mirror of
https://github.com/RVC-Boss/GPT-SoVITS.git
synced 2025-10-15 21:26:51 +08:00
Fix the timestamp processing logic for phonemes, characters, and words
This commit is contained in:
parent
705df4c414
commit
2ff9a1533f
@ -596,6 +596,7 @@ def get_first(text):
|
||||
|
||||
|
||||
from text import chinese
|
||||
import tempfile
|
||||
|
||||
|
||||
def get_phones_and_bert(text, language, version, final=False):
|
||||
@ -850,6 +851,8 @@ def get_tts_wav(
|
||||
phones1, bert1, norm_text1 = get_phones_and_bert(prompt_text, prompt_language, version)
|
||||
|
||||
timestamps_all = []
|
||||
elapsed_s = 0.0
|
||||
sr_hz = int(hps.data.sampling_rate)
|
||||
for i_text, text in enumerate(texts):
|
||||
# 解决输入目标文本的空行导致报错的问题
|
||||
if len(text.strip()) == 0:
|
||||
@ -974,6 +977,71 @@ def get_tts_wav(
|
||||
})
|
||||
else:
|
||||
char_spans[-1]["end_s"] = span["end_s"]
|
||||
# post-merge by char_index across the whole segment to remove jitter fragments
|
||||
if char_spans:
|
||||
# group by char_index
|
||||
groups = {}
|
||||
for cs in char_spans:
|
||||
groups.setdefault(cs["char_index"], []).append(cs)
|
||||
merged = []
|
||||
gap_merge_s = 0.08
|
||||
# adaptive minimal duration: at least one frame, but not lower than 15ms
|
||||
min_dur_s = max(0.015, frame_time)
|
||||
for ci, lst in groups.items():
|
||||
lst = sorted(lst, key=lambda x: x["start_s"])
|
||||
cur = None
|
||||
for it in lst:
|
||||
if cur is None:
|
||||
cur = {"char_index": ci, "char": it.get("char", ""), "start_s": it["start_s"], "end_s": it["end_s"]}
|
||||
else:
|
||||
if it["start_s"] - cur["end_s"] <= gap_merge_s:
|
||||
if it["end_s"] > cur["end_s"]:
|
||||
cur["end_s"] = it["end_s"]
|
||||
else:
|
||||
if cur["end_s"] - cur["start_s"] >= min_dur_s:
|
||||
merged.append(cur)
|
||||
cur = {"char_index": ci, "char": it.get("char", ""), "start_s": it["start_s"], "end_s": it["end_s"]}
|
||||
if cur is not None and (cur["end_s"] - cur["start_s"]) >= min_dur_s:
|
||||
merged.append(cur)
|
||||
# sort merged by time
|
||||
char_spans = sorted(merged, key=lambda x: x["start_s"])
|
||||
# remap normalized chars back to original input text to avoid spurious '.'/'?'
|
||||
def _build_norm_to_orig_map(orig, norm):
|
||||
all_punc_local = set(punctuation).union(set(splits))
|
||||
mapping = [-1] * len(norm)
|
||||
o = 0
|
||||
n = 0
|
||||
while n < len(norm) and o < len(orig):
|
||||
if norm[n] == orig[o]:
|
||||
mapping[n] = o
|
||||
n += 1
|
||||
o += 1
|
||||
else:
|
||||
# skip spaces/punctuations on either side
|
||||
if orig[o].isspace() or orig[o] in all_punc_local:
|
||||
o += 1
|
||||
elif norm[n].isspace() or norm[n] in all_punc_local:
|
||||
n += 1
|
||||
else:
