(torch.nn.Module):
def __init__(
self,
in_channels,dit
):
super().__init__()
# self.sigma_min = 1e-6
self.sigma_min = 1e-6
self.estimator = dit
self.in_channels = in_channels
# self.criterion = torch.nn.MSELoss()
self.criterion = torch.nn.MSELoss()
def forward(self, mu:torch.Tensor, x_lens:torch.LongTensor, prompt:torch.Tensor, n_timesteps:torch.LongTensor, temperature:float=1.0):
@torch.inference_mode()
def inference(self, mu, x_lens, prompt, n_timesteps, temperature=1.0, inference_cfg_rate=0):
"""Forward diffusion"""
B, T = mu.size(0), mu.size(1)
x = torch.randn([B, self.in_channels, T], device=mu.device,dtype=mu.dtype)
ntimesteps = int(n_timesteps)
x = torch.randn([B, self.in_channels, T], device=mu.device,dtype=mu.dtype) * temperature
prompt_len = prompt.size(-1)
prompt_x = torch.zeros_like(x,dtype=mu.dtype)
prompt_x[..., :prompt_len] = prompt[..., :prompt_len]
x[..., :prompt_len] = 0.0
x[..., :prompt_len] = 0
mu=mu.transpose(2,1)
t = torch.tensor(0.0,dtype=x.dtype,device=x.device)
d = torch.tensor(1.0/ntimesteps,dtype=x.dtype,device=x.device)
d_tensor = torch.ones(x.shape[0], device=x.device,dtype=mu.dtype) * d
for j in range(ntimesteps):
t = 0
d = 1 / n_timesteps
for j in range(n_timesteps):
t_tensor = torch.ones(x.shape[0], device=x.device,dtype=mu.dtype) * t
# d_tensor = torch.ones(x.shape[0], device=x.device,dtype=mu.dtype) * d
d_tensor = torch.ones(x.shape[0], device=x.device,dtype=mu.dtype) * d
# v_pred = model(x, t_tensor, d_tensor, **extra_args)
v_pred = self.estimator(x, prompt_x, x_lens, t_tensor,d_tensor, mu).transpose(2, 1)
# if inference_cfg_rate>1e-5:
# neg = self.estimator(x, prompt_x, x_lens, t_tensor, d_tensor, mu, use_grad_ckpt=False, drop_audio_cond=True, drop_text=True).transpose(2, 1)
# v_pred=v_pred+(v_pred-neg)*inference_cfg_rate
v_pred = self.estimator(x, prompt_x, x_lens, t_tensor,d_tensor, mu, use_grad_ckpt=False,drop_audio_cond=False,drop_text=False).transpose(2, 1)
if inference_cfg_rate>1e-5:
neg = self.estimator(x, prompt_x, x_lens, t_tensor, d_tensor, mu, use_grad_ckpt=False, drop_audio_cond=True, drop_text=True).transpose(2, 1)
v_pred=v_pred+(v_pred-neg)*inference_cfg_rate
x = x + d * v_pred
t = t + d
x[:, :, :prompt_len] = 0.0
x[:, :, :prompt_len] = 0
return x
def forward(self, x1, x_lens, prompt_lens, mu, use_grad_ckpt):
b, _, t = x1.shape
t = torch.rand([b], device=mu.device, dtype=x1.dtype)
x0 = torch.randn_like(x1,device=mu.device)
vt = x1 - x0
xt = x0 + t[:, None, None] * vt
dt = torch.zeros_like(t,device=mu.device)
prompt = torch.zeros_like(x1)
for i in range(b):
prompt[i, :, :prompt_lens[i]] = x1[i, :, :prompt_lens[i]]
xt[i, :, :prompt_lens[i]] = 0
gailv=0.3# if ttime()>1736250488 else 0.1
if random.random() < gailv:
base = torch.randint(2, 8, (t.shape[0],), device=mu.device)
d = 1/torch.pow(2, base)
d_input = d.clone()
d_input[d_input < 1e-2] = 0
# with torch.no_grad():
v_pred_1 = self.estimator(xt, prompt, x_lens, t, d_input, mu, use_grad_ckpt).transpose(2, 1).detach()
# v_pred_1 = self.diffusion(xt, t, d_input, cond=conditioning).detach()
x_mid = xt + d[:, None, None] * v_pred_1
