Fix the timestamp processing logic for phonemes, characters, and words

This commit is contained in:
白菜工厂1145号员工 2025-09-22 00:27:14 +08:00
parent 705df4c414
commit 2ff9a1533f
2 changed files with 443 additions and 3 deletions

View File

@ -596,6 +596,7 @@ def get_first(text):
from text import chinese
import tempfile
def get_phones_and_bert(text, language, version, final=False):
@ -850,6 +851,8 @@ def get_tts_wav(
phones1, bert1, norm_text1 = get_phones_and_bert(prompt_text, prompt_language, version)
timestamps_all = []
elapsed_s = 0.0
sr_hz = int(hps.data.sampling_rate)
for i_text, text in enumerate(texts):
# 解决输入目标文本的空行导致报错的问题
if len(text.strip()) == 0:
@ -974,6 +977,71 @@ def get_tts_wav(
})
else:
char_spans[-1]["end_s"] = span["end_s"]
# post-merge by char_index across the whole segment to remove jitter fragments
if char_spans:
# group by char_index
groups = {}
for cs in char_spans:
groups.setdefault(cs["char_index"], []).append(cs)
merged = []
gap_merge_s = 0.08
# adaptive minimal duration: at least one frame, but not lower than 15ms
min_dur_s = max(0.015, frame_time)
for ci, lst in groups.items():
lst = sorted(lst, key=lambda x: x["start_s"])
cur = None
for it in lst:
if cur is None:
cur = {"char_index": ci, "char": it.get("char", ""), "start_s": it["start_s"], "end_s": it["end_s"]}
else:
if it["start_s"] - cur["end_s"] <= gap_merge_s:
if it["end_s"] > cur["end_s"]:
cur["end_s"] = it["end_s"]
else:
if cur["end_s"] - cur["start_s"] >= min_dur_s:
merged.append(cur)
cur = {"char_index": ci, "char": it.get("char", ""), "start_s": it["start_s"], "end_s": it["end_s"]}
if cur is not None and (cur["end_s"] - cur["start_s"]) >= min_dur_s:
merged.append(cur)
# sort merged by time
char_spans = sorted(merged, key=lambda x: x["start_s"])
# remap normalized chars back to original input text to avoid spurious '.'/'?'
def _build_norm_to_orig_map(orig, norm):
all_punc_local = set(punctuation).union(set(splits))
mapping = [-1] * len(norm)
o = 0
n = 0
while n < len(norm) and o < len(orig):
if norm[n] == orig[o]:
mapping[n] = o
n += 1
o += 1
else:
# skip spaces/punctuations on either side
if orig[o].isspace() or orig[o] in all_punc_local:
o += 1
elif norm[n].isspace() or norm[n] in all_punc_local:
n += 1
else:
# characters differ (e.g., compatibility form). Advance normalized index.
n += 1
return mapping
norm2orig = _build_norm_to_orig_map(text, norm_text_seg)
all_punc_local = set(punctuation).union(set(splits))
remapped = []
for cs in char_spans:
ci = cs["char_index"]
ch_norm = cs.get("char", "")
oi = norm2orig[ci] if ci < len(norm2orig) else -1
if oi != -1:
cs["char"] = text[oi]
remapped.append(cs)
else:
# drop normalized-only punctuations/spaces not present in original
if ch_norm and (ch_norm in all_punc_local or ch_norm.isspace()):
continue
remapped.append(cs)
char_spans = remapped
# word spans
word_spans = []
if text_language == "en":
@ -1002,12 +1070,32 @@ def get_tts_wav(
})
else:
word_spans[-1]["end_s"] = span["end_s"]
# add absolute offsets and record segment timing
audio_len_s = float(audio.shape[0]) / sr_hz
if 'ph_spans' in locals() and ph_spans:
for d in ph_spans:
d["start_s"] += elapsed_s
d["end_s"] += elapsed_s
if char_spans:
for d in char_spans:
d["start_s"] += elapsed_s
d["end_s"] += elapsed_s
if word_spans:
for d in word_spans:
d["start_s"] += elapsed_s
d["end_s"] += elapsed_s
seg_start_s = elapsed_s
seg_end_s = elapsed_s + audio_len_s
timestamps_all.append({
"segment_index": i_text,
"phoneme_spans": ph_spans,
"char_spans": char_spans,
"word_spans": word_spans,
"segment_start_s": seg_start_s,
"segment_end_s": seg_end_s,
"text": norm_text_seg,
})
elapsed_s += audio_len_s + float(pause_second)
else:
