mirror of
https://github.com/RVC-Boss/GPT-SoVITS.git
synced 2025-06-24 13:33:33 +08:00
support sovits v2Pro v2ProPlus
support sovits v2Pro v2ProPlus
This commit is contained in:
parent
dbd69bb792
commit
3f46359652
260
GPT_SoVITS/eres2net/ERes2Net.py
Normal file
260
GPT_SoVITS/eres2net/ERes2Net.py
Normal file
@ -0,0 +1,260 @@
|
||||
# Copyright 3D-Speaker (https://github.com/alibaba-damo-academy/3D-Speaker). All Rights Reserved.
|
||||
# Licensed under the Apache License, Version 2.0 (http://www.apache.org/licenses/LICENSE-2.0)
|
||||
|
||||
"""
|
||||
Res2Net implementation is adapted from https://github.com/wenet-e2e/wespeaker.
|
||||
ERes2Net incorporates both local and global feature fusion techniques to improve the performance.
|
||||
The local feature fusion (LFF) fuses the features within one single residual block to extract the local signal.
|
||||
The global feature fusion (GFF) takes acoustic features of different scales as input to aggregate global signal.
|
||||
"""
|
||||
|
||||
|
||||
import torch
|
||||
import math
|
||||
import torch.nn as nn
|
||||
import torch.nn.functional as F
|
||||
import pooling_layers as pooling_layers
|
||||
from fusion import AFF
|
||||
|
||||
class ReLU(nn.Hardtanh):
|
||||
|
||||
def __init__(self, inplace=False):
|
||||
super(ReLU, self).__init__(0, 20, inplace)
|
||||
|
||||
def __repr__(self):
|
||||
inplace_str = 'inplace' if self.inplace else ''
|
||||
return self.__class__.__name__ + ' (' \
|
||||
+ inplace_str + ')'
|
||||
|
||||
|
||||
class BasicBlockERes2Net(nn.Module):
|
||||
expansion = 2
|
||||
|
||||
def __init__(self, in_planes, planes, stride=1, baseWidth=32, scale=2):
|
||||
super(BasicBlockERes2Net, self).__init__()
|
||||
width = int(math.floor(planes*(baseWidth/64.0)))
|
||||
self.conv1 = nn.Conv2d(in_planes, width*scale, kernel_size=1, stride=stride, bias=False)
|
||||
self.bn1 = nn.BatchNorm2d(width*scale)
|
||||
self.nums = scale
|
||||
|
||||
convs=[]
|
||||
bns=[]
|
||||
for i in range(self.nums):
|
||||
convs.append(nn.Conv2d(width, width, kernel_size=3, padding=1, bias=False))
|
||||
bns.append(nn.BatchNorm2d(width))
|
||||
self.convs = nn.ModuleList(convs)
|
||||
self.bns = nn.ModuleList(bns)
|
||||
self.relu = ReLU(inplace=True)
|
||||
|
||||
self.conv3 = nn.Conv2d(width*scale, planes*self.expansion, kernel_size=1, bias=False)
|
||||
self.bn3 = nn.BatchNorm2d(planes*self.expansion)
|
||||
self.shortcut = nn.Sequential()
|
||||
if stride != 1 or in_planes != self.expansion * planes:
|
||||
self.shortcut = nn.Sequential(
|
||||
nn.Conv2d(in_planes, self.expansion * planes, kernel_size=1,
|
||||
stride=stride, bias=False),
|
||||
nn.BatchNorm2d(self.expansion * planes))
|
||||
self.stride = stride
|
||||
self.width = width
|
||||
self.scale = scale
|
||||
|
||||
def forward(self, x):
|
||||
residual = x
|
||||
|
||||
out = self.conv1(x)
|
||||
out = self.bn1(out)
|
||||
out = self.relu(out)
|
||||
spx = torch.split(out,self.width,1)
|
||||
for i in range(self.nums):
|
||||
if i==0:
|
||||
sp = spx[i]
|
||||
else:
|
||||
sp = sp + spx[i]
|
||||
sp = self.convs[i](sp)
|
||||
sp = self.relu(self.bns[i](sp))
|
||||
if i==0:
|
||||
out = sp
|
||||
else:
|
||||
out = torch.cat((out,sp),1)
|
||||
|
||||
out = self.conv3(out)
|
||||
out = self.bn3(out)
|
||||
|
||||
residual = self.shortcut(x)
|
||||
out += residual
|
||||
out = self.relu(out)
|
||||
|
||||
return out
|
||||
|
||||
class BasicBlockERes2Net_diff_AFF(nn.Module):
|
||||
expansion = 2
|
||||
|
||||
def __init__(self, in_planes, planes, stride=1, baseWidth=32, scale=2):
|
||||
super(BasicBlockERes2Net_diff_AFF, self).__init__()
|
||||
width = int(math.floor(planes*(baseWidth/64.0)))
|
||||
self.conv1 = nn.Conv2d(in_planes, width*scale, kernel_size=1, stride=stride, bias=False)
|
||||
self.bn1 = nn.BatchNorm2d(width*scale)
|
||||
self.nums = scale
|
||||
|
||||
convs=[]
|
||||
fuse_models=[]
|
||||
bns=[]
|
||||
for i in range(self.nums):
|
||||
convs.append(nn.Conv2d(width, width, kernel_size=3, padding=1, bias=False))
|
||||
bns.append(nn.BatchNorm2d(width))
|
||||
for j in range(self.nums - 1):
|
||||
fuse_models.append(AFF(channels=width))
|
||||
|
||||
self.convs = nn.ModuleList(convs)
|
||||
self.bns = nn.ModuleList(bns)
|
||||
self.fuse_models = nn.ModuleList(fuse_models)
|
||||
self.relu = ReLU(inplace=True)
|
||||
|
||||
self.conv3 = nn.Conv2d(width*scale, planes*self.expansion, kernel_size=1, bias=False)
|
||||
self.bn3 = nn.BatchNorm2d(planes*self.expansion)
|
||||
self.shortcut = nn.Sequential()
|
||||
if stride != 1 or in_planes != self.expansion * planes:
|
||||
self.shortcut = nn.Sequential(
|
||||
nn.Conv2d(in_planes, self.expansion * planes, kernel_size=1,
|
||||
stride=stride, bias=False),
|
||||
nn.BatchNorm2d(self.expansion * planes))
|
||||
self.stride = stride
|
||||
self.width = width
|
||||
self.scale = scale
|
||||
|
||||
def forward(self, x):
|
||||
residual = x
|
||||
|
||||
out = self.conv1(x)
|
||||
out = self.bn1(out)
|
||||
out = self.relu(out)
|
||||
spx = torch.split(out,self.width,1)
|
||||
for i in range(self.nums):
|
||||
if i==0:
|
||||
sp = spx[i]
|
||||
else:
|
||||
sp = self.fuse_models[i-1](sp, spx[i])
|
||||
|
||||
sp = self.convs[i](sp)
|
||||
sp = self.relu(self.bns[i](sp))
|
||||
if i==0:
|
||||
out = sp
|
||||
else:
|
||||
out = torch.cat((out,sp),1)
|
||||
|
||||
out = self.conv3(out)
|
||||
out = self.bn3(out)
|
||||
|
||||
residual = self.shortcut(x)
|
||||
out += residual
|
||||
out = self.relu(out)
|
||||
|
||||
return out
|
||||
|
||||
class ERes2Net(nn.Module):
|
||||
def __init__(self,
|
||||
block=BasicBlockERes2Net,
|
||||
block_fuse=BasicBlockERes2Net_diff_AFF,
|
||||
num_blocks=[3, 4, 6, 3],
|
||||
m_channels=32,
|
||||
feat_dim=80,
|
||||
embedding_size=192,
|
||||
pooling_func='TSTP',
|
||||
two_emb_layer=False):
|
||||
super(ERes2Net, self).__init__()
|
||||
self.in_planes = m_channels
|
||||
self.feat_dim = feat_dim
|
||||
self.embedding_size = embedding_size
|
||||
self.stats_dim = int(feat_dim / 8) * m_channels * 8
|
||||
self.two_emb_layer = two_emb_layer
|
||||
|
||||
self.conv1 = nn.Conv2d(1, m_channels, kernel_size=3, stride=1, padding=1, bias=False)
|
||||
self.bn1 = nn.BatchNorm2d(m_channels)
|
||||
self.layer1 = self._make_layer(block, m_channels, num_blocks[0], stride=1)
|
||||
self.layer2 = self._make_layer(block, m_channels * 2, num_blocks[1], stride=2)
|
||||
self.layer3 = self._make_layer(block_fuse, m_channels * 4, num_blocks[2], stride=2)
|
||||
self.layer4 = self._make_layer(block_fuse, m_channels * 8, num_blocks[3], stride=2)
|
||||
|
||||
# Downsampling module for each layer
|
||||
self.layer1_downsample = nn.Conv2d(m_channels * 2, m_channels * 4, kernel_size=3, stride=2, padding=1, bias=False)
|
||||
self.layer2_downsample = nn.Conv2d(m_channels * 4, m_channels * 8, kernel_size=3, padding=1, stride=2, bias=False)
|
||||
self.layer3_downsample = nn.Conv2d(m_channels * 8, m_channels * 16, kernel_size=3, padding=1, stride=2, bias=False)
|
||||
|
||||
# Bottom-up fusion module
|
||||
self.fuse_mode12 = AFF(channels=m_channels * 4)
|
||||
self.fuse_mode123 = AFF(channels=m_channels * 8)
|
||||
self.fuse_mode1234 = AFF(channels=m_channels * 16)
|
||||
|
||||
self.n_stats = 1 if pooling_func == 'TAP' or pooling_func == "TSDP" else 2
|
||||
self.pool = getattr(pooling_layers, pooling_func)(
|
||||
in_dim=self.stats_dim * block.expansion)
|
||||
self.seg_1 = nn.Linear(self.stats_dim * block.expansion * self.n_stats,
|
||||
embedding_size)
|
||||
if self.two_emb_layer:
|
||||
self.seg_bn_1 = nn.BatchNorm1d(embedding_size, affine=False)
|
||||
self.seg_2 = nn.Linear(embedding_size, embedding_size)
|
||||
else:
|
||||
self.seg_bn_1 = nn.Identity()
|
||||
self.seg_2 = nn.Identity()
|
||||
|
||||
def _make_layer(self, block, planes, num_blocks, stride):
|
||||
strides = [stride] + [1] * (num_blocks - 1)
|
||||
layers = []
|
||||
for stride in strides:
|
||||
layers.append(block(self.in_planes, planes, stride))
|
||||
self.in_planes = planes * block.expansion
|
||||
return nn.Sequential(*layers)
|
||||
|
||||
def forward(self, x):
|
||||
x = x.permute(0, 2, 1) # (B,T,F) => (B,F,T)
|
||||
x = x.unsqueeze_(1)
|
||||
out = F.relu(self.bn1(self.conv1(x)))
|
||||
out1 = self.layer1(out)
|
||||
out2 = self.layer2(out1)
|
||||
out1_downsample = self.layer1_downsample(out1)
|
||||
fuse_out12 = self.fuse_mode12(out2, out1_downsample)
|
||||
out3 = self.layer3(out2)
|
||||
fuse_out12_downsample = self.layer2_downsample(fuse_out12)
|
||||
fuse_out123 = self.fuse_mode123(out3, fuse_out12_downsample)
|
||||
out4 = self.layer4(out3)
|
||||
fuse_out123_downsample = self.layer3_downsample(fuse_out123)
|
||||
fuse_out1234 = self.fuse_mode1234(out4, fuse_out123_downsample)
|
||||
stats = self.pool(fuse_out1234)
|
||||
|
||||
embed_a = self.seg_1(stats)
|
||||
if self.two_emb_layer:
|
||||
out = F.relu(embed_a)
|
||||
out = self.seg_bn_1(out)
|
||||
embed_b = self.seg_2(out)
|
||||
return embed_b
|
||||
else:
|
||||
return embed_a
|
||||
|
||||
def forward3(self, x):
|
||||
x = x.permute(0, 2, 1) # (B,T,F) => (B,F,T)
|
||||
x = x.unsqueeze_(1)
|
||||
out = F.relu(self.bn1(self.conv1(x)))
|
||||
out1 = self.layer1(out)
|
||||
out2 = self.layer2(out1)
|
||||
out1_downsample = self.layer1_downsample(out1)
|
||||
fuse_out12 = self.fuse_mode12(out2, out1_downsample)
|
||||
out3 = self.layer3(out2)
|
||||
fuse_out12_downsample = self.layer2_downsample(fuse_out12)
|
||||
fuse_out123 = self.fuse_mode123(out3, fuse_out12_downsample)
|
||||
out4 = self.layer4(out3)
|
||||
fuse_out123_downsample = self.layer3_downsample(fuse_out123)
|
||||
fuse_out1234 = self.fuse_mode1234(out4, fuse_out123_downsample).flatten(start_dim=1,end_dim=2).mean(-1)
|
||||
return fuse_out1234
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
|
||||
x = torch.zeros(10, 300, 80)
|
||||
model = ERes2Net(feat_dim=80, embedding_size=192, pooling_func='TSTP')
|
||||
model.eval()
|
||||
out = model(x)
|
||||
print(out.shape) # torch.Size([10, 192])
|
||||
|
||||
num_params = sum(param.numel() for param in model.parameters())