# v_pred_2 = self.diffusion(x_mid, t+d, d_input, cond=conditioning).detach()
v_pred_2 = self.estimator(x_mid, prompt, x_lens, t+d, d_input, mu, use_grad_ckpt).transpose(2, 1).detach()
vt = (v_pred_1 + v_pred_2) / 2
vt = vt.detach()
dt = 2*d
vt_pred = self.estimator(xt, prompt, x_lens, t,dt, mu, use_grad_ckpt).transpose(2,1)
loss = 0
for i in range(b):
loss += self.criterion(vt_pred[i, :, prompt_lens[i]:x_lens[i]], vt[i, :, prompt_lens[i]:x_lens[i]])
loss /= b
return loss
def set_no_grad(net_g):
for name, param in net_g.named_parameters():
param.requires_grad=False
@torch.jit.script_if_tracing
def compile_codes_length(codes):
y_lengths1 = torch.LongTensor([codes.size(2)]).to(codes.device)
return y_lengths1 * 2.5 * 1.5
@torch.jit.script_if_tracing
def compile_ref_length(refer):
refer_lengths = torch.LongTensor([refer.size(2)]).to(refer.device)
return refer_lengths
class SynthesizerTrnV3(nn.Module):
"""
@ -1035,7 +1077,6 @@ class SynthesizerTrnV3(nn.Module):
use_sdp=True,
semantic_frame_rate=None,
freeze_quantizer=None,
version="v3",
**kwargs):
super().__init__()
@ -1056,7 +1097,6 @@ class SynthesizerTrnV3(nn.Module):
self.segment_size = segment_size
self.n_speakers = n_speakers
self.gin_channels = gin_channels
self.version = version
self.model_dim=512
self.use_sdp = use_sdp
@ -1083,7 +1123,7 @@ class SynthesizerTrnV3(nn.Module):
n_q=1,
bins=1024
)
freeze_quantizer
self.freeze_quantizer=freeze_quantizer
inter_channels2=512
self.bridge=nn.Sequential(
nn.Conv1d(inter_channels, inter_channels2, 1, stride=1),
@ -1092,32 +1132,213 @@ class SynthesizerTrnV3(nn.Module):
self.wns1=Encoder(inter_channels2, inter_channels2, inter_channels2, 5, 1, 8,gin_channels=gin_channels)
self.linear_mel=nn.Conv1d(inter_channels2,100,1,stride=1)
self.cfm = CFM(100,DiT(**dict(dim=1024, depth=22, heads=16, ff_mult=2, text_dim=inter_channels2, conv_layers=4)),)#text_dim is condition feature dim
if freeze_quantizer==True:
if self.freeze_quantizer==True:
set_no_grad(self.ssl_proj)
set_no_grad(self.quantizer)
set_no_grad(self.enc_p)
def create_ge(self, refer):
refer_lengths = compile_ref_length(refer)
refer_mask = torch.unsqueeze(commons.sequence_mask(refer_lengths, refer.size(2)), 1).to(refer.dtype)
ge = self.ref_enc(refer[:,:704] * refer_mask, refer_mask)
return ge
def forward(self, ssl, y, mel,ssl_lengths,y_lengths, text, text_lengths,mel_lengths, use_grad_ckpt):#ssl_lengths no need now
with autocast(enabled=False):
y_mask = torch.unsqueeze(commons.sequence_mask(y_lengths, y.size(2)), 1).to(y.dtype)
ge = self.ref_enc(y[:,:704] * y_mask, y_mask)
maybe_no_grad = torch.no_grad() if self.freeze_quantizer else contextlib.nullcontext()
with maybe_no_grad:
if self.freeze_quantizer:
self.ssl_proj.eval()#
self.quantizer.eval()
self.enc_p.eval()
ssl = self.ssl_proj(ssl)
quantized, codes, commit_loss, quantized_list = self.quantizer(
ssl, layers=[0]
)
quantized = F.interpolate(quantized, scale_factor=2, mode="nearest")##BCT
x, m_p, logs_p, y_mask = self.enc_p(quantized, y_lengths, text, text_lengths, ge)
fea=self.bridge(x)
fea = F.interpolate(fea, scale_factor=1.875, mode="nearest")##BCT
fea, y_mask_ = self.wns1(fea, mel_lengths, ge)##If the 1-minute fine-tuning works fine, no need to manually adjust the learning rate.