|
||||
# characters differ (e.g., compatibility form). Advance normalized index.
|
||||
n += 1
|
||||
return mapping
|
||||
norm2orig = _build_norm_to_orig_map(text, norm_text_seg)
|
||||
all_punc_local = set(punctuation).union(set(splits))
|
||||
remapped = []
|
||||
for cs in char_spans:
|
||||
ci = cs["char_index"]
|
||||
ch_norm = cs.get("char", "")
|
||||
oi = norm2orig[ci] if ci < len(norm2orig) else -1
|
||||
if oi != -1:
|
||||
cs["char"] = text[oi]
|
||||
remapped.append(cs)
|
||||
else:
|
||||
# drop normalized-only punctuations/spaces not present in original
|
||||
if ch_norm and (ch_norm in all_punc_local or ch_norm.isspace()):
|
||||
continue
|
||||
remapped.append(cs)
|
||||
char_spans = remapped
|
||||
# word spans
|
||||
word_spans = []
|
||||
if text_language == "en":
|
||||
@ -1002,12 +1070,32 @@ def get_tts_wav(
|
||||
})
|
||||
else:
|
||||
word_spans[-1]["end_s"] = span["end_s"]
|
||||
# add absolute offsets and record segment timing
|
||||
audio_len_s = float(audio.shape[0]) / sr_hz
|
||||
if 'ph_spans' in locals() and ph_spans:
|
||||
for d in ph_spans:
|
||||
d["start_s"] += elapsed_s
|
||||
d["end_s"] += elapsed_s
|
||||
if char_spans:
|
||||
for d in char_spans:
|
||||
d["start_s"] += elapsed_s
|
||||
d["end_s"] += elapsed_s
|
||||
if word_spans:
|
||||
for d in word_spans:
|
||||
d["start_s"] += elapsed_s
|
||||
d["end_s"] += elapsed_s
|
||||
seg_start_s = elapsed_s
|
||||
seg_end_s = elapsed_s + audio_len_s
|
||||
timestamps_all.append({
|
||||
"segment_index": i_text,
|
||||
"phoneme_spans": ph_spans,
|
||||
"char_spans": char_spans,
|
||||
"word_spans": word_spans,
|
||||
"segment_start_s": seg_start_s,
|
||||
"segment_end_s": seg_end_s,
|
||||
"text": norm_text_seg,
|
||||
})
|
||||
elapsed_s += audio_len_s + float(pause_second)
|
||||
else:
|
||||
refer, audio_tensor = get_spepc(hps, ref_wav_path, dtype, device)
|
||||
phoneme_ids0 = torch.LongTensor(phones1).to(device).unsqueeze(0)
|
||||
@ -1086,8 +1174,62 @@ def get_tts_wav(
|
||||
audio_opt /= max_audio
|
||||
else:
|
||||
audio_opt = audio_opt.cpu().detach().numpy()
|
||||
# Return audio and timestamps for UI consumption: ((sr, audio), timestamps)
|
||||
yield (opt_sr, (audio_opt * 32767).astype(np.int16)), timestamps_all
|
||||
# Build SRT file content from timestamps_all
|
||||
def _fmt_srt_time(t):
|
||||
h = int(t // 3600)
|
||||
m = int((t % 3600) // 60)
|
||||
s = int(t % 60)
|
||||
ms = int(round((t - int(t)) * 1000))
|
||||
return f"{h:02d}:{m:02d}:{s:02d},{ms:03d}"
|
||||
|
||||
srt_lines = []
|
||||
idx_counter = 1
|
||||
for rec in timestamps_all:
|
||||
# 优先按字分段
|
||||
if rec.get("char_spans") and len(rec["char_spans"]):
|
||||
for c in rec["char_spans"]:
|
||||
st = c["start_s"]
|
||||
ed = c["end_s"]
|
||||
txt = c.get("char", "")
|
||||
srt_lines.append(str(idx_counter))
|
||||
srt_lines.append(f"{_fmt_srt_time(st)} --> { _fmt_srt_time(ed)}")
|
||||
srt_lines.append(txt)
|
||||
srt_lines.append("")
|
||||
idx_counter += 1
|
||||
continue
|
||||
# 次选按词(英文)
|
||||
if rec.get("word_spans") and len(rec["word_spans"]):
|
||||
for w in rec["word_spans"]:
|
||||
st = w["start_s"]
|
||||
ed = w["end_s"]
|
||||
txt = w.get("word", "")
|
||||
srt_lines.append(str(idx_counter))
|
||||
srt_lines.append(f"{_fmt_srt_time(st)} --> { _fmt_srt_time(ed)}")
|