refer, audio_tensor = get_spepc(hps, ref_wav_path, dtype, device)
phoneme_ids0 = torch.LongTensor(phones1).to(device).unsqueeze(0)
@ -1086,8 +1174,62 @@ def get_tts_wav(
audio_opt /= max_audio
else:
audio_opt = audio_opt.cpu().detach().numpy()
# Return audio and timestamps for UI consumption: ((sr, audio), timestamps)
yield (opt_sr, (audio_opt * 32767).astype(np.int16)), timestamps_all
# Build SRT file content from timestamps_all
def _fmt_srt_time(t):
h = int(t // 3600)
m = int((t % 3600) // 60)
s = int(t % 60)
ms = int(round((t - int(t)) * 1000))
return f"{h:02d}:{m:02d}:{s:02d},{ms:03d}"
srt_lines = []
idx_counter = 1
for rec in timestamps_all:
# 优先按字分段
if rec.get("char_spans") and len(rec["char_spans"]):
for c in rec["char_spans"]:
st = c["start_s"]
ed = c["end_s"]
txt = c.get("char", "")
srt_lines.append(str(idx_counter))
srt_lines.append(f"{_fmt_srt_time(st)} --> { _fmt_srt_time(ed)}")
srt_lines.append(txt)
srt_lines.append("")
idx_counter += 1
continue
# 次选按词(英文)
if rec.get("word_spans") and len(rec["word_spans"]):
for w in rec["word_spans"]:
st = w["start_s"]
ed = w["end_s"]
txt = w.get("word", "")
srt_lines.append(str(idx_counter))
srt_lines.append(f"{_fmt_srt_time(st)} --> { _fmt_srt_time(ed)}")
srt_lines.append(txt)
srt_lines.append("")
idx_counter += 1
continue
# 最后按整段兜底
st = rec.get("segment_start_s")
ed = rec.get("segment_end_s")
text_line = rec.get("text", "")
if st is not None and ed is not None:
srt_lines.append(str(idx_counter))
srt_lines.append(f"{_fmt_srt_time(st)} --> { _fmt_srt_time(ed)}")
srt_lines.append(text_line)
srt_lines.append("")
idx_counter += 1
srt_path = None
try:
with tempfile.NamedTemporaryFile(delete=False, suffix=".srt", mode="w", encoding="utf-8") as f:
f.write("\n".join(srt_lines))
srt_path = f.name
except Exception:
srt_path = None
# Return audio, timestamps and SRT path for UI
yield (opt_sr, (audio_opt * 32767).astype(np.int16)), timestamps_all, srt_path
def split(todo_text):
@ -1375,6 +1517,7 @@ with gr.Blocks(title="GPT-SoVITS WebUI", analytics_enabled=False, js=js, css=css
inference_button = gr.Button(value=i18n("合成语音"), variant="primary", size="lg", scale=25)
output = gr.Audio(label=i18n("输出的语音"), scale=14)
timestamps_box = gr.JSON(label=i18n("时间戳(音素/字/词)"))
srt_file = gr.File(label=i18n("下载SRT字幕"))
inference_button.click(
get_tts_wav,
@ -1396,7 +1539,7 @@ with gr.Blocks(title="GPT-SoVITS WebUI", analytics_enabled=False, js=js, css=css
if_sr_Checkbox,
pause_second_slider,
],
[output, timestamps_box],
[output, timestamps_box, srt_file],
)
SoVITS_dropdown.change(
change_sovits_weights,

297
api.py
View File

@ -1385,5 +1385,302 @@ async def tts_endpoint(
)
def _fmt_srt_time(t):
h = int(t // 3600)
m = int((t % 3600) // 60)
s = int(t % 60)
ms = int(round((t - int(t)) * 1000))
return f"{h:02d}:{m:02d}:{s:02d},{ms:03d}"
def _build_norm_to_orig_map(orig, norm):
all_punc_local = {",", ".", ";", "?", "!", "", "", "", "", "", ";", "", ""}
mapping = [-1] * len(norm)
o = 0
n = 0
while n < len(norm) and o < len(orig):
if norm[n] == orig[o]:
mapping[n] = o
n += 1
o += 1
else:
if orig[o].isspace() or orig[o] in all_punc_local:
o += 1
elif norm[n].isspace() or norm[n] in all_punc_local:
n += 1
else:
n += 1
return mapping
def synthesize_json(
refer_wav_path,
prompt_text,
prompt_language,
text,
text_language,
top_k,
top_p,
temperature,
speed,
inp_refs,
sample_steps,
if_sr,
):
infer_sovits = speaker_list["default"].sovits
vq_model = infer_sovits.vq_model
hps = infer_sovits.hps
version = vq_model.version
if version in {"v3", "v4"}:
return JSONResponse({"code": 400, "message": "v3/v4 暂未提供时间戳JSON接口"}, status_code=400)
# prepare refer features (same as handle)
dtype = torch.float16 if is_half else torch.float32