B=ssl.shape[0]
prompt_len_max = mel_lengths*2/3
prompt_len = (torch.rand([B], device=fea.device) * prompt_len_max).floor().to(dtype=torch.long)
minn=min(mel.shape[-1],fea.shape[-1])
mel=mel[:,:,:minn]
fea=fea[:,:,:minn]
cfm_loss= self.cfm(mel, mel_lengths, prompt_len, fea, use_grad_ckpt)
return cfm_loss
def forward(self, codes, text,ge,speed=1):
@torch.no_grad()
def decode_encp(self, codes,text, refer,ge=None,speed=1):
# print(2333333,refer.shape)
# ge=None
if(ge==None):
refer_lengths = torch.LongTensor([refer.size(2)]).to(refer.device)
refer_mask = torch.unsqueeze(commons.sequence_mask(refer_lengths, refer.size(2)), 1).to(refer.dtype)
ge = self.ref_enc(refer[:,:704] * refer_mask, refer_mask)
y_lengths = torch.LongTensor([int(codes.size(2)*2)]).to(codes.device)
if speed==1:
sizee=int(codes.size(2)*2.5*1.5)
else:
sizee=int(codes.size(2)*2.5*1.5/speed)+1
y_lengths1 = torch.LongTensor([sizee]).to(codes.device)
text_lengths = torch.LongTensor([text.size(-1)]).to(text.device)
y_lengths1=compile_codes_length(codes)
quantized = self.quantizer.decode(codes)
if self.semantic_frame_rate == '25hz':
quantized = F.interpolate(quantized, scale_factor=2, mode="nearest")##BCT
x, m_p, logs_p, y_mask = self.enc_p(quantized, text, ge,speed)
x, m_p, logs_p, y_mask = self.enc_p(quantized, y_lengths, text, text_lengths, ge,speed)
fea=self.bridge(x)
fea = F.interpolate(fea, scale_factor=1.875, mode="nearest")##BCT
####more wn paramter to learn mel
fea, y_mask_ = self.wns1(fea, y_lengths1, ge)
return fea
return fea,ge
def extract_latent(self, x):
ssl = self.ssl_proj(x)
quantized, codes, commit_loss, quantized_list = self.quantizer(ssl)
return codes.transpose(0,1)
return codes.transpose(0,1)
class SynthesizerTrnV3b(nn.Module):
"""
Synthesizer for Training
"""
def __init__(self,
spec_channels,
segment_size,
inter_channels,
hidden_channels,
filter_channels,
n_heads,
n_layers,
kernel_size,
p_dropout,
resblock,
resblock_kernel_sizes,
resblock_dilation_sizes,
upsample_rates,
upsample_initial_channel,
upsample_kernel_sizes,
n_speakers=0,
gin_channels=0,
use_sdp=True,
semantic_frame_rate=None,
freeze_quantizer=None,
**kwargs):
super().__init__()
self.spec_channels = spec_channels
self.inter_channels = inter_channels
self.hidden_channels = hidden_channels
self.filter_channels = filter_channels
self.n_heads = n_heads
self.n_layers = n_layers
self.kernel_size = kernel_size
self.p_dropout = p_dropout
self.resblock = resblock
self.resblock_kernel_sizes = resblock_kernel_sizes
self.resblock_dilation_sizes = resblock_dilation_sizes
self.upsample_rates = upsample_rates
self.upsample_initial_channel = upsample_initial_channel
self.upsample_kernel_sizes = upsample_kernel_sizes
self.segment_size = segment_size
self.n_speakers = n_speakers
self.gin_channels = gin_channels
self.model_dim=512
self.use_sdp = use_sdp
self.enc_p = TextEncoder(inter_channels,hidden_channels,filter_channels,n_heads,n_layers,kernel_size,p_dropout)