||||
srt_lines.append(txt)
|
||||
srt_lines.append("")
|
||||
idx_counter += 1
|
||||
continue
|
||||
# 最后按整段兜底
|
||||
st = rec.get("segment_start_s")
|
||||
ed = rec.get("segment_end_s")
|
||||
text_line = rec.get("text", "")
|
||||
if st is not None and ed is not None:
|
||||
srt_lines.append(str(idx_counter))
|
||||
srt_lines.append(f"{_fmt_srt_time(st)} --> { _fmt_srt_time(ed)}")
|
||||
srt_lines.append(text_line)
|
||||
srt_lines.append("")
|
||||
idx_counter += 1
|
||||
|
||||
srt_path = None
|
||||
try:
|
||||
with tempfile.NamedTemporaryFile(delete=False, suffix=".srt", mode="w", encoding="utf-8") as f:
|
||||
f.write("\n".join(srt_lines))
|
||||
srt_path = f.name
|
||||
except Exception:
|
||||
srt_path = None
|
||||
|
||||
# Return audio, timestamps and SRT path for UI
|
||||
yield (opt_sr, (audio_opt * 32767).astype(np.int16)), timestamps_all, srt_path
|
||||
|
||||
|
||||
def split(todo_text):
|
||||
@ -1375,6 +1517,7 @@ with gr.Blocks(title="GPT-SoVITS WebUI", analytics_enabled=False, js=js, css=css
|
||||
inference_button = gr.Button(value=i18n("合成语音"), variant="primary", size="lg", scale=25)
|
||||
output = gr.Audio(label=i18n("输出的语音"), scale=14)
|
||||
timestamps_box = gr.JSON(label=i18n("时间戳(音素/字/词)"))
|
||||
srt_file = gr.File(label=i18n("下载SRT字幕"))
|
||||
|
||||
inference_button.click(
|
||||
get_tts_wav,
|
||||
@ -1396,7 +1539,7 @@ with gr.Blocks(title="GPT-SoVITS WebUI", analytics_enabled=False, js=js, css=css
|
||||
if_sr_Checkbox,
|
||||
pause_second_slider,
|
||||
],
|
||||
[output, timestamps_box],
|
||||
[output, timestamps_box, srt_file],
|
||||
)
|
||||
SoVITS_dropdown.change(
|
||||
change_sovits_weights,
|
||||
|
297
api.py
297
api.py
@ -1385,5 +1385,302 @@ async def tts_endpoint(
|
||||
)
|
||||
|
||||
|
||||
def _fmt_srt_time(t):
|
||||
h = int(t // 3600)
|
||||
m = int((t % 3600) // 60)
|
||||
s = int(t % 60)
|
||||
ms = int(round((t - int(t)) * 1000))
|
||||
return f"{h:02d}:{m:02d}:{s:02d},{ms:03d}"
|
||||
|
||||
|
||||
def _build_norm_to_orig_map(orig, norm):
|
||||
all_punc_local = {",", ".", ";", "?", "!", "、", ",", "。", "?", "!", ";", ":", "…"}
|
||||
mapping = [-1] * len(norm)
|
||||
o = 0
|
||||
n = 0
|
||||
while n < len(norm) and o < len(orig):
|
||||
if norm[n] == orig[o]:
|
||||
mapping[n] = o
|
||||
n += 1
|
||||
o += 1
|
||||
else:
|
||||
if orig[o].isspace() or orig[o] in all_punc_local:
|
||||
o += 1
|
||||
elif norm[n].isspace() or norm[n] in all_punc_local:
|
||||
n += 1
|
||||
else:
|
||||
n += 1
|
||||
return mapping
|
||||
|
||||
|
||||
def synthesize_json(
|
||||
refer_wav_path,
|
||||
prompt_text,
|
||||
prompt_language,
|
||||
text,
|
||||
text_language,
|
||||
top_k,
|
||||
top_p,
|
||||
temperature,
|
||||
speed,
|
||||
inp_refs,
|
||||
sample_steps,
|
||||
if_sr,
|
||||
):
|
||||
infer_sovits = speaker_list["default"].sovits
|
||||
vq_model = infer_sovits.vq_model
|
||||
hps = infer_sovits.hps
|
||||
version = vq_model.version
|
||||
|
||||
if version in {"v3", "v4"}:
|
||||
return JSONResponse({"code": 400, "message": "v3/v4 暂未提供时间戳JSON接口"}, status_code=400)
|
||||
|
||||
# prepare refer features (same as handle)
|
||||
dtype = torch.float16 if is_half else torch.float32
|
||||
zero_wav = np.zeros(int(hps.data.sampling_rate * 0.3), dtype=np.float16 if is_half else np.float32)
|
||||