zero_wav = np.zeros(int(hps.data.sampling_rate * 0.3), dtype=np.float16 if is_half else np.float32)
with torch.no_grad():
wav16k, sr = librosa.load(refer_wav_path, sr=16000)
wav16k = torch.from_numpy(wav16k)
zero_wav_torch = torch.from_numpy(zero_wav)
if is_half:
wav16k = wav16k.half().to(device)
zero_wav_torch = zero_wav_torch.half().to(device)
else:
wav16k = wav16k.to(device)
zero_wav_torch = zero_wav_torch.to(device)
wav16k = torch.cat([wav16k, zero_wav_torch])
ssl_content = ssl_model.model(wav16k.unsqueeze(0))["last_hidden_state"].transpose(1, 2)
codes = vq_model.extract_latent(ssl_content)
prompt_semantic = codes[0, 0]
prompt = prompt_semantic.unsqueeze(0).to(device)
is_v2pro = version in {"v2Pro", "v2ProPlus"}
refers = []
if is_v2pro:
sv_emb = []
if sv_cn_model == None:
init_sv_cn()
spec, audio_tensor = get_spepc(hps, refer_wav_path, dtype, device, is_v2pro)
refers = [spec]
if is_v2pro:
sv_emb = [sv_cn_model.compute_embedding3(audio_tensor)]
# text frontend
prompt_language = dict_language[prompt_language.lower()]
text_language = dict_language[text_language.lower()]
phones1, bert1, norm_text1 = get_phones_and_bert(prompt_text, prompt_language, version)
texts = text.strip("\n").split("\n")
# iterate
audio_segments = []
timestamps_all = []
sr_hz = int(hps.data.sampling_rate)
elapsed_s = 0.0
for seg in texts:
if only_punc(seg):
continue
if seg[-1] not in splits:
seg += "" if text_language != "en" else "."
phones2, bert2, norm_text2 = get_phones_and_bert(seg, text_language, version)
bert = torch.cat([bert1, bert2], 1)
all_phoneme_ids = torch.LongTensor(phones1 + phones2).to(device).unsqueeze(0)
bert = bert.to(device).unsqueeze(0)
all_phoneme_len = torch.tensor([all_phoneme_ids.shape[-1]]).to(device)
with torch.no_grad():
pred_semantic, idx = speaker_list["default"].gpt.t2s_model.model.infer_panel(
all_phoneme_ids, all_phoneme_len, prompt, bert, top_k=top_k, top_p=top_p, temperature=temperature, early_stop_num=hz * speaker_list["default"].gpt.max_sec,
)
pred_semantic = pred_semantic[:, -idx:].unsqueeze(0)
phones2_tensor = torch.LongTensor(phones2).to(device).unsqueeze(0)
if is_v2pro:
o, attn, y_mask = vq_model.decode_with_alignment(
pred_semantic, phones2_tensor, refers, speed=speed, sv_emb=sv_emb
)
else:
o, attn, y_mask = vq_model.decode_with_alignment(
pred_semantic, phones2_tensor, refers, speed=speed
)
audio = o[0][0].detach().cpu().numpy()
# timestamps
frame_time = 0.02 / max(float(speed), 1e-6)
ph_spans = []
if attn is not None:
attn_mean = attn.mean(dim=1)[0]
assign = attn_mean.argmax(dim=-1)
if assign.numel() > 0:
start_f = 0
cur_ph = int(assign[0].item())
for f in range(1, assign.shape[0]):
ph = int(assign[f].item())
if ph != cur_ph:
ph_spans.append({"phoneme_id": cur_ph, "start_s": start_f * frame_time, "end_s": f * frame_time})
start_f = f
cur_ph = ph
ph_spans.append({"phoneme_id": cur_ph, "start_s": start_f * frame_time, "end_s": assign.shape[0] * frame_time})
# char aggregation
_, word2ph, norm_text_seg = clean_text_inf(seg, text_language, version)
char_spans = []
if word2ph:
ph_to_char = []
for ch_idx, repeat in enumerate(word2ph):
ph_to_char += [ch_idx] * repeat
if ph_spans and ph_to_char:
for span in ph_spans:
ph_idx = span["phoneme_id"]
if 0 <= ph_idx < len(ph_to_char):
char_idx = ph_to_char[ph_idx]
char_spans.append({"char_index": char_idx, "char": norm_text_seg[char_idx] if char_idx < len(norm_text_seg) else "", "start_s": span["start_s"], "end_s": span["end_s"]})
# merge by char_index
if char_spans:
groups = {}
for cs in char_spans:
groups.setdefault(cs["char_index"], []).append(cs)
merged = []
gap_merge_s = 0.08
min_dur_s = max(0.015, frame_time)
for ci, lst in groups.items():
lst = sorted(lst, key=lambda x: x["start_s"])