# self.ref_enc = modules.MelStyleEncoder(spec_channels, style_vector_dim=gin_channels)###Rollback
self.ref_enc = modules.MelStyleEncoder(704, style_vector_dim=gin_channels)###Rollback
self.dec = Generator(inter_channels, resblock, resblock_kernel_sizes, resblock_dilation_sizes, upsample_rates,
upsample_initial_channel, upsample_kernel_sizes, gin_channels=gin_channels)
self.enc_q = PosteriorEncoder(spec_channels, inter_channels, hidden_channels, 5, 1, 16,
gin_channels=gin_channels)
self.flow = ResidualCouplingBlock(inter_channels, hidden_channels, 5, 1, 4, gin_channels=gin_channels)
ssl_dim = 768
assert semantic_frame_rate in ['25hz', "50hz"]
self.semantic_frame_rate = semantic_frame_rate
if semantic_frame_rate == '25hz':
self.ssl_proj = nn.Conv1d(ssl_dim, ssl_dim, 2, stride=2)
else:
self.ssl_proj = nn.Conv1d(ssl_dim, ssl_dim, 1, stride=1)
self.quantizer = ResidualVectorQuantizer(
dimension=ssl_dim,
n_q=1,
bins=1024
)
self.freeze_quantizer=freeze_quantizer
inter_channels2=512
self.bridge=nn.Sequential(
nn.Conv1d(inter_channels, inter_channels2, 1, stride=1),
nn.LeakyReLU()
)
self.wns1=Encoder(inter_channels2, inter_channels2, inter_channels2, 5, 1, 8,gin_channels=gin_channels)
self.linear_mel=nn.Conv1d(inter_channels2,100,1,stride=1)
self.cfm = CFM(100,DiT(**dict(dim=1024, depth=22, heads=16, ff_mult=2, text_dim=inter_channels2, conv_layers=4)),)#text_dim is condition feature dim
def forward(self, ssl, y, mel,ssl_lengths,y_lengths, text, text_lengths,mel_lengths):#ssl_lengths no need now
with autocast(enabled=False):
y_mask = torch.unsqueeze(commons.sequence_mask(y_lengths, y.size(2)), 1).to(y.dtype)
ge = self.ref_enc(y[:,:704] * y_mask, y_mask)
# ge = self.ref_enc(y * y_mask, y_mask)#change back, new spec setting is whole 24k
# ge=None
maybe_no_grad = torch.no_grad() if self.freeze_quantizer else contextlib.nullcontext()
with maybe_no_grad:
if self.freeze_quantizer:
self.ssl_proj.eval()
self.quantizer.eval()
ssl = self.ssl_proj(ssl)
quantized, codes, commit_loss, quantized_list = self.quantizer(
ssl, layers=[0]
)
quantized = F.interpolate(quantized, scale_factor=2, mode="nearest")##BCT
x, m_p, logs_p, y_mask = self.enc_p(quantized, y_lengths, text, text_lengths, ge)
z, m_q, logs_q, y_mask = self.enc_q(y, y_lengths, g=ge)
z_p = self.flow(z, y_mask, g=ge)
z_slice, ids_slice = commons.rand_slice_segments(z, y_lengths, self.segment_size)
o = self.dec(z_slice, g=ge)
fea=self.bridge(x)
fea = F.interpolate(fea, scale_factor=1.875, mode="nearest")##BCT
fea, y_mask_ = self.wns1(fea, mel_lengths, ge)
learned_mel = self.linear_mel(fea)
B=ssl.shape[0]
prompt_len_max = mel_lengths*2/3
prompt_len = (torch.rand([B], device=fea.device) * prompt_len_max).floor().to(dtype=torch.long)#
minn=min(mel.shape[-1],fea.shape[-1])
mel=mel[:,:,:minn]
fea=fea[:,:,:minn]
cfm_loss= self.cfm(mel, mel_lengths, prompt_len, fea)#fea==cond,y_lengths==target_mel_lengths#ge not need
return commit_loss,cfm_loss,F.mse_loss(learned_mel, mel),o, ids_slice, y_mask, y_mask, (z, z_p, m_p, logs_p, m_q, logs_q), quantized