|
||||
print("{} M".format(num_params / 1e6)) # 6.61M
|
||||
|
292
GPT_SoVITS/eres2net/ERes2NetV2.py
Normal file
292
GPT_SoVITS/eres2net/ERes2NetV2.py
Normal file
@ -0,0 +1,292 @@
|
||||
# Copyright 3D-Speaker (https://github.com/alibaba-damo-academy/3D-Speaker). All Rights Reserved.
|
||||
# Licensed under the Apache License, Version 2.0 (http://www.apache.org/licenses/LICENSE-2.0)
|
||||
|
||||
"""
|
||||
To further improve the short-duration feature extraction capability of ERes2Net, we expand the channel dimension
|
||||
within each stage. However, this modification also increases the number of model parameters and computational complexity.
|
||||
To alleviate this problem, we propose an improved ERes2NetV2 by pruning redundant structures, ultimately reducing
|
||||
both the model parameters and its computational cost.
|
||||
"""
|
||||
|
||||
|
||||
|
||||
import torch
|
||||
import math
|
||||
import torch.nn as nn
|
||||
import torch.nn.functional as F
|
||||
import pooling_layers as pooling_layers
|
||||
from fusion import AFF
|
||||
|
||||
class ReLU(nn.Hardtanh):
|
||||
|
||||
def __init__(self, inplace=False):
|
||||
super(ReLU, self).__init__(0, 20, inplace)
|
||||
|
||||
def __repr__(self):
|
||||
inplace_str = 'inplace' if self.inplace else ''
|
||||
return self.__class__.__name__ + ' (' \
|
||||
+ inplace_str + ')'
|
||||
|
||||
|
||||
class BasicBlockERes2NetV2(nn.Module):
|
||||
|
||||
def __init__(self, in_planes, planes, stride=1, baseWidth=26, scale=2, expansion=2):
|
||||
super(BasicBlockERes2NetV2, self).__init__()
|
||||
width = int(math.floor(planes*(baseWidth/64.0)))
|
||||
self.conv1 = nn.Conv2d(in_planes, width*scale, kernel_size=1, stride=stride, bias=False)
|
||||
self.bn1 = nn.BatchNorm2d(width*scale)
|
||||
self.nums = scale
|
||||
self.expansion = expansion
|
||||
|
||||
convs=[]
|
||||
bns=[]
|
||||
for i in range(self.nums):
|
||||
convs.append(nn.Conv2d(width, width, kernel_size=3, padding=1, bias=False))
|
||||
bns.append(nn.BatchNorm2d(width))
|
||||
self.convs = nn.ModuleList(convs)
|
||||
self.bns = nn.ModuleList(bns)
|
||||
self.relu = ReLU(inplace=True)
|
||||
|
||||
self.conv3 = nn.Conv2d(width*scale, planes*self.expansion, kernel_size=1, bias=False)
|
||||
self.bn3 = nn.BatchNorm2d(planes*self.expansion)
|
||||
self.shortcut = nn.Sequential()
|
||||
if stride != 1 or in_planes != self.expansion * planes:
|
||||
self.shortcut = nn.Sequential(
|
||||
nn.Conv2d(in_planes,
|
||||
self.expansion * planes,
|
||||
kernel_size=1,
|
||||
stride=stride,
|
||||
bias=False),
|
||||
nn.BatchNorm2d(self.expansion * planes))
|
||||
self.stride = stride
|
||||
self.width = width
|
||||
self.scale = scale
|
||||
|
||||
def forward(self, x):
|
||||
residual = x
|
||||
|
||||
out = self.conv1(x)
|
||||
out = self.bn1(out)
|
||||
out = self.relu(out)
|
||||
spx = torch.split(out,self.width,1)
|
||||
for i in range(self.nums):
|
||||
if i==0:
|
||||
sp = spx[i]
|
||||
else:
|
||||
sp = sp + spx[i]
|
||||
sp = self.convs[i](sp)
|
||||
sp = self.relu(self.bns[i](sp))
|
||||
if i==0:
|
||||
out = sp
|
||||
else:
|
||||
out = torch.cat((out,sp),1)
|
||||
|
||||
out = self.conv3(out)
|
||||
out = self.bn3(out)
|
||||
|
||||
residual = self.shortcut(x)
|
||||
out += residual
|
||||
out = self.relu(out)
|
||||
|
||||
return out
|
||||
|
||||
class BasicBlockERes2NetV2AFF(nn.Module):
|
||||
|
||||
def __init__(self, in_planes, planes, stride=1, baseWidth=26, scale=2, expansion=2):
|
||||
super(BasicBlockERes2NetV2AFF, self).__init__()
|
||||
width = int(math.floor(planes*(baseWidth/64.0)))
|
||||
self.conv1 = nn.Conv2d(in_planes, width*scale, kernel_size=1, stride=stride, bias=False)
|
||||
self.bn1 = nn.BatchNorm2d(width*scale)
|
||||
self.nums = scale
|
||||
self.expansion = expansion
|
||||
|
||||
convs=[]
|
||||
fuse_models=[]
|
||||
bns=[]
|
||||
for i in range(self.nums):
|
||||
convs.append(nn.Conv2d(width, width, kernel_size=3, padding=1, bias=False))
|
||||
bns.append(nn.BatchNorm2d(width))
|
||||
for j in range(self.nums - 1):
|
||||
fuse_models.append(AFF(channels=width, r=4))
|
||||
|
||||
self.convs = nn.ModuleList(convs)
|
||||
self.bns = nn.ModuleList(bns)
|
||||
self.fuse_models = nn.ModuleList(fuse_models)
|
||||
self.relu = ReLU(inplace=True)
|
||||
|
||||
self.conv3 = nn.Conv2d(width*scale, planes*self.expansion, kernel_size=1, bias=False)
|
||||
self.bn3 = nn.BatchNorm2d(planes*self.expansion)
|
||||
self.shortcut = nn.Sequential()
|
||||
if stride != 1 or in_planes != self.expansion * planes:
|
||||
self.shortcut = nn.Sequential(
|
||||
nn.Conv2d(in_planes,
|
||||
self.expansion * planes,
|
||||
kernel_size=1,
|
||||
stride=stride,
|
||||
bias=False),
|
||||
nn.BatchNorm2d(self.expansion * planes))
|
||||
self.stride = stride
|
||||
self.width = width
|
||||
self.scale = scale
|
||||
|
||||
def forward(self, x):
|
||||
residual = x
|
||||
|
||||
out = self.conv1(x)
|
||||
out = self.bn1(out)
|
||||
out = self.relu(out)
|
||||
spx = torch.split(out,self.width,1)
|
||||
for i in range(self.nums):
|
||||
if i==0:
|
||||
sp = spx[i]
|
||||
else:
|
||||
sp = self.fuse_models[i-1](sp, spx[i])
|
||||
|
||||
sp = self.convs[i](sp)
|
||||
sp = self.relu(self.bns[i](sp))
|
||||
if i==0:
|
||||
out = sp
|
||||
else:
|
||||
out = torch.cat((out,sp),1)
|
||||
|
||||
out = self.conv3(out)
|
||||
out = self.bn3(out)
|
||||
|
||||
residual = self.shortcut(x)
|
||||
out += residual
|
||||
out = self.relu(out)
|
||||
|
||||
return out
|
||||
|
||||
class ERes2NetV2(nn.Module):
|
||||
def __init__(self,
|
||||
block=BasicBlockERes2NetV2,
|
||||
block_fuse=BasicBlockERes2NetV2AFF,
|
||||
num_blocks=[3, 4, 6, 3],
|
||||
m_channels=64,
|
||||
feat_dim=80,
|
||||
embedding_size=192,
|
||||
baseWidth=26,
|
||||
scale=2,
|
||||
expansion=2,
|
||||
pooling_func='TSTP',
|
||||
two_emb_layer=False):
|
||||
super(ERes2NetV2, self).__init__()
|
||||
self.in_planes = m_channels
|
||||
self.feat_dim = feat_dim
|
||||
self.embedding_size = embedding_size
|
||||
self.stats_dim = int(feat_dim / 8) * m_channels * 8
|
||||
self.two_emb_layer = two_emb_layer
|
||||
self.baseWidth = baseWidth
|
||||
self.scale = scale
|
||||
self.expansion = expansion
|
||||
|
||||
self.conv1 = nn.Conv2d(1,
|
||||
m_channels,
|
||||
kernel_size=3,
|
||||
stride=1,
|
||||
padding=1,
|
||||
bias=False)
|
||||
self.bn1 = nn.BatchNorm2d(m_channels)
|
||||
self.layer1 = self._make_layer(block,
|
||||
m_channels,
|
||||
num_blocks[0],
|
||||
stride=1)
|
||||
self.layer2 = self._make_layer(block,
|
||||
m_channels * 2,
|
||||
num_blocks[1],
|
||||
stride=2)
|
||||
self.layer3 = self._make_layer(block_fuse,
|
||||
m_channels * 4,
|
||||
num_blocks[2],
|
||||
stride=2)
|
||||
self.layer4 = self._make_layer(block_fuse,
|
||||
m_channels * 8,
|
||||
num_blocks[3],
|
||||
stride=2)
|
||||
|
||||
# Downsampling module
|
||||
self.layer3_ds = nn.Conv2d(m_channels * 4 * self.expansion, m_channels * 8 * self.expansion, kernel_size=3, \
|
||||
padding=1, stride=2, bias=False)
|
||||
|
||||
# Bottom-up fusion module
|
||||
self.fuse34 = AFF(channels=m_channels * 8 * self.expansion, r=4)
|
||||
|
||||
self.n_stats = 1 if pooling_func == 'TAP' or pooling_func == "TSDP" else 2
|
||||
self.pool = getattr(pooling_layers, pooling_func)(
|
||||
in_dim=self.stats_dim * self.expansion)
|
||||
self.seg_1 = nn.Linear(self.stats_dim * self.expansion * self.n_stats,
|
||||
embedding_size)
|
||||
if self.two_emb_layer:
|
||||
self.seg_bn_1 = nn.BatchNorm1d(embedding_size, affine=False)
|
||||
self.seg_2 = nn.Linear(embedding_size, embedding_size)
|
||||
else:
|
||||
self.seg_bn_1 = nn.Identity()
|
||||
self.seg_2 = nn.Identity()
|
||||
|
||||
def _make_layer(self, block, planes, num_blocks, stride):
|
||||
strides = [stride] + [1] * (num_blocks - 1)
|
||||
layers = []
|
||||
for stride in strides:
|
||||
layers.append(block(self.in_planes, planes, stride, baseWidth=self.baseWidth, scale=self.scale, expansion=self.expansion))
|
||||
self.in_planes = planes * self.expansion
|
||||
return nn.Sequential(*layers)
|
||||
|
||||
def forward(self, x):
|
||||
x = x.permute(0, 2, 1) # (B,T,F) => (B,F,T)
|
||||
x = x.unsqueeze_(1)
|
||||
out = F.relu(self.bn1(self.conv1(x)))
|
||||
out1 = self.layer1(out)
|
||||
out2 = self.layer2(out1)
|
||||
out3 = self.layer3(out2)
|
||||
out4 = self.layer4(out3)
|
||||
out3_ds = self.layer3_ds(out3)
|
||||
fuse_out34 = self.fuse34(out4, out3_ds)
|
||||
stats = self.pool(fuse_out34)
|
||||
|
||||
embed_a = self.seg_1(stats)
|
||||
if self.two_emb_layer:
|
||||
out = F.relu(embed_a)
|
||||
out = self.seg_bn_1(out)
|
||||
embed_b = self.seg_2(out)
|
||||
return embed_b
|
||||
else:
|
||||
return embed_a
|
||||
|
||||
def forward3(self, x):
|
||||
x = x.permute(0, 2, 1) # (B,T,F) => (B,F,T)
|
||||
x = x.unsqueeze_(1)
|
||||
out = F.relu(self.bn1(self.conv1(x)))
|
||||
out1 = self.layer1(out)
|
||||
out2 = self.layer2(out1)
|
||||
out3 = self.layer3(out2)
|
||||
out4 = self.layer4(out3)
|
||||
out3_ds = self.layer3_ds(out3)
|
||||
fuse_out34 = self.fuse34(out4, out3_ds)
|
||||
# print(111111111,fuse_out34.shape)#111111111 torch.Size([16, 2048, 10, 72])
|
||||
return fuse_out34.flatten(start_dim=1,end_dim=2).mean(-1)
|
||||
# stats = self.pool(fuse_out34)
|
||||
#
|
||||
# embed_a = self.seg_1(stats)
|
||||
# if self.two_emb_layer:
|
||||
# out = F.relu(embed_a)
|
||||
# out = self.seg_bn_1(out)
|
||||
# embed_b = self.seg_2(out)
|
||||
# return embed_b
|
||||
# else:
|
||||
# return embed_a
|
||||
|
||||
if __name__ == '__main__':
|
||||
|
||||
x = torch.randn(1, 300, 80)
|
||||
model = ERes2NetV2(feat_dim=80, embedding_size=192, m_channels=64, baseWidth=26, scale=2, expansion=2)
|
||||
model.eval()
|
||||
y = model(x)
|
||||
print(y.size())
|
||||
macs, num_params = profile(model, inputs=(x, ))