with torch.no_grad():
|
||||
wav16k, sr = librosa.load(refer_wav_path, sr=16000)
|
||||
wav16k = torch.from_numpy(wav16k)
|
||||
zero_wav_torch = torch.from_numpy(zero_wav)
|
||||
if is_half:
|
||||
wav16k = wav16k.half().to(device)
|
||||
zero_wav_torch = zero_wav_torch.half().to(device)
|
||||
else:
|
||||
wav16k = wav16k.to(device)
|
||||
zero_wav_torch = zero_wav_torch.to(device)
|
||||
wav16k = torch.cat([wav16k, zero_wav_torch])
|
||||
ssl_content = ssl_model.model(wav16k.unsqueeze(0))["last_hidden_state"].transpose(1, 2)
|
||||
codes = vq_model.extract_latent(ssl_content)
|
||||
prompt_semantic = codes[0, 0]
|
||||
prompt = prompt_semantic.unsqueeze(0).to(device)
|
||||
|
||||
is_v2pro = version in {"v2Pro", "v2ProPlus"}
|
||||
refers = []
|
||||
if is_v2pro:
|
||||
sv_emb = []
|
||||
if sv_cn_model == None:
|
||||
init_sv_cn()
|
||||
spec, audio_tensor = get_spepc(hps, refer_wav_path, dtype, device, is_v2pro)
|
||||
refers = [spec]
|
||||
if is_v2pro:
|
||||
sv_emb = [sv_cn_model.compute_embedding3(audio_tensor)]
|
||||
|
||||
# text frontend
|
||||
prompt_language = dict_language[prompt_language.lower()]
|
||||
text_language = dict_language[text_language.lower()]
|
||||
phones1, bert1, norm_text1 = get_phones_and_bert(prompt_text, prompt_language, version)
|
||||
texts = text.strip("\n").split("\n")
|
||||
|
||||
# iterate
|
||||
audio_segments = []
|
||||
timestamps_all = []
|
||||
sr_hz = int(hps.data.sampling_rate)
|
||||
elapsed_s = 0.0
|
||||
for seg in texts:
|
||||
if only_punc(seg):
|
||||
continue
|
||||
if seg[-1] not in splits:
|
||||
seg += "。" if text_language != "en" else "."
|
||||
phones2, bert2, norm_text2 = get_phones_and_bert(seg, text_language, version)
|
||||
bert = torch.cat([bert1, bert2], 1)
|
||||
all_phoneme_ids = torch.LongTensor(phones1 + phones2).to(device).unsqueeze(0)
|
||||
bert = bert.to(device).unsqueeze(0)
|
||||
all_phoneme_len = torch.tensor([all_phoneme_ids.shape[-1]]).to(device)
|
||||
with torch.no_grad():
|
||||
pred_semantic, idx = speaker_list["default"].gpt.t2s_model.model.infer_panel(
|
||||
all_phoneme_ids, all_phoneme_len, prompt, bert, top_k=top_k, top_p=top_p, temperature=temperature, early_stop_num=hz * speaker_list["default"].gpt.max_sec,
|
||||
)
|
||||
pred_semantic = pred_semantic[:, -idx:].unsqueeze(0)
|
||||
phones2_tensor = torch.LongTensor(phones2).to(device).unsqueeze(0)
|
||||
if is_v2pro:
|
||||
o, attn, y_mask = vq_model.decode_with_alignment(
|
||||
pred_semantic, phones2_tensor, refers, speed=speed, sv_emb=sv_emb
|
||||
)
|
||||
else:
|
||||
o, attn, y_mask = vq_model.decode_with_alignment(
|
||||
pred_semantic, phones2_tensor, refers, speed=speed
|
||||
)
|
||||
audio = o[0][0].detach().cpu().numpy()
|
||||
# timestamps
|
||||
frame_time = 0.02 / max(float(speed), 1e-6)
|
||||
ph_spans = []
|
||||
if attn is not None:
|
||||
attn_mean = attn.mean(dim=1)[0]
|
||||
assign = attn_mean.argmax(dim=-1)
|
||||
if assign.numel() > 0:
|
||||
start_f = 0
|
||||
cur_ph = int(assign[0].item())
|
||||
for f in range(1, assign.shape[0]):
|
||||
ph = int(assign[f].item())
|
||||
if ph != cur_ph:
|
||||
ph_spans.append({"phoneme_id": cur_ph, "start_s": start_f * frame_time, "end_s": f * frame_time})
|
||||
start_f = f
|
||||
cur_ph = ph
|
||||
ph_spans.append({"phoneme_id": cur_ph, "start_