@torch.no_grad()
def decode_encp(self, codes,text, refer,ge=None):
# print(2333333,refer.shape)
# ge=None
if(ge==None):
refer_lengths = torch.LongTensor([refer.size(2)]).to(refer.device)
refer_mask = torch.unsqueeze(commons.sequence_mask(refer_lengths, refer.size(2)), 1).to(refer.dtype)
ge = self.ref_enc(refer[:,:704] * refer_mask, refer_mask)
y_lengths = torch.LongTensor([int(codes.size(2)*2)]).to(codes.device)
y_lengths1 = torch.LongTensor([int(codes.size(2)*2.5*1.5)]).to(codes.device)
text_lengths = torch.LongTensor([text.size(-1)]).to(text.device)
quantized = self.quantizer.decode(codes)
if self.semantic_frame_rate == '25hz':
quantized = F.interpolate(quantized, scale_factor=2, mode="nearest")##BCT
x, m_p, logs_p, y_mask = self.enc_p(quantized, y_lengths, text, text_lengths, ge)
fea=self.bridge(x)
fea = F.interpolate(fea, scale_factor=1.875, mode="nearest")##BCT
####more wn paramter to learn mel
fea, y_mask_ = self.wns1(fea, y_lengths1, ge)
return fea,ge
def extract_latent(self, x):
ssl = self.ssl_proj(x)
quantized, codes, commit_loss, quantized_list = self.quantizer(ssl)
return codes.transpose(0,1)

View File

@ -1,344 +0,0 @@
from module.models_onnx import SynthesizerTrn, symbols_v1, symbols_v2
from AR.models.t2s_lightning_module_onnx import Text2SemanticLightningModule
import torch
import torchaudio
from torch import nn
from feature_extractor import cnhubert
cnhubert_base_path = "GPT_SoVITS/pretrained_models/chinese-hubert-base"
cnhubert.cnhubert_base_path = cnhubert_base_path
ssl_model = cnhubert.get_model()
from text import cleaned_text_to_sequence
import soundfile
from tools.my_utils import load_audio
import os
import json
def spectrogram_torch(y, n_fft, sampling_rate, hop_size, win_size, center=False):
hann_window = torch.hann_window(win_size).to(
dtype=y.dtype, device=y.device
)
y = torch.nn.functional.pad(
y.unsqueeze(1),
(int((n_fft - hop_size) / 2), int((n_fft - hop_size) / 2)),
mode="reflect",
)
y = y.squeeze(1)
spec = torch.stft(
y,
n_fft,
hop_length=hop_size,
win_length=win_size,
window=hann_window,
center=center,
pad_mode="reflect",
normalized=False,
onesided=True,
return_complex=False,
)
spec = torch.sqrt(spec.pow(2).sum(-1) + 1e-6)
return spec
class DictToAttrRecursive(dict):
def __init__(self, input_dict):
super().__init__(input_dict)
for key, value in input_dict.items():
if isinstance(value, dict):
value = DictToAttrRecursive(value)
self[key] = value
setattr(self, key, value)
def __getattr__(self, item):
try:
return self[item]
except KeyError:
raise AttributeError(f"Attribute {item} not found")
def __setattr__(self, key, value):
if isinstance(value, dict):
value = DictToAttrRecursive(value)
super(DictToAttrRecursive, self).__setitem__(key, value)
super().__setattr__(key, value)
def __delattr__(self, item):
try:
del self[item]
except KeyError:
raise AttributeError(f"Attribute {item} not found")
class T2SEncoder(nn.Module):