|
||||
print("Params: {} M".format(num_params / 1e6)) # 17.86 M
|
||||
print("MACs: {} G".format(macs / 1e9)) # 12.69 G
|
||||
|
||||
|
||||
|
||||
|
286
GPT_SoVITS/eres2net/ERes2Net_huge.py
Normal file
286
GPT_SoVITS/eres2net/ERes2Net_huge.py
Normal file
@ -0,0 +1,286 @@
|
||||
# Copyright 3D-Speaker (https://github.com/alibaba-damo-academy/3D-Speaker). All Rights Reserved.
|
||||
# Licensed under the Apache License, Version 2.0 (http://www.apache.org/licenses/LICENSE-2.0)
|
||||
|
||||
""" Res2Net implementation is adapted from https://github.com/wenet-e2e/wespeaker.
|
||||
ERes2Net incorporates both local and global feature fusion techniques to improve the performance.
|
||||
The local feature fusion (LFF) fuses the features within one single residual block to extract the local signal.
|
||||
The global feature fusion (GFF) takes acoustic features of different scales as input to aggregate global signal.
|
||||
ERes2Net-huge is an upgraded version of ERes2Net that uses a larger number of parameters to achieve better
|
||||
recognition performance. Parameters expansion, baseWidth, and scale can be modified to obtain optimal performance.
|
||||
"""
|
||||
import pdb
|
||||
|
||||
import torch
|
||||
import math
|
||||
import torch.nn as nn
|
||||
import torch.nn.functional as F
|
||||
import pooling_layers as pooling_layers
|
||||
from fusion import AFF
|
||||
|
||||
class ReLU(nn.Hardtanh):
|
||||
|
||||
def __init__(self, inplace=False):
|
||||
super(ReLU, self).__init__(0, 20, inplace)
|
||||
|
||||
def __repr__(self):
|
||||
inplace_str = 'inplace' if self.inplace else ''
|
||||
return self.__class__.__name__ + ' (' \
|
||||
+ inplace_str + ')'
|
||||
|
||||
|
||||
class BasicBlockERes2Net(nn.Module):
|
||||
expansion = 4
|
||||
|
||||
def __init__(self, in_planes, planes, stride=1, baseWidth=24, scale=3):
|
||||
super(BasicBlockERes2Net, self).__init__()
|
||||
width = int(math.floor(planes*(baseWidth/64.0)))
|
||||
self.conv1 = nn.Conv2d(in_planes, width*scale, kernel_size=1, stride=stride, bias=False)
|
||||
self.bn1 = nn.BatchNorm2d(width*scale)
|
||||
self.nums = scale
|
||||
|
||||
convs=[]
|
||||
bns=[]
|
||||
for i in range(self.nums):
|
||||
convs.append(nn.Conv2d(width, width, kernel_size=3, padding=1, bias=False))
|
||||
bns.append(nn.BatchNorm2d(width))
|
||||
self.convs = nn.ModuleList(convs)
|
||||
self.bns = nn.ModuleList(bns)
|
||||
self.relu = ReLU(inplace=True)
|
||||
|
||||
self.conv3 = nn.Conv2d(width*scale, planes*self.expansion, kernel_size=1, bias=False)
|
||||
self.bn3 = nn.BatchNorm2d(planes*self.expansion)
|
||||
self.shortcut = nn.Sequential()
|
||||
if stride != 1 or in_planes != self.expansion * planes:
|
||||
self.shortcut = nn.Sequential(
|
||||
nn.Conv2d(in_planes, self.expansion * planes, kernel_size=1, stride=stride, bias=False),
|
||||
nn.BatchNorm2d(self.expansion * planes))
|
||||
self.stride = stride
|
||||
self.width = width
|
||||
self.scale = scale
|
||||
|
||||
def forward(self, x):
|
||||
residual = x
|
||||
|
||||
out = self.conv1(x)
|
||||
out = self.bn1(out)
|
||||
out = self.relu(out)
|
||||
spx = torch.split(out,self.width,1)
|
||||
for i in range(self.nums):
|
||||
if i==0:
|
||||
sp = spx[i]
|
||||
else:
|
||||
sp = sp + spx[i]
|
||||
sp = self.convs[i](sp)
|
||||
sp = self.relu(self.bns[i](sp))
|
||||
if i==0:
|
||||
out = sp
|
||||
else:
|
||||
out = torch.cat((out,sp),1)
|
||||
|
||||
out = self.conv3(out)
|
||||
out = self.bn3(out)
|
||||
|
||||
residual = self.shortcut(x)
|
||||
out += residual
|
||||
out = self.relu(out)
|
||||
|
||||
return out
|
||||
|
||||
class BasicBlockERes2Net_diff_AFF(nn.Module):
|
||||
expansion = 4
|
||||
|
||||
def __init__(self, in_planes, planes, stride=1, baseWidth=24, scale=3):
|
||||
super(BasicBlockERes2Net_diff_AFF, self).__init__()
|
||||
width = int(math.floor(planes*(baseWidth/64.0)))
|
||||
self.conv1 = nn.Conv2d(in_planes, width*scale, kernel_size=1, stride=stride, bias=False)
|
||||
self.bn1 = nn.BatchNorm2d(width*scale)
|
||||
self.nums = scale
|
||||
|
||||
convs=[]
|
||||
fuse_models=[]
|
||||
bns=[]
|
||||
for i in range(self.nums):
|
||||
convs.append(nn.Conv2d(width, width, kernel_size=3, padding=1, bias=False))
|
||||
bns.append(nn.BatchNorm2d(width))
|
||||
for j in range(self.nums - 1):
|
||||
fuse_models.append(AFF(channels=width))
|
||||
|
||||
self.convs = nn.ModuleList(convs)
|
||||
self.bns = nn.ModuleList(bns)
|
||||
self.fuse_models = nn.ModuleList(fuse_models)
|
||||
self.relu = ReLU(inplace=True)
|
||||
|
||||
self.conv3 = nn.Conv2d(width*scale, planes*self.expansion, kernel_size=1, bias=False)
|
||||
self.bn3 = nn.BatchNorm2d(planes*self.expansion)
|
||||
self.shortcut = nn.Sequential()
|
||||
if stride != 1 or in_planes != self.expansion * planes:
|
||||
self.shortcut = nn.Sequential(
|
||||
nn.Conv2d(in_planes, self.expansion * planes, kernel_size=1, stride=stride, bias=False),
|
||||
nn.BatchNorm2d(self.expansion * planes))
|
||||
self.stride = stride
|
||||
self.width = width
|
||||
self.scale = scale
|
||||
|
||||
def forward(self, x):
|
||||
residual = x
|
||||
|
||||
out = self.conv1(x)
|
||||
out = self.bn1(out)
|
||||
out = self.relu(out)
|
||||
spx = torch.split(out,self.width,1)
|
||||
for i in range(self.nums):
|
||||
if i==0:
|
||||
sp = spx[i]
|
||||
else:
|
||||
sp = self.fuse_models[i-1](sp, spx[i])
|
||||
|
||||
sp = self.convs[i](sp)
|
||||
sp = self.relu(self.bns[i](sp))
|
||||
if i==0:
|
||||
out = sp
|
||||
else:
|
||||
out = torch.cat((out,sp),1)
|
||||
|
||||
|
||||
out = self.conv3(out)
|
||||
out = self.bn3(out)
|
||||
|
||||
residual = self.shortcut(x)
|
||||
out += residual
|
||||
out = self.relu(out)
|
||||
|
||||
return out
|
||||
|
||||
class ERes2Net(nn.Module):
|
||||
def __init__(self,
|
||||
block=BasicBlockERes2Net,
|
||||
block_fuse=BasicBlockERes2Net_diff_AFF,
|
||||
num_blocks=[3, 4, 6, 3],
|
||||
m_channels=64,
|
||||
feat_dim=80,
|
||||
embedding_size=192,
|
||||
pooling_func='TSTP',
|
||||
two_emb_layer=False):
|
||||
super(ERes2Net, self).__init__()
|
||||
self.in_planes = m_channels
|
||||
self.feat_dim = feat_dim
|
||||
self.embedding_size = embedding_size
|
||||
self.stats_dim = int(feat_dim / 8) * m_channels * 8
|
||||
self.two_emb_layer = two_emb_layer
|
||||
|
||||
self.conv1 = nn.Conv2d(1, m_channels, kernel_size=3, stride=1, padding=1, bias=False)
|
||||
self.bn1 = nn.BatchNorm2d(m_channels)
|
||||
|
||||
self.layer1 = self._make_layer(block, m_channels, num_blocks[0], stride=1)
|
||||
self.layer2 = self._make_layer(block, m_channels * 2, num_blocks[1], stride=2)
|
||||
self.layer3 = self._make_layer(block_fuse, m_channels * 4, num_blocks[2], stride=2)
|
||||
self.layer4 = self._make_layer(block_fuse, m_channels * 8, num_blocks[3], stride=2)
|
||||
|
||||
self.layer1_downsample = nn.Conv2d(m_channels * 4, m_channels * 8, kernel_size=3, padding=1, stride=2, bias=False)
|
||||
self.layer2_downsample = nn.Conv2d(m_channels * 8, m_channels * 16, kernel_size=3, padding=1, stride=2, bias=False)
|
||||
self.layer3_downsample = nn.Conv2d(m_channels * 16, m_channels * 32, kernel_size=3, padding=1, stride=2, bias=False)
|
||||
|
||||