cur = None
for it in lst:
if cur is None:
cur = {"char_index": ci, "char": it.get("char", ""), "start_s": it["start_s"], "end_s": it["end_s"]}
else:
if it["start_s"] - cur["end_s"] <= gap_merge_s:
if it["end_s"] > cur["end_s"]:
cur["end_s"] = it["end_s"]
else:
if cur["end_s"] - cur["start_s"] >= min_dur_s:
merged.append(cur)
cur = {"char_index": ci, "char": it.get("char", ""), "start_s": it["start_s"], "end_s": it["end_s"]}
if cur is not None and (cur["end_s"] - cur["start_s"]) >= min_dur_s:
merged.append(cur)
# remap to original input text
norm2orig = _build_norm_to_orig_map(seg, norm_text_seg)
remapped = []
punc = {",", ".", ";", "?", "!", "", "", "", "", "", ";", "", ""}
for cs in merged:
ci = cs["char_index"]
oi = norm2orig[ci] if ci < len(norm2orig) else -1
ch_norm = cs.get("char", "")
if oi != -1:
cs["char"] = seg[oi]
remapped.append(cs)
else:
if ch_norm and (ch_norm in punc or ch_norm.isspace()):
continue
remapped.append(cs)
char_spans = sorted(remapped, key=lambda x: x["start_s"]) if remapped else []
# offset and record
audio_len_s = float(audio.shape[0]) / sr_hz
for coll in (char_spans,):
for d in coll:
d["start_s"] += elapsed_s
d["end_s"] += elapsed_s
timestamps_all.append({
"segment_index": len(timestamps_all),
"char_spans": char_spans,
"text": norm_text_seg,
"segment_start_s": elapsed_s,
"segment_end_s": elapsed_s + audio_len_s,
})
elapsed_s += audio_len_s + 0.3
audio_segments.append(audio)
# concatenate audio
if len(audio_segments) == 0:
return JSONResponse({"code": 400, "message": "无有效文本"}, status_code=400)
pad = np.zeros(int(sr_hz * 0.3), dtype=audio_segments[0].dtype)
out = []
for i, a in enumerate(audio_segments):
out.append(a)
if i < len(audio_segments) - 1:
out.append(pad)
audio_np = np.concatenate(out, 0)
mx = np.abs(audio_np).max()
if mx > 1:
audio_np = audio_np / mx
# srt
srt_lines = []
idx_counter = 1
for rec in timestamps_all:
if rec.get("char_spans"):
for c in rec["char_spans"]:
srt_lines.append(str(idx_counter))
srt_lines.append(f"{_fmt_srt_time(c['start_s'])} --> { _fmt_srt_time(c['end_s'])}")
srt_lines.append(c.get("char", ""))
srt_lines.append("")
idx_counter += 1
else:
st = rec.get("segment_start_s")
ed = rec.get("segment_end_s")
if st is not None and ed is not None:
srt_lines.append(str(idx_counter))
srt_lines.append(f"{_fmt_srt_time(st)} --> { _fmt_srt_time(ed)}")
srt_lines.append(rec.get("text", ""))
srt_lines.append("")
idx_counter += 1
srt_text = "\n".join(srt_lines)
# pack wav
import base64
buf = BytesIO()
sf.write(buf, audio_np, sr_hz, format="WAV")
wav_b64 = base64.b64encode(buf.getvalue()).decode("utf-8")
return JSONResponse({"code": 0, "sr": sr_hz, "audio_wav_base64": wav_b64, "timestamps": timestamps_all, "srt": srt_text})
@app.post("/tts_json")
async def tts_json_post(request: Request):
body = await request.json()
return synthesize_json(
body.get("refer_wav_path"),
body.get("prompt_text"),
body.get("prompt_language"),
body.get("text"),
body.get("text_language"),
body.get("top_k", 15),
body.get("top_p", 0.6),
body.get("temperature", 0.6),
body.get("speed", 1.0),
body.get("inp_refs", []),
body.get("sample_steps", 32),
body.get("if_sr", False),
)
@app.get("/tts_json")
async def tts_json_get(
refer_wav_path: str,
prompt_text: str,
prompt_language: str,
text: str,
text_language: str,
top_k: int = 15,
top_p: float = 0.6,
temperature: float = 0.6,
speed: float = 1.0,
inp_refs: list = Query(default=[]),
sample_steps: int = 32,
if_sr: bool = False,
):
return synthesize_json(
refer_wav_path,
prompt_text,
prompt_language,
text,
text_language,
top_k,
top_p,
temperature,
speed,
inp_refs,
sample_steps,
if_sr,
)
if __name__ == "__main__":
uvicorn.run(app, host=host, port=port, workers=1)