def __init__(self, t2s, vits):
super().__init__()
self.encoder = t2s.onnx_encoder
self.vits = vits
def forward(self, ref_seq, text_seq, ref_bert, text_bert, ssl_content):
codes = self.vits.extract_latent(ssl_content)
prompt_semantic = codes[0, 0]
bert = torch.cat([ref_bert.transpose(0, 1), text_bert.transpose(0, 1)], 1)
all_phoneme_ids = torch.cat([ref_seq, text_seq], 1)
bert = bert.unsqueeze(0)
prompt = prompt_semantic.unsqueeze(0)
return self.encoder(all_phoneme_ids, bert), prompt
class T2SModel(nn.Module):
def __init__(self, t2s_path, vits_model):
super().__init__()
dict_s1 = torch.load(t2s_path, map_location="cpu")
self.config = dict_s1["config"]
self.t2s_model = Text2SemanticLightningModule(self.config, "ojbk", is_train=False)
self.t2s_model.load_state_dict(dict_s1["weight"])
self.t2s_model.eval()
self.vits_model = vits_model.vq_model
self.hz = 50
self.max_sec = self.config["data"]["max_sec"]
self.t2s_model.model.top_k = torch.LongTensor([self.config["inference"]["top_k"]])
self.t2s_model.model.early_stop_num = torch.LongTensor([self.hz * self.max_sec])
self.t2s_model = self.t2s_model.model
self.t2s_model.init_onnx()
self.onnx_encoder = T2SEncoder(self.t2s_model, self.vits_model)
self.first_stage_decoder = self.t2s_model.first_stage_decoder
self.stage_decoder = self.t2s_model.stage_decoder
#self.t2s_model = torch.jit.script(self.t2s_model)
def forward(self, ref_seq, text_seq, ref_bert, text_bert, ssl_content):
early_stop_num = self.t2s_model.early_stop_num
#[1,N] [1,N] [N, 1024] [N, 1024] [1, 768, N]
x, prompts = self.onnx_encoder(ref_seq, text_seq, ref_bert, text_bert, ssl_content)
prefix_len = prompts.shape[1]
#[1,N,512] [1,N]
y, k, v, y_emb, x_example = self.first_stage_decoder(x, prompts)
stop = False
for idx in range(1, 1500):
#[1, N] [N_layer, N, 1, 512] [N_layer, N, 1, 512] [1, N, 512] [1] [1, N, 512] [1, N]
enco = self.stage_decoder(y, k, v, y_emb, x_example)
y, k, v, y_emb, logits, samples = enco
if early_stop_num != -1 and (y.shape[1] - prefix_len) > early_stop_num:
stop = True
if torch.argmax(logits, dim=-1)[0] == self.t2s_model.EOS or samples[0, 0] == self.t2s_model.EOS:
stop = True
if stop:
break
y[0, -1] = 0
return y[:, -idx:].unsqueeze(0)
def export(self, ref_seq, text_seq, ref_bert, text_bert, ssl_content, project_name, dynamo=False):
#self.onnx_encoder = torch.jit.script(self.onnx_encoder)
if dynamo:
export_options = torch.onnx.ExportOptions(dynamic_shapes=True)
onnx_encoder_export_output = torch.onnx.dynamo_export(
self.onnx_encoder,
(ref_seq, text_seq, ref_bert, text_bert, ssl_content),
export_options=export_options
)
onnx_encoder_export_output.save(f"onnx/{project_name}/{project_name}_t2s_encoder.onnx")
return
torch.onnx.export(
self.onnx_encoder,
(ref_seq, text_seq, ref_bert, text_bert, ssl_content),
f"onnx/{project_name}/{project_name}_t2s_encoder.onnx",
input_names=["ref_seq", "text_seq", "ref_bert", "text_bert", "ssl_content"],
output_names=["x", "prompts"],