self.fuse_mode12 = AFF(channels=m_channels * 8)
|
||||
self.fuse_mode123 = AFF(channels=m_channels * 16)
|
||||
self.fuse_mode1234 = AFF(channels=m_channels * 32)
|
||||
|
||||
self.n_stats = 1 if pooling_func == 'TAP' or pooling_func == "TSDP" else 2
|
||||
self.pool = getattr(pooling_layers, pooling_func)(
|
||||
in_dim=self.stats_dim * block.expansion)
|
||||
self.seg_1 = nn.Linear(self.stats_dim * block.expansion * self.n_stats, embedding_size)
|
||||
if self.two_emb_layer:
|
||||
self.seg_bn_1 = nn.BatchNorm1d(embedding_size, affine=False)
|
||||
self.seg_2 = nn.Linear(embedding_size, embedding_size)
|
||||
else:
|
||||
self.seg_bn_1 = nn.Identity()
|
||||
self.seg_2 = nn.Identity()
|
||||
|
||||
def _make_layer(self, block, planes, num_blocks, stride):
|
||||
strides = [stride] + [1] * (num_blocks - 1)
|
||||
layers = []
|
||||
for stride in strides:
|
||||
layers.append(block(self.in_planes, planes, stride))
|
||||
self.in_planes = planes * block.expansion
|
||||
return nn.Sequential(*layers)
|
||||
|
||||
def forward(self, x):
|
||||
x = x.permute(0, 2, 1) # (B,T,F) => (B,F,T)
|
||||
|
||||
x = x.unsqueeze_(1)
|
||||
out = F.relu(self.bn1(self.conv1(x)))
|
||||
out1 = self.layer1(out)
|
||||
out2 = self.layer2(out1)
|
||||
out1_downsample = self.layer1_downsample(out1)
|
||||
fuse_out12 = self.fuse_mode12(out2, out1_downsample)
|
||||
out3 = self.layer3(out2)
|
||||
fuse_out12_downsample = self.layer2_downsample(fuse_out12)
|
||||
fuse_out123 = self.fuse_mode123(out3, fuse_out12_downsample)
|
||||
out4 = self.layer4(out3)
|
||||
fuse_out123_downsample = self.layer3_downsample(fuse_out123)
|
||||
fuse_out1234 = self.fuse_mode1234(out4, fuse_out123_downsample)
|
||||
stats = self.pool(fuse_out1234)
|
||||
|
||||
embed_a = self.seg_1(stats)
|
||||
if self.two_emb_layer:
|
||||
out = F.relu(embed_a)
|
||||
out = self.seg_bn_1(out)
|
||||
embed_b = self.seg_2(out)
|
||||
return embed_b
|
||||
else:
|
||||
return embed_a
|
||||
|
||||
def forward2(self, x,if_mean):
|
||||
x = x.permute(0, 2, 1) # (B,T,F) => (B,F,T)
|
||||
|
||||
x = x.unsqueeze_(1)
|
||||
out = F.relu(self.bn1(self.conv1(x)))
|
||||
out1 = self.layer1(out)
|
||||
out2 = self.layer2(out1)
|
||||
out1_downsample = self.layer1_downsample(out1)
|
||||
fuse_out12 = self.fuse_mode12(out2, out1_downsample)
|
||||
out3 = self.layer3(out2)
|
||||
fuse_out12_downsample = self.layer2_downsample(fuse_out12)
|
||||
fuse_out123 = self.fuse_mode123(out3, fuse_out12_downsample)
|
||||
out4 = self.layer4(out3)
|
||||
fuse_out123_downsample = self.layer3_downsample(fuse_out123)
|
||||
fuse_out1234 = self.fuse_mode1234(out4, fuse_out123_downsample).flatten(start_dim=1,end_dim=2)#bs,20480,T
|
||||
if(if_mean==False):
|
||||
mean=fuse_out1234[0].transpose(1,0)#(T,20480),bs=T
|
||||
else:
|
||||
mean = fuse_out1234.mean(2)#bs,20480
|
||||
mean_std=torch.cat([mean,torch.zeros_like(mean)],1)
|
||||
return self.seg_1(mean_std)#(T,192)
|
||||
|
||||
|
||||
# stats = self.pool(fuse_out1234)
|
||||
# if self.two_emb_layer:
|
||||
# out = F.relu(embed_a)
|
||||
# out = self.seg_bn_1(out)
|
||||
# embed_b = self.seg_2(out)
|
||||
# return embed_b
|
||||
# else:
|
||||
# return embed_a
|
||||
|
||||
def forward3(self, x):
|
||||
x = x.permute(0, 2, 1) # (B,T,F) => (B,F,T)
|
||||
|
||||
x = x.unsqueeze_(1)
|
||||
out = F.relu(self.bn1(self.conv1(x)))
|
||||
out1 = self.layer1(out)
|
||||
out2 = self.layer2(out1)
|
||||
out1_downsample = self.layer1_downsample(out1)
|
||||
fuse_out12 = self.fuse_mode12(out2, out1_downsample)
|
||||
out3 = self.layer3(out2)
|
||||
fuse_out12_downsample = self.layer2_downsample(fuse_out12)
|
||||
fuse_out123 = self.fuse_mode123(out3, fuse_out12_downsample)
|
||||
out4 = self.layer4(out3)
|
||||
fuse_out123_downsample = self.layer3_downsample(fuse_out123)
|
||||
fuse_out1234 = self.fuse_mode1234(out4, fuse_out123_downsample).flatten(start_dim=1,end_dim=2).mean(-1)
|
||||
return fuse_out1234
|
||||
# print(fuse_out1234.shape)
|
||||
# print(fuse_out1234.flatten(start_dim=1,end_dim=2).shape)
|
||||
# pdb.set_trace()
|
||||
|
||||
|
||||
|
||||
|
29
GPT_SoVITS/eres2net/fusion.py
Normal file
29
GPT_SoVITS/eres2net/fusion.py
Normal file
@ -0,0 +1,29 @@
|
||||
# Copyright 3D-Speaker (https://github.com/alibaba-damo-academy/3D-Speaker). All Rights Reserved.
|
||||
# Licensed under the Apache License, Version 2.0 (http://www.apache.org/licenses/LICENSE-2.0)
|
||||
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
|
||||
|
||||
class AFF(nn.Module):
|
||||
|
||||
def __init__(self, channels=64, r=4):
|
||||
super(AFF, self).__init__()
|
||||
inter_channels = int(channels // r)
|
||||
|
||||
self.local_att = nn.Sequential(
|
||||
nn.Conv2d(channels * 2, inter_channels, kernel_size=1, stride=1, padding=0),
|
||||
nn.BatchNorm2d(inter_channels),
|
||||
nn.SiLU(inplace=True),
|
||||
nn.Conv2d(inter_channels, channels, kernel_size=1, stride=1, padding=0),
|
||||
nn.BatchNorm2d(channels),
|
||||
)
|
||||
|
||||
def forward(self, x, ds_y):
|
||||
xa = torch.cat((x, ds_y), dim=1)
|
||||
x_att = self.local_att(xa)
|
||||
x_att = 1.0 + torch.tanh(x_att)
|
||||
xo = torch.mul(x, x_att) + torch.mul(ds_y, 2.0-x_att)
|
||||
|
||||
return xo
|
||||
|
@ -1 +1,819 @@
|
||||
111
|
||||
import math
|
||||
from typing import Tuple
|
||||
|
||||
import torch
|
||||
import torchaudio
|
||||
from torch import Tensor
|
||||
|
||||
__all__ = [
|
||||
"get_mel_banks",
|
||||
"inverse_mel_scale",
|
||||
"inverse_mel_scale_scalar",
|
||||
"mel_scale",
|
||||
"mel_scale_scalar",
|
||||
"spectrogram",
|
||||
"fbank",
|
||||
"mfcc",
|
||||
"vtln_warp_freq",
|
||||
"vtln_warp_mel_freq",
|
||||
]
|
||||
|
||||
# numeric_limits<float>::epsilon() 1.1920928955078125e-07
|
||||
EPSILON = torch.tensor(torch.finfo(torch.float).eps)
|
||||
# 1 milliseconds = 0.001 seconds
|
||||
MILLISECONDS_TO_SECONDS = 0.001
|
||||
|
||||
# window types
|
||||
HAMMING = "hamming"
|
||||
HANNING = "hanning"
|
||||
POVEY = "povey"
|
||||
RECTANGULAR = "rectangular"
|
||||
BLACKMAN = "blackman"
|
||||
WINDOWS = [HAMMING, HANNING, POVEY, RECTANGULAR, BLACKMAN]
|
||||
|
||||
|
||||
def _get_epsilon(device, dtype):
|
||||
return EPSILON.to(device=device, dtype=dtype)
|
||||
|
||||
|
||||
def _next_power_of_2(x: int) -> int:
|
||||
r"""Returns the smallest power of 2 that is greater than x"""
|
||||
return 1 if x == 0 else 2 ** (x - 1).bit_length()
|
||||
|
||||
|
||||
def _get_strided(waveform: Tensor, window_size: int, window_shift: int, snip_edges: bool) -> Tensor:
|
||||
r"""Given a waveform (1D tensor of size ``num_samples``), it returns a 2D tensor (m, ``window_size``)
|
||||
representing how the window is shifted along the waveform. Each row is a frame.
|
||||
|
||||
Args:
|
||||
waveform (Tensor): Tensor of size ``num_samples``
|
||||
window_size (int): Frame length
|
||||
window_shift (int): Frame shift
|
||||
snip_edges (bool): If True, end effects will be handled by outputting only frames that completely fit
|
||||
in the file, and the number of frames depends on the frame_length. If False, the number of frames
|
||||
depends only on the frame_shift, and we reflect the data at the ends.
|
||||
|
||||
Returns:
|
||||
Tensor: 2D tensor of size (m, ``window_size``) where each row is a frame
|
||||
"""
|
||||
assert waveform.dim() == 1
|
||||
num_samples = waveform.size(0)
|
||||
strides = (window_shift * waveform.stride(0), waveform.stride(0))
|
||||
|
||||
if snip_edges:
|
||||
if num_samples < window_size:
|
||||
return torch.empty((0, 0), dtype=waveform.dtype, device=waveform.device)
|
||||
else:
|
||||
m = 1 + (num_samples - window_size) // window_shift
|
||||
else:
|
||||
reversed_waveform = torch.flip(waveform, [0])
|
||||
m = (num_samples + (window_shift // 2)) // window_shift
|
||||
pad = window_size // 2 - window_shift // 2
|
||||
pad_right = reversed_waveform
|
||||
if pad > 0:
|
||||
# torch.nn.functional.pad returns [2,1,0,1,2] for 'reflect'
|
||||
# but we want [2, 1, 0, 0, 1, 2]
|
||||
pad_left = reversed_waveform[-pad:]
|
||||
waveform = torch.cat((pad_left, waveform, pad_right), dim=0)
|
||||
else:
|
||||
# pad is negative so we want to trim the waveform at the front
|
||||
waveform = torch.cat((waveform[-pad:], pad_right), dim=0)
|
||||
|
||||
sizes = (m, window_size)
|
||||
return waveform.as_strided(sizes, strides)
|
||||
|
||||
|
||||
def _feature_window_function(
|
||||
window_type: str,
|
||||
window_size: int,
|
||||
blackman_coeff: float,
|
||||
device: torch.device,
|
||||
dtype: int,
|
||||
) -> Tensor:
|
||||
r"""Returns a window function with the given type and size"""
|
||||
if window_type == HANNING:
|
||||
return torch.hann_window(window_size, periodic=False, device=device, dtype=dtype)
|
||||
elif window_type == HAMMING:
|
||||
return torch.hamming_window(window_size, periodic=False, alpha=0.54, beta=0.46, device=device, dtype=dtype)
|
||||
elif window_type == POVEY:
|
||||
# like hanning but goes to zero at edges
|
||||
return torch.hann_window(window_size, periodic=False, device=device, dtype=dtype).pow(0.85)
|
||||
elif window_type == RECTANGULAR:
|
||||
return torch.ones(window_size, device=device, dtype=dtype)
|
||||
elif window_type == BLACKMAN:
|
||||
a = 2 * math.pi / (window_size - 1)
|
||||
window_function = torch.arange(window_size, device=device, dtype=dtype)
|
||||
# can't use torch.blackman_window as they use different coefficients
|
||||
return (
|
||||
blackman_coeff
|
||||
- 0.5 * torch.cos(a * window_function)
|
||||
+ (0.5 - blackman_coeff) * torch.cos(2 * a * window_function)
|
||||
).to(device=device, dtype=dtype)
|
||||
else:
|
||||
raise Exception("Invalid window type " + window_type)
|
||||
|
||||
|
||||
def _get_log_energy(strided_input: Tensor, epsilon: Tensor, energy_floor: float) -> Tensor:
|
||||
r"""Returns the log energy of size (m) for a strided_input (m,*)"""
|
||||
device, dtype = strided_input.device, strided_input.dtype
|
||||
log_energy = torch.max(strided_input.pow(2).sum(1), epsilon).log() # size (m)
|
||||
if energy_floor == 0.0:
|
||||
return log_energy
|
||||
return torch.max(log_energy, torch.tensor(math.log(energy_floor), device=device, dtype=dtype))
|
||||
|
||||
|
||||
def _get_waveform_and_window_properties(
|
||||
waveform: Tensor,
|
||||
channel: int,
|
||||
sample_frequency: float,
|
||||
frame_shift: float,
|
||||
frame_length: float,
|
||||
round_to_power_of_two: bool,
|
||||
preemphasis_coefficient: float,
|
||||
) -> Tuple[Tensor, int, int, int]:
|
||||
r"""Gets the waveform and window properties"""
|
||||
channel = max(channel, 0)
|
||||
assert channel < waveform.size(0), "Invalid channel {} for size {}".format(channel, waveform.size(0))
|
||||
waveform = waveform[channel, :] # size (n)
|
||||
window_shift = int(sample_frequency * frame_shift * MILLISECONDS_TO_SECONDS)
|
||||
window_size = int(sample_frequency * frame_length * MILLISECONDS_TO_SECONDS)
|
||||
padded_window_size = _next_power_of_2(window_size) if round_to_power_of_two else window_size
|
||||
|
||||
assert 2 <= window_size <= len(waveform), "choose a window size {} that is [2, {}]".format(
|
||||
window_size, len(waveform)
|
||||
)
|
||||
assert 0 < window_shift, "`window_shift` must be greater than 0"
|
||||
assert padded_window_size % 2 == 0, (
|
||||
"the padded `window_size` must be divisible by two." " use `round_to_power_of_two` or change `frame_length`"
|
||||
)
|
||||
assert 0.0 <= preemphasis_coefficient <= 1.0, "`preemphasis_coefficient` must be between [0,1]"
|
||||
assert sample_frequency > 0, "`sample_frequency` must be greater than zero"
|
||||
return waveform, window_shift, window_size, padded_window_size
|
||||
|
||||
|
||||
def _get_window(
|
||||
waveform: Tensor,
|
||||
padded_window_size: int,
|
||||
window_size: int,
|
||||
window_shift: int,
|
||||
window_type: str,
|
||||
blackman_coeff: float,
|
||||
snip_edges: bool,
|
||||
raw_energy: bool,
|
||||
energy_floor: float,
|
||||
dither: float,
|
||||
remove_dc_offset: bool,
|
||||
preemphasis_coefficient: float,
|
||||
) -> Tuple[Tensor, Tensor]:
|
||||
r"""Gets a window and its log energy
|
||||
|
||||
Returns:
|
||||
(Tensor, Tensor): strided_input of size (m, ``padded_window_size``) and signal_log_energy of size (m)
|
||||
"""
|
||||
device, dtype = waveform.device, waveform.dtype
|
||||
epsilon = _get_epsilon(device, dtype)
|
||||
|
||||
# size (m, window_size)
|
||||
strided_input = _get_strided(waveform, window_size, window_shift, snip_edges)
|
||||
|
||||
if dither != 0.0:
|
||||
rand_gauss = torch.randn(strided_input.shape, device=device, dtype=dtype)
|
||||
strided_input = strided_input + rand_gauss * dither
|
||||
|
||||
if remove_dc_offset:
|
||||
# Subtract each row/frame by its mean
|
||||
row_means = torch.mean(strided_input, dim=1).unsqueeze(1) # size (m, 1)
|
||||
strided_input = strided_input - row_means
|
||||
|
||||
if raw_energy:
|
||||
# Compute the log energy of each row/frame before applying preemphasis and
|
||||
# window function
|
||||
signal_log_energy = _get_log_energy(strided_input, epsilon, energy_floor) # size (m)
|
||||
|
||||
if preemphasis_coefficient != 0.0:
|
||||
# strided_input[i,j] -= preemphasis_coefficient * strided_input[i, max(0, j-1)] for all i,j
|
||||
offset_strided_input = torch.nn.functional.pad(strided_input.unsqueeze(0), (1, 0), mode="replicate").squeeze(
|
||||
0
|
||||
) # size (m, window_size + 1)
|
||||
strided_input = strided_input - preemphasis_coefficient * offset_strided_input[:, :-1]
|
||||
|
||||
# Apply window_function to each row/frame
|
||||
window_function = _feature_window_function(window_type, window_size, blackman_coeff, device, dtype).unsqueeze(
|
||||
0
|
||||
) # size (1, window_size)
|
||||
strided_input = strided_input * window_function # size (m, window_size)
|
||||
|
||||
# Pad columns with zero until we reach size (m, padded_window_size)
|
||||
if padded_window_size != window_size:
|
||||
padding_right = padded_window_size - window_size
|
||||
strided_input = torch.nn.functional.pad(
|
||||
strided_input.unsqueeze(0), (0, padding_right), mode="constant", value=0
|
||||
).squeeze(0)
|
||||
|
||||
# Compute energy after window function (not the raw one)
|
||||
if not raw_energy:
|
||||
signal_log_energy = _get_log_energy(strided_input, epsilon, energy_floor) # size (m)
|
||||
|
||||
return strided_input, signal_log_energy
|
||||
|
||||
|
||||
def _subtract_column_mean(tensor: Tensor, subtract_mean: bool) -> Tensor:
|
||||
# subtracts the column mean of the tensor size (m, n) if subtract_mean=True
|
||||
# it returns size (m, n)
|
||||
if subtract_mean:
|
||||
col_means = torch.mean(tensor, dim=0).unsqueeze(0)
|
||||
tensor = tensor - col_means
|
||||
return tensor
|
||||
|
||||
|
||||
def spectrogram(
|
||||
waveform: Tensor,
|
||||
blackman_coeff: float = 0.42,
|
||||
channel: int = -1,
|
||||
dither: float = 0.0,
|
||||
energy_floor: float = 1.0,
|
||||
frame_length: float = 25.0,
|
||||
frame_shift: float = 10.0,
|
||||
min_duration: float = 0.0,
|
||||
preemphasis_coefficient: float = 0.97,
|
||||
raw_energy: bool = True,
|
||||
remove_dc_offset: bool = True,
|
||||
round_to_power_of_two: bool = True,
|
||||
sample_frequency: float = 16000.0,
|
||||
snip_edges: bool = True,
|
||||
subtract_mean: bool = False,
|
||||
window_type: str = POVEY,
|
||||
) -> Tensor:
|
||||
r"""Create a spectrogram from a raw audio signal. This matches the input/output of Kaldi's
|
||||
compute-spectrogram-feats.
|
||||
|
||||
Args:
|
||||
waveform (Tensor): Tensor of audio of size (c, n) where c is in the range [0,2)
|
||||
blackman_coeff (float, optional): Constant coefficient for generalized Blackman window. (Default: ``0.42``)
|
||||
channel (int, optional): Channel to extract (-1 -> expect mono, 0 -> left, 1 -> right) (Default: ``-1``)
|
||||
dither (float, optional): Dithering constant (0.0 means no dither). If you turn this off, you should set
|
||||
the energy_floor option, e.g. to 1.0 or 0.1 (Default: ``0.0``)
|
||||
energy_floor (float, optional): Floor on energy (absolute, not relative) in Spectrogram computation. Caution:
|
||||
this floor is applied to the zeroth component, representing the total signal energy. The floor on the
|
||||
individual spectrogram elements is fixed at std::numeric_limits<float>::epsilon(). (Default: ``1.0``)
|
||||
frame_length (float, optional): Frame length in milliseconds (Default: ``25.0``)
|
||||
frame_shift (float, optional): Frame shift in milliseconds (Default: ``10.0``)
|
||||
min_duration (float, optional): Minimum duration of segments to process (in seconds). (Default: ``0.0``)
|
||||
preemphasis_coefficient (float, optional): Coefficient for use in signal preemphasis (Default: ``0.97``)
|
||||
raw_energy (bool, optional): If True, compute energy before preemphasis and windowing (Default: ``True``)
|
||||
remove_dc_offset (bool, optional): Subtract mean from waveform on each frame (Default: ``True``)
|
||||
round_to_power_of_two (bool, optional): If True, round window size to power of two by zero-padding input
|
||||
to FFT. (Default: ``True``)
|
||||
sample_frequency (float, optional): Waveform data sample frequency (must match the waveform file, if
|
||||
specified there) (Default: ``16000.0``)
|
||||
snip_edges (bool, optional): If True, end effects will be handled by outputting only frames that completely fit
|
||||
in the file, and the number of frames depends on the frame_length. If False, the number of frames
|
||||
depends only on the frame_shift, and we reflect the data at the ends. (Default: ``True``)
|
||||
subtract_mean (bool, optional): Subtract mean of each feature file [CMS]; not recommended to do
|
||||
it this way. (Default: ``False``)
|
||||
window_type (str, optional): Type of window ('hamming'|'hanning'|'povey'|'rectangular'|'blackman')
|
||||
(Default: ``'povey'``)
|
||||
|
||||
Returns:
|
||||
Tensor: A spectrogram identical to what Kaldi would output. The shape is
|
||||
(m, ``padded_window_size // 2 + 1``) where m is calculated in _get_strided
|
||||
"""
|
||||
device, dtype = waveform.device, waveform.dtype
|
||||
epsilon = _get_epsilon(device, dtype)
|
||||
|
||||
waveform, window_shift, window_size, padded_window_size = _get_waveform_and_window_properties(
|
||||
waveform, channel, sample_frequency, frame_shift, frame_length, round_to_power_of_two, preemphasis_coefficient
|
||||
)
|
||||
|
||||
if len(waveform) < min_duration * sample_frequency:
|
||||
# signal is too short
|
||||
return torch.empty(0)
|
||||
|
||||
strided_input, signal_log_energy = _get_window(
|
||||
waveform,
|
||||
padded_window_size,
|
||||
window_size,
|
||||
window_shift,
|
||||
window_type,
|
||||
blackman_coeff,
|
||||
snip_edges,
|
||||
raw_energy,
|
||||
energy_floor,
|
||||
dither,
|
||||
remove_dc_offset,
|
||||
preemphasis_coefficient,
|
||||
)
|
||||
|
||||
# size (m, padded_window_size // 2 + 1, 2)
|
||||
fft = torch.fft.rfft(strided_input)
|
||||
|
||||
# Convert the FFT into a power spectrum
|
||||
power_spectrum = torch.max(fft.abs().pow(2.0), epsilon).log() # size (m, padded_window_size // 2 + 1)
|
||||
power_spectrum[:, 0] = signal_log_energy
|
||||
|
||||
power_spectrum = _subtract_column_mean(power_spectrum, subtract_mean)
|
||||
return power_spectrum
|
||||
|
||||
|
||||
def inverse_mel_scale_scalar(mel_freq: float) -> float:
|
||||
return 700.0 * (math.exp(mel_freq / 1127.0) - 1.0)
|
||||
|
||||
|
||||
def inverse_mel_scale(mel_freq: Tensor) -> Tensor:
|
||||
return 700.0 * ((mel_freq / 1127.0).exp() - 1.0)
|
||||
|
||||
|
||||
def mel_scale_scalar(freq: float) -> float:
|
||||
return 1127.0 * math.log(1.0 + freq / 700.0)
|
||||
|
||||
|
||||
def mel_scale(freq: Tensor) -> Tensor:
|
||||
return 1127.0 * (1.0 + freq / 700.0).log()
|
||||
|
||||
|
||||
def vtln_warp_freq(
|
||||
vtln_low_cutoff: float,
|
||||
vtln_high_cutoff: float,
|
||||
low_freq: float,
|
||||
high_freq: float,
|
||||
vtln_warp_factor: float,
|
||||
freq: Tensor,
|
||||
) -> Tensor:
|
||||
r"""This computes a VTLN warping function that is not the same as HTK's one,
|
||||
but has similar inputs (this function has the advantage of never producing
|
||||
empty bins).
|
||||
|
||||
This function computes a warp function F(freq), defined between low_freq
|
||||
and high_freq inclusive, with the following properties:
|
||||
F(low_freq) == low_freq
|
||||
F(high_freq) == high_freq
|
||||
The function is continuous and piecewise linear with two inflection
|
||||
points.
|
||||
The lower inflection point (measured in terms of the unwarped
|
||||
frequency) is at frequency l, determined as described below.
|
||||
The higher inflection point is at a frequency h, determined as
|
||||
described below.
|
||||
If l <= f <= h, then F(f) = f/vtln_warp_factor.
|
||||
If the higher inflection point (measured in terms of the unwarped
|
||||
frequency) is at h, then max(h, F(h)) == vtln_high_cutoff.
|
||||
Since (by the last point) F(h) == h/vtln_warp_factor, then
|
||||
max(h, h/vtln_warp_factor) == vtln_high_cutoff, so
|
||||
h = vtln_high_cutoff / max(1, 1/vtln_warp_factor).
|
||||
= vtln_high_cutoff * min(1, vtln_warp_factor).
|
||||
If the lower inflection point (measured in terms of the unwarped
|
||||
frequency) is at l, then min(l, F(l)) == vtln_low_cutoff
|
||||
This implies that l = vtln_low_cutoff / min(1, 1/vtln_warp_factor)
|
||||
= vtln_low_cutoff * max(1, vtln_warp_factor)
|
||||
Args:
|
||||
vtln_low_cutoff (float): Lower frequency cutoffs for VTLN
|
||||
vtln_high_cutoff (float): Upper frequency cutoffs for VTLN
|
||||
low_freq (float): Lower frequency cutoffs in mel computation
|
||||
high_freq (float): Upper frequency cutoffs in mel computation
|
||||
vtln_warp_factor (float): Vtln warp factor
|
||||
freq (Tensor): given frequency in Hz
|
||||
|
||||
Returns:
|
||||
Tensor: Freq after vtln warp
|
||||
"""
|
||||
assert vtln_low_cutoff > low_freq, "be sure to set the vtln_low option higher than low_freq"
|
||||
assert vtln_high_cutoff < high_freq, "be sure to set the vtln_high option lower than high_freq [or negative]"
|
||||
l = vtln_low_cutoff * max(1.0, vtln_warp_factor)
|
||||
h = vtln_high_cutoff * min(1.0, vtln_warp_factor)
|
||||
scale = 1.0 / vtln_warp_factor
|
||||
Fl = scale * l # F(l)
|
||||
Fh = scale * h # F(h)
|
||||
assert l > low_freq and h < high_freq
|
||||
# slope of left part of the 3-piece linear function
|
||||
scale_left = (Fl - low_freq) / (l - low_freq)
|
||||
# [slope of center part is just "scale"]
|
||||
|
||||
# slope of right part of the 3-piece linear function
|
||||
scale_right = (high_freq - Fh) / (high_freq - h)
|
||||
|
||||
res = torch.empty_like(freq)
|
||||
|
||||
outside_low_high_freq = torch.lt(freq, low_freq) | torch.gt(freq, high_freq) # freq < low_freq || freq > high_freq
|
||||
before_l = torch.lt(freq, l) # freq < l
|
||||
before_h = torch.lt(freq, h) # freq < h
|
||||
after_h = torch.ge(freq, h) # freq >= h
|
||||
|
||||
# order of operations matter here (since there is overlapping frequency regions)
|
||||
res[after_h] = high_freq + scale_right * (freq[after_h] - high_freq)
|
||||
res[before_h] = scale * freq[before_h]
|
||||
res[before_l] = low_freq + scale_left * (freq[before_l] - low_freq)
|
||||
res[outside_low_high_freq] = freq[outside_low_high_freq]
|
||||
|
||||
return res
|
||||
|
||||
|
||||
def vtln_warp_mel_freq(
|
||||
vtln_low_cutoff: float,
|
||||
vtln_high_cutoff: float,
|
||||
low_freq,
|
||||
high_freq: float,
|
||||
vtln_warp_factor: float,
|
||||
mel_freq: Tensor,
|
||||
) -> Tensor:
|
||||
r"""
|
||||
Args:
|
||||
vtln_low_cutoff (float): Lower frequency cutoffs for VTLN
|
||||
vtln_high_cutoff (float): Upper frequency cutoffs for VTLN
|
||||
low_freq (float): Lower frequency cutoffs in mel computation
|
||||
high_freq (float): Upper frequency cutoffs in mel computation
|
||||
vtln_warp_factor (float): Vtln warp factor
|
||||
mel_freq (Tensor): Given frequency in Mel
|
||||
|
||||
Returns:
|
||||
Tensor: ``mel_freq`` after vtln warp
|
||||
"""
|
||||
return mel_scale(
|
||||
vtln_warp_freq(
|
||||
vtln_low_cutoff, vtln_high_cutoff, low_freq, high_freq, vtln_warp_factor, inverse_mel_scale(mel_freq)
|
||||
)
|
||||
)
|
||||
|
||||
|
||||
def get_mel_banks(
|
||||
num_bins: int,
|
||||
window_length_padded: int,
|
||||
sample_freq: float,
|
||||
low_freq: float,
|
||||
high_freq: float,
|
||||
vtln_low: float,
|
||||
vtln_high: float,
|
||||
vtln_warp_factor: float,device=None,dtype=None
|
||||
) -> Tuple[Tensor, Tensor]:
|
||||
"""
|
||||
Returns:
|
||||
(Tensor, Tensor): The tuple consists of ``bins`` (which is
|
||||
melbank of size (``num_bins``, ``num_fft_bins``)) and ``center_freqs`` (which is
|
||||
center frequencies of bins of size (``num_bins``)).
|
||||
"""
|
||||
assert num_bins > 3, "Must have at least 3 mel bins"
|
||||
assert window_length_padded % 2 == 0
|
||||
num_fft_bins = window_length_padded / 2
|
||||
nyquist = 0.5 * sample_freq
|
||||
|
||||
if high_freq <= 0.0:
|
||||
high_freq += nyquist
|
||||
|
||||
assert (
|
||||
(0.0 <= low_freq < nyquist) and (0.0 < high_freq <= nyquist) and (low_freq < high_freq)
|
||||
), "Bad values in options: low-freq {} and high-freq {} vs. nyquist {}".format(low_freq, high_freq, nyquist)
|
||||
|
||||
# fft-bin width [think of it as Nyquist-freq / half-window-length]
|
||||
fft_bin_width = sample_freq / window_length_padded
|
||||
mel_low_freq = mel_scale_scalar(low_freq)
|
||||
mel_high_freq = mel_scale_scalar(high_freq)
|
||||
|
||||
# divide by num_bins+1 in next line because of end-effects where the bins
|
||||
# spread out to the sides.
|
||||
mel_freq_delta = (mel_high_freq - mel_low_freq) / (num_bins + 1)
|
||||
|
||||
if vtln_high < 0.0:
|
||||
vtln_high += nyquist
|
||||
|
||||
assert vtln_warp_factor == 1.0 or (
|
||||
(low_freq < vtln_low < high_freq) and (0.0 < vtln_high < high_freq) and (vtln_low < vtln_high)
|
||||
), "Bad values in options: vtln-low {} and vtln-high {}, versus " "low-freq {} and high-freq {}".format(
|
||||
vtln_low, vtln_high, low_freq, high_freq
|
||||
)
|
||||
|
||||
bin = torch.arange(num_bins).unsqueeze(1)
|
||||
left_mel = mel_low_freq + bin * mel_freq_delta # size(num_bins, 1)
|
||||
center_mel = mel_low_freq + (bin + 1.0) * mel_freq_delta # size(num_bins, 1)
|
||||
right_mel = mel_low_freq + (bin + 2.0) * mel_freq_delta # size(num_bins, 1)
|
||||
|
||||
if vtln_warp_factor != 1.0:
|
||||
left_mel = vtln_warp_mel_freq(vtln_low, vtln_high, low_freq, high_freq, vtln_warp_factor, left_mel)
|
||||
center_mel = vtln_warp_mel_freq(vtln_low, vtln_high, low_freq, high_freq, vtln_warp_factor, center_mel)
|
||||
right_mel = vtln_warp_mel_freq(vtln_low, vtln_high, low_freq, high_freq, vtln_warp_factor, right_mel)
|
||||
|
||||
# center_freqs = inverse_mel_scale(center_mel) # size (num_bins)
|
||||
# size(1, num_fft_bins)
|
||||
mel = mel_scale(fft_bin_width * torch.arange(num_fft_bins)).unsqueeze(0)
|
||||
|
||||
# size (num_bins, num_fft_bins)
|
||||
up_slope = (mel - left_mel) / (center_mel - left_mel)
|
||||
down_slope = (right_mel - mel) / (right_mel - center_mel)
|
||||
|
||||
if vtln_warp_factor == 1.0:
|
||||
# left_mel < center_mel < right_mel so we can min the two slopes and clamp negative values
|
||||
bins = torch.max(torch.zeros(1), torch.min(up_slope, down_slope))
|
||||
else:
|
||||
# warping can move the order of left_mel, center_mel, right_mel anywhere
|
||||
bins = torch.zeros_like(up_slope)
|
||||
up_idx = torch.gt(mel, left_mel) & torch.le(mel, center_mel) # left_mel < mel <= center_mel
|
||||
down_idx = torch.gt(mel, center_mel) & torch.lt(mel, right_mel) # center_mel < mel < right_mel
|
||||
bins[up_idx] = up_slope[up_idx]
|
||||
bins[down_idx] = down_slope[down_idx]
|
||||
|
||||
return bins.to(device=device,dtype=dtype)#, center_freqs
|
||||
|
||||
cache={}
|
||||
def fbank(
|
||||
waveform: Tensor,
|
||||
blackman_coeff: float = 0.42,
|
||||
channel: int = -1,
|
||||
dither: float = 0.0,
|
||||
energy_floor: float = 1.0,
|
||||
frame_length: float = 25.0,
|
||||
frame_shift: float = 10.0,
|
||||
high_freq: float = 0.0,
|
||||
htk_compat: bool = False,
|
||||
low_freq: float = 20.0,
|
||||
min_duration: float = 0.0,
|
||||
num_mel_bins: int = 23,
|
||||
preemphasis_coefficient: float = 0.97,
|
||||
raw_energy: bool = True,
|
||||
remove_dc_offset: bool = True,
|
||||
round_to_power_of_two: bool = True,
|
||||
sample_frequency: float = 16000.0,
|
||||
snip_edges: bool = True,
|
||||
subtract_mean: bool = False,
|
||||
use_energy: bool = False,
|
||||
use_log_fbank: bool = True,
|
||||
use_power: bool = True,
|
||||
vtln_high: float = -500.0,
|
||||
vtln_low: float = 100.0,
|
||||
vtln_warp: float = 1.0,
|
||||
window_type: str = POVEY,
|
||||
) -> Tensor:
|
||||
r"""Create a fbank from a raw audio signal. This matches the input/output of Kaldi's
|
||||
compute-fbank-feats.
|
||||
|
||||
Args:
|
||||
waveform (Tensor): Tensor of audio of size (c, n) where c is in the range [0,2)
|
||||
blackman_coeff (float, optional): Constant coefficient for generalized Blackman window. (Default: ``0.42``)
|
||||
channel (int, optional): Channel to extract (-1 -> expect mono, 0 -> left, 1 -> right) (Default: ``-1``)
|
||||
dither (float, optional): Dithering constant (0.0 means no dither). If you turn this off, you should set
|
||||
the energy_floor option, e.g. to 1.0 or 0.1 (Default: ``0.0``)
|
||||
energy_floor (float, optional): Floor on energy (absolute, not relative) in Spectrogram computation. Caution:
|
||||
this floor is applied to the zeroth component, representing the total signal energy. The floor on the
|
||||
individual spectrogram elements is fixed at std::numeric_limits<float>::epsilon(). (Default: ``1.0``)
|
||||
frame_length (float, optional): Frame length in milliseconds (Default: ``25.0``)
|
||||
frame_shift (float, optional): Frame shift in milliseconds (Default: ``10.0``)
|
||||
high_freq (float, optional): High cutoff frequency for mel bins (if <= 0, offset from Nyquist)
|
||||
(Default: ``0.0``)
|
||||
htk_compat (bool, optional): If true, put energy last. Warning: not sufficient to get HTK compatible features
|
||||
(need to change other parameters). (Default: ``False``)
|
||||
low_freq (float, optional): Low cutoff frequency for mel bins (Default: ``20.0``)
|
||||
min_duration (float, optional): Minimum duration of segments to process (in seconds). (Default: ``0.0``)
|
||||
num_mel_bins (int, optional): Number of triangular mel-frequency bins (Default: ``23``)
|
||||
preemphasis_coefficient (float, optional): Coefficient for use in signal preemphasis (Default: ``0.97``)
|
||||
raw_energy (bool, optional): If True, compute energy before preemphasis and windowing (Default: ``True``)
|
||||
remove_dc_offset (bool, optional): Subtract mean from waveform on each frame (Default: ``True``)
|
||||
round_to_power_of_two (bool, optional): If True, round window size to power of two by zero-padding input
|
||||
to FFT. (Default: ``True``)
|
||||
sample_frequency (float, optional): Waveform data sample frequency (must match the waveform file, if
|
||||
specified there) (Default: ``16000.0``)
|
||||
snip_edges (bool, optional): If True, end effects will be handled by outputting only frames that completely fit
|
||||
in the file, and the number of frames depends on the frame_length. If False, the number of frames
|
||||
depends only on the frame_shift, and we reflect the data at the ends. (Default: ``True``)
|
||||
subtract_mean (bool, optional): Subtract mean of each feature file [CMS]; not recommended to do
|
||||
it this way. (Default: ``False``)
|
||||
use_energy (bool, optional): Add an extra dimension with energy to the FBANK output. (Default: ``False``)
|
||||
use_log_fbank (bool, optional):If true, produce log-filterbank, else produce linear. (Default: ``True``)
|
||||
use_power (bool, optional): If true, use power, else use magnitude. (Default: ``True``)
|
||||
vtln_high (float, optional): High inflection point in piecewise linear VTLN warping function (if
|
||||
negative, offset from high-mel-freq (Default: ``-500.0``)
|
||||
vtln_low (float, optional): Low inflection point in piecewise linear VTLN warping function (Default: ``100.0``)
|
||||
vtln_warp (float, optional): Vtln warp factor (only applicable if vtln_map not specified) (Default: ``1.0``)
|
||||
window_type (str, optional): Type of window ('hamming'|'hanning'|'povey'|'rectangular'|'blackman')
|
||||
(Default: ``'povey'``)
|
||||
|
||||
Returns:
|
||||
Tensor: A fbank identical to what Kaldi would output. The shape is (m, ``num_mel_bins + use_energy``)
|
||||
where m is calculated in _get_strided
|
||||
"""
|
||||
device, dtype = waveform.device, waveform.dtype
|
||||
|
||||
waveform, window_shift, window_size, padded_window_size = _get_waveform_and_window_properties(
|
||||
waveform, channel, sample_frequency, frame_shift, frame_length, round_to_power_of_two, preemphasis_coefficient
|
||||
)
|
||||
|
||||
if len(waveform) < min_duration * sample_frequency:
|
||||
# signal is too short
|
||||
return torch.empty(0, device=device, dtype=dtype)
|
||||
|
||||
# strided_input, size (m, padded_window_size) and signal_log_energy, size (m)
|
||||
strided_input, signal_log_energy = _get_window(
|
||||
waveform,
|
||||
padded_window_size,
|
||||
window_size,
|
||||
window_shift,
|
||||
window_type,
|
||||
blackman_coeff,
|
||||
snip_edges,
|
||||
raw_energy,
|
||||
energy_floor,
|
||||
dither,
|
||||
remove_dc_offset,
|
||||
preemphasis_coefficient,
|
||||
)
|
||||
|
||||
# size (m, padded_window_size // 2 + 1)
|
||||
spectrum = torch.fft.rfft(strided_input).abs()
|
||||
if use_power:
|
||||
spectrum = spectrum.pow(2.0)
|
||||
|
||||
# size (num_mel_bins, padded_window_size // 2)
|
||||
# print(num_mel_bins, padded_window_size, sample_frequency, low_freq, high_freq, vtln_low, vtln_high, vtln_warp)
|
||||
|
||||
cache_key="%s-%s-%s-%s-%s-%s-%s-%s-%s-%s"%(num_mel_bins, padded_window_size, sample_frequency, low_freq, high_freq, vtln_low, vtln_high, vtln_warp,device,dtype)
|
||||
if cache_key not in cache:
|
||||
mel_energies = get_mel_banks(
|
||||
num_mel_bins, padded_window_size, sample_frequency, low_freq, high_freq, vtln_low, vtln_high, vtln_warp,device,dtype
|
||||
)
|
||||
cache[cache_key]=mel_energies
|
||||
else:
|
||||
mel_energies=cache[cache_key]
|
||||
|
||||
# pad right column with zeros and add dimension, size (num_mel_bins, padded_window_size // 2 + 1)
|
||||
mel_energies = torch.nn.functional.pad(mel_energies, (0, 1), mode="constant", value=0)
|
||||
|
||||
# sum with mel fiterbanks over the power spectrum, size (m, num_mel_bins)
|
||||
mel_energies = torch.mm(spectrum, mel_energies.T)
|
||||
if use_log_fbank:
|
||||
# avoid log of zero (which should be prevented anyway by dithering)
|
||||
mel_energies = torch.max(mel_energies, _get_epsilon(device, dtype)).log()
|
||||
|
||||
# if use_energy then add it as the last column for htk_compat == true else first column
|
||||
if use_energy:
|
||||
signal_log_energy = signal_log_energy.unsqueeze(1) # size (m, 1)
|
||||
# returns size (m, num_mel_bins + 1)
|
||||
if htk_compat:
|
||||
mel_energies = torch.cat((mel_energies, signal_log_energy), dim=1)
|
||||
else:
|
||||
mel_energies = torch.cat((signal_log_energy, mel_energies), dim=1)
|
||||
|
||||
mel_energies = _subtract_column_mean(mel_energies, subtract_mean)
|
||||
return mel_energies
|
||||
|
||||
|
||||
def _get_dct_matrix(num_ceps: int, num_mel_bins: int) -> Tensor:
|
||||
# returns a dct matrix of size (num_mel_bins, num_ceps)
|
||||
# size (num_mel_bins, num_mel_bins)
|
||||
dct_matrix = torchaudio.functional.create_dct(num_mel_bins, num_mel_bins, "ortho")
|
||||
# kaldi expects the first cepstral to be weighted sum of factor sqrt(1/num_mel_bins)
|
||||
# this would be the first column in the dct_matrix for torchaudio as it expects a
|
||||
# right multiply (which would be the first column of the kaldi's dct_matrix as kaldi
|
||||
# expects a left multiply e.g. dct_matrix * vector).
|
||||
dct_matrix[:, 0] = math.sqrt(1 / float(num_mel_bins))
|
||||
dct_matrix = dct_matrix[:, :num_ceps]
|
||||
return dct_matrix
|
||||
|
||||
|
||||
def _get_lifter_coeffs(num_ceps: int, cepstral_lifter: float) -> Tensor:
|
||||
# returns size (num_ceps)
|
||||
# Compute liftering coefficients (scaling on cepstral coeffs)
|
||||
# coeffs are numbered slightly differently from HTK: the zeroth index is C0, which is not affected.
|
||||
i = torch.arange(num_ceps)
|
||||
return 1.0 + 0.5 * cepstral_lifter * torch.sin(math.pi * i / cepstral_lifter)
|
||||
|
||||
|
||||
def mfcc(
|
||||
waveform: Tensor,
|
||||
blackman_coeff: float = 0.42,
|
||||
cepstral_lifter: float = 22.0,
|
||||
channel: int = -1,
|
||||
dither: float = 0.0,
|
||||
energy_floor: float = 1.0,
|
||||
frame_length: float = 25.0,
|
||||
frame_shift: float = 10.0,
|
||||
high_freq: float = 0.0,
|
||||
htk_compat: bool = False,
|
||||
low_freq: float = 20.0,
|
||||
num_ceps: int = 13,
|
||||
min_duration: float = 0.0,
|
||||
num_mel_bins: int = 23,
|
||||
preemphasis_coefficient: float = 0.97,
|
||||
raw_energy: bool = True,
|
||||
remove_dc_offset: bool = True,
|
||||
round_to_power_of_two: bool = True,
|
||||
sample_frequency: float = 16000.0,
|
||||
snip_edges: bool = True,
|
||||
subtract_mean: bool = False,
|
||||
use_energy: bool = False,
|
||||
vtln_high: float = -500.0,
|
||||
vtln_low: float = 100.0,
|
||||
vtln_warp: float = 1.0,
|
||||
window_type: str = POVEY,
|
||||
) -> Tensor:
|
||||
r"""Create a mfcc from a raw audio signal. This matches the input/output of Kaldi's
|
||||
compute-mfcc-feats.
|
||||
|
||||
Args:
|
||||
waveform (Tensor): Tensor of audio of size (c, n) where c is in the range [0,2)
|
||||
blackman_coeff (float, optional): Constant coefficient for generalized Blackman window. (Default: ``0.42``)
|
||||
cepstral_lifter (float, optional): Constant that controls scaling of MFCCs (Default: ``22.0``)
|
||||
channel (int, optional): Channel to extract (-1 -> expect mono, 0 -> left, 1 -> right) (Default: ``-1``)
|
||||
dither (float, optional): Dithering constant (0.0 means no dither). If you turn this off, you should set
|
||||
the energy_floor option, e.g. to 1.0 or 0.1 (Default: ``0.0``)
|
||||
energy_floor (float, optional): Floor on energy (absolute, not relative) in Spectrogram computation. Caution:
|
||||
this floor is applied to the zeroth component, representing the total signal energy. The floor on the
|
||||
individual spectrogram elements is fixed at std::numeric_limits<float>::epsilon(). (Default: ``1.0``)
|
||||
frame_length (float, optional): Frame length in milliseconds (Default: ``25.0``)
|
||||
frame_shift (float, optional): Frame shift in milliseconds (Default: ``10.0``)
|
||||
high_freq (float, optional): High cutoff frequency for mel bins (if <= 0, offset from Nyquist)
|
||||
(Default: ``0.0``)
|
||||
htk_compat (bool, optional): If true, put energy last. Warning: not sufficient to get HTK compatible
|
||||
features (need to change other parameters). (Default: ``False``)
|
||||
low_freq (float, optional): Low cutoff frequency for mel bins (Default: ``20.0``)
|
||||
num_ceps (int, optional): Number of cepstra in MFCC computation (including C0) (Default: ``13``)
|
||||
min_duration (float, optional): Minimum duration of segments to process (in seconds). (Default: ``0.0``)
|
||||
num_mel_bins (int, optional): Number of triangular mel-frequency bins (Default: ``23``)
|
||||
preemphasis_coefficient (float, optional): Coefficient for use in signal preemphasis (Default: ``0.97``)
|
||||
raw_energy (bool, optional): If True, compute energy before preemphasis and windowing (Default: ``True``)
|
||||
remove_dc_offset (bool, optional): Subtract mean from waveform on each frame (Default: ``True``)
|
||||
round_to_power_of_two (bool, optional): If True, round window size to power of two by zero-padding input
|
||||
to FFT. (Default: ``True``)
|
||||
sample_frequency (float, optional): Waveform data sample frequency (must match the waveform file, if
|
||||
specified there) (Default: ``16000.0``)
|
||||
snip_edges (bool, optional): If True, end effects will be handled by outputting only frames that completely fit
|
||||
in the file, and the number of frames depends on the frame_length. If False, the number of frames
|
||||
depends only on the frame_shift, and we reflect the data at the ends. (Default: ``True``)
|
||||
subtract_mean (bool, optional): Subtract mean of each feature file [CMS]; not recommended to do
|
||||
it this way. (Default: ``False``)
|
||||
use_energy (bool, optional): Add an extra dimension with energy to the FBANK output. (Default: ``False``)
|
||||
vtln_high (float, optional): High inflection point in piecewise linear VTLN warping function (if
|
||||
negative, offset from high-mel-freq (Default: ``-500.0``)
|
||||
vtln_low (float, optional): Low inflection point in piecewise linear VTLN warping function (Default: ``100.0``)
|
||||
vtln_warp (float, optional): Vtln warp factor (only applicable if vtln_map not specified) (Default: ``1.0``)
|
||||
window_type (str, optional): Type of window ('hamming'|'hanning'|'povey'|'rectangular'|'blackman')
|
||||
(Default: ``"povey"``)
|
||||
|
||||
Returns:
|
||||
Tensor: A mfcc identical to what Kaldi would output. The shape is (m, ``num_ceps``)
|
||||
where m is calculated in _get_strided
|
||||
"""
|
||||
assert num_ceps <= num_mel_bins, "num_ceps cannot be larger than num_mel_bins: %d vs %d" % (num_ceps, num_mel_bins)
|
||||
|
||||
device, dtype = waveform.device, waveform.dtype
|
||||
|
||||
# The mel_energies should not be squared (use_power=True), not have mean subtracted
|
||||
# (subtract_mean=False), and use log (use_log_fbank=True).
|
||||
# size (m, num_mel_bins + use_energy)
|
||||
feature = fbank(
|
||||
waveform=waveform,
|
||||
blackman_coeff=blackman_coeff,
|
||||
channel=channel,
|
||||
dither=dither,
|
||||
energy_floor=energy_floor,
|
||||
frame_length=frame_length,
|
||||
frame_shift=frame_shift,
|
||||
high_freq=high_freq,
|
||||
htk_compat=htk_compat,
|
||||
low_freq=low_freq,
|
||||
min_duration=min_duration,
|
||||
num_mel_bins=num_mel_bins,
|
||||
preemphasis_coefficient=preemphasis_coefficient,
|
||||
raw_energy=raw_energy,
|
||||
remove_dc_offset=remove_dc_offset,
|
||||
round_to_power_of_two=round_to_power_of_two,
|
||||
sample_frequency=sample_frequency,
|
||||
snip_edges=snip_edges,
|
||||
subtract_mean=False,
|
||||
use_energy=use_energy,
|
||||
use_log_fbank=True,
|
||||
use_power=True,
|
||||
vtln_high=vtln_high,
|
||||
vtln_low=vtln_low,
|
||||
vtln_warp=vtln_warp,
|
||||
window_type=window_type,
|
||||
)
|
||||
|
||||
if use_energy:
|
||||
# size (m)
|
||||
signal_log_energy = feature[:, num_mel_bins if htk_compat else 0]
|
||||
# offset is 0 if htk_compat==True else 1
|
||||
mel_offset = int(not htk_compat)
|
||||
feature = feature[:, mel_offset : (num_mel_bins + mel_offset)]
|
||||
|
||||
# size (num_mel_bins, num_ceps)
|
||||
dct_matrix = _get_dct_matrix(num_ceps, num_mel_bins).to(dtype=dtype, device=device)
|
||||
|
||||
# size (m, num_ceps)
|
||||
feature = feature.matmul(dct_matrix)
|
||||
|
||||
if cepstral_lifter != 0.0:
|
||||
# size (1, num_ceps)
|
||||
lifter_coeffs = _get_lifter_coeffs(num_ceps, cepstral_lifter).unsqueeze(0)
|
||||
feature *= lifter_coeffs.to(device=device, dtype=dtype)
|
||||
|
||||
# if use_energy then replace the last column for htk_compat == true else first column
|
||||
if use_energy:
|
||||
feature[:, 0] = signal_log_energy
|
||||
|
||||
if htk_compat:
|
||||
energy = feature[:, 0].unsqueeze(1) # size (m, 1)
|
||||
feature = feature[:, 1:] # size (m, num_ceps - 1)
|
||||
if not use_energy:
|
||||
# scale on C0 (actually removing a scale we previously added that's
|
||||
# part of one common definition of the cosine transform.)
|
||||
energy *= math.sqrt(2)
|
||||
|
||||
feature = torch.cat((feature, energy), dim=1)
|
||||
|
||||
feature = _subtract_column_mean(feature, subtract_mean)
|
||||
return feature
|
||||
|
104
GPT_SoVITS/eres2net/pooling_layers.py
Normal file
104
GPT_SoVITS/eres2net/pooling_layers.py
Normal file
@ -0,0 +1,104 @@
|
||||
# Copyright 3D-Speaker (https://github.com/alibaba-damo-academy/3D-Speaker). All Rights Reserved.
|
||||
# Licensed under the Apache License, Version 2.0 (http://www.apache.org/licenses/LICENSE-2.0)
|
||||
|
||||
""" This implementation is adapted from https://github.com/wenet-e2e/wespeaker."""
|
||||
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
|
||||
|
||||
class TAP(nn.Module):
|
||||
"""
|
||||
Temporal average pooling, only first-order mean is considered
|
||||
"""
|
||||
def __init__(self, **kwargs):
|
||||
super(TAP, self).__init__()
|
||||
|
||||
def forward(self, x):
|
||||
pooling_mean = x.mean(dim=-1)
|
||||
# To be compatable with 2D input
|
||||
pooling_mean = pooling_mean.flatten(start_dim=1)
|
||||
return pooling_mean
|
||||
|
||||
|
||||
class TSDP(nn.Module):
|
||||
"""
|
||||
Temporal standard deviation pooling, only second-order std is considered
|
||||
"""
|
||||
def __init__(self, **kwargs):
|
||||
super(TSDP, self).__init__()
|
||||
|
||||
def forward(self, x):
|
||||
# The last dimension is the temporal axis
|
||||
pooling_std = torch.sqrt(torch.var(x, dim=-1) + 1e-8)
|
||||
pooling_std = pooling_std.flatten(start_dim=1)
|
||||
return pooling_std
|
||||
|
||||
|
||||
class TSTP(nn.Module):
|
||||
"""
|
||||
Temporal statistics pooling, concatenate mean and std, which is used in
|
||||
x-vector
|
||||
Comment: simple concatenation can not make full use of both statistics
|
||||
"""
|
||||
def __init__(self, **kwargs):
|
||||
super(TSTP, self).__init__()
|
||||
|
||||
def forward(self, x):
|
||||
# The last dimension is the temporal axis
|
||||
pooling_mean = x.mean(dim=-1)
|
||||
pooling_std = torch.sqrt(torch.var(x, dim=-1) + 1e-8)
|
||||
pooling_mean = pooling_mean.flatten(start_dim=1)
|
||||
pooling_std = pooling_std.flatten(start_dim=1)
|
||||
|
||||
stats = torch.cat((pooling_mean, pooling_std), 1)
|
||||
return stats
|
||||
|
||||
|
||||
class ASTP(nn.Module):
|
||||
""" Attentive statistics pooling: Channel- and context-dependent
|
||||
statistics pooling, first used in ECAPA_TDNN.
|
||||
"""
|
||||
def __init__(self, in_dim, bottleneck_dim=128, global_context_att=False):
|
||||
super(ASTP, self).__init__()
|
||||
self.global_context_att = global_context_att
|
||||
|
||||
# Use Conv1d with stride == 1 rather than Linear, then we don't
|
||||
# need to transpose inputs.
|
||||
if global_context_att:
|
||||
self.linear1 = nn.Conv1d(
|
||||
in_dim * 3, bottleneck_dim,
|
||||
kernel_size=1) # equals W and b in the paper
|
||||
else:
|
||||
self.linear1 = nn.Conv1d(
|
||||
in_dim, bottleneck_dim,
|
||||
kernel_size=1) # equals W and b in the paper
|
||||
self.linear2 = nn.Conv1d(bottleneck_dim, in_dim,
|
||||
kernel_size=1) # equals V and k in the paper
|
||||
|
||||
def forward(self, x):
|
||||
"""
|
||||
x: a 3-dimensional tensor in tdnn-based architecture (B,F,T)
|
||||
or a 4-dimensional tensor in resnet architecture (B,C,F,T)
|
||||
0-dim: batch-dimension, last-dim: time-dimension (frame-dimension)
|
||||
"""
|
||||
if len(x.shape) == 4:
|
||||
x = x.reshape(x.shape[0], x.shape[1] * x.shape[2], x.shape[3])
|
||||
assert len(x.shape) == 3
|
||||
|
||||
if self.global_context_att:
|
||||
context_mean = torch.mean(x, dim=-1, keepdim=True).expand_as(x)
|
||||
context_std = torch.sqrt(
|
||||
torch.var(x, dim=-1, keepdim=True) + 1e-10).expand_as(x)
|
||||
x_in = torch.cat((x, context_mean, context_std), dim=1)
|
||||
else:
|
||||
x_in = x
|
||||
|
||||
# DON'T use ReLU here! ReLU may be hard to converge.
|
||||
alpha = torch.tanh(
|
||||
self.linear1(x_in)) # alpha = F.relu(self.linear1(x_in))
|
||||
alpha = torch.softmax(self.linear2(alpha), dim=2)
|
||||
mean = torch.sum(alpha * x, dim=2)
|
||||
var = torch.sum(alpha * (x**2), dim=2) - mean**2
|
||||
std = torch.sqrt(var.clamp(min=1e-10))
|
||||
return torch.cat([mean, std], dim=1)
|
Loading…
x
Reference in New Issue
Block a user