dynamic_axes={
"ref_seq": {1 : "ref_length"},
"text_seq": {1 : "text_length"},
"ref_bert": {0 : "ref_length"},
"text_bert": {0 : "text_length"},
"ssl_content": {2 : "ssl_length"},
},
opset_version=16
)
x, prompts = self.onnx_encoder(ref_seq, text_seq, ref_bert, text_bert, ssl_content)
torch.onnx.export(
self.first_stage_decoder,
(x, prompts),
f"onnx/{project_name}/{project_name}_t2s_fsdec.onnx",
input_names=["x", "prompts"],
output_names=["y", "k", "v", "y_emb", "x_example"],
dynamic_axes={
"x": {1 : "x_length"},
"prompts": {1 : "prompts_length"},
},
verbose=False,
opset_version=16
)
y, k, v, y_emb, x_example = self.first_stage_decoder(x, prompts)
torch.onnx.export(
self.stage_decoder,
(y, k, v, y_emb, x_example),
f"onnx/{project_name}/{project_name}_t2s_sdec.onnx",
input_names=["iy", "ik", "iv", "iy_emb", "ix_example"],
output_names=["y", "k", "v", "y_emb", "logits", "samples"],
dynamic_axes={
"iy": {1 : "iy_length"},
"ik": {1 : "ik_length"},
"iv": {1 : "iv_length"},
"iy_emb": {1 : "iy_emb_length"},
"ix_example": {1 : "ix_example_length"},
},
verbose=False,
opset_version=16
)
class VitsModel(nn.Module):
def __init__(self, vits_path):
super().__init__()
dict_s2 = torch.load(vits_path,map_location="cpu")
self.hps = dict_s2["config"]
if dict_s2['weight']['enc_p.text_embedding.weight'].shape[0] == 322:
self.hps["model"]["version"] = "v1"
else:
self.hps["model"]["version"] = "v2"
self.hps = DictToAttrRecursive(self.hps)
self.hps.model.semantic_frame_rate = "25hz"
self.vq_model = SynthesizerTrn(
self.hps.data.filter_length // 2 + 1,
self.hps.train.segment_size // self.hps.data.hop_length,
n_speakers=self.hps.data.n_speakers,
**self.hps.model
)
self.vq_model.eval()
self.vq_model.load_state_dict(dict_s2["weight"], strict=False)
def forward(self, text_seq, pred_semantic, ref_audio):
refer = spectrogram_torch(
ref_audio,
self.hps.data.filter_length,
self.hps.data.sampling_rate,
self.hps.data.hop_length,
self.hps.data.win_length,
center=False
)
return self.vq_model(pred_semantic, text_seq, refer)[0, 0]
class GptSoVits(nn.Module):
def __init__(self, vits, t2s):
super().__init__()
self.vits = vits
self.t2s = t2s
def forward(self, ref_seq, text_seq, ref_bert, text_bert, ref_audio, ssl_content, debug=False):
pred_semantic = self.t2s(ref_seq, text_seq, ref_bert, text_bert, ssl_content)
audio = self.vits(text_seq, pred_semantic, ref_audio)
if debug:
import onnxruntime
sess = onnxruntime.InferenceSession("onnx/koharu/koharu_vits.onnx", providers=["CPU"])
audio1 = sess.run(None, {
"text_seq" : text_seq.detach().cpu().numpy(),
"pred_semantic" : pred_semantic.detach().cpu().numpy(),
"ref_audio" : ref_audio.detach().cpu().numpy()
})
return audio, audio1
return audio
def export(self, ref_seq, text_seq, ref_bert, text_bert, ref_audio, ssl_content, project_name):
self.t2s.export(ref_seq, text_seq, ref_bert, text_bert, ssl_content, project_name)
pred_semantic = self.t2s(ref_seq, text_seq, ref_bert, text_bert, ssl_content)
torch.onnx.export(
self.vits,
(text_seq, pred_semantic, ref_audio),
f"onnx/{project_name}/{project_name}_vits.onnx",
input_names=["text_seq", "pred_semantic", "ref_audio"],
output_names=["audio"],
dynamic_axes={
"text_seq": {1 : "text_length"},
"pred_semantic": {2 : "pred_length"},
"ref_audio": {1 : "audio_length"},
},
opset_version=17,
verbose=False
)
class SSLModel(nn.Module):
def __init__(self):
super().__init__()
self.ssl = ssl_model
def forward(self, ref_audio_16k):
return self.ssl.model(ref_audio_16k)["last_hidden_state"].transpose(1, 2)
def export(vits_path, gpt_path, project_name, vits_model="v2"):
vits = VitsModel(vits_path)
gpt = T2SModel(gpt_path, vits)
gpt_sovits = GptSoVits(vits, gpt)
ssl = SSLModel()
ref_seq = torch.LongTensor([cleaned_text_to_sequence(["n", "i2", "h", "ao3", ",", "w", "o3", "sh", "i4", "b", "ai2", "y", "e4"],version=vits_model)])
text_seq = torch.LongTensor([cleaned_text_to_sequence(["w", "o3", "sh", "i4", "b", "ai2", "y", "e4", "w", "o3", "sh", "i4", "b", "ai2", "y", "e4", "w", "o3", "sh", "i4", "b", "ai2", "y", "e4"],version=vits_model)])
ref_bert = torch.randn((ref_seq.shape[1], 1024)).float()
text_bert = torch.randn((text_seq.shape[1], 1024)).float()
ref_audio = torch.randn((1, 48000 * 5)).float()
# ref_audio = torch.tensor([load_audio("rec.wav", 48000)]).float()
ref_audio_16k = torchaudio.functional.resample(ref_audio,48000,16000).float()
ref_audio_sr = torchaudio.functional.resample(ref_audio,48000,vits.hps.data.sampling_rate).float()
try:
os.mkdir(f"onnx/{project_name}")
except:
pass
ssl_content = ssl(ref_audio_16k).float()
# debug = False
debug = True
# gpt_sovits.export(ref_seq, text_seq, ref_bert, text_bert, ref_audio_sr, ssl_content, project_name)
if debug:
a, b = gpt_sovits(ref_seq, text_seq, ref_bert, text_bert, ref_audio_sr, ssl_content, debug=debug)
soundfile.write("out1.wav", a.cpu().detach().numpy(), vits.hps.data.sampling_rate)
soundfile.write("out2.wav", b[0], vits.hps.data.sampling_rate)
else:
a = gpt_sovits(ref_seq, text_seq, ref_bert, text_bert, ref_audio_sr, ssl_content).detach().cpu().numpy()
soundfile.write("out.wav", a, vits.hps.data.sampling_rate)
if vits_model == "v1":
symbols = symbols_v1
else:
symbols = symbols_v2
MoeVSConf = {
"Folder": f"{project_name}",
"Name": f"{project_name}",
"Type": "GPT-SoVits",
"Rate": vits.hps.data.sampling_rate,
"NumLayers": gpt.t2s_model.num_layers,
"EmbeddingDim": gpt.t2s_model.embedding_dim,
"Dict": "BasicDict",
"BertPath": "chinese-roberta-wwm-ext-large",
# "Symbol": symbols,
"AddBlank": False,
}
MoeVSConfJson = json.dumps(MoeVSConf)
with open(f"onnx/{project_name}.json", 'w') as MoeVsConfFile:
json.dump(MoeVSConf, MoeVsConfFile, indent = 4)
if __name__ == "__main__":
try:
os.mkdir("onnx")
except:
pass
gpt_path = "GPT_weights/nahida-e25.ckpt"
vits_path = "SoVITS_weights/nahida_e30_s3930.pth"
exp_path = "nahida"
export(vits_path, gpt_path, exp_path)
# soundfile.write("out.wav", a, vits.hps.data.sampling_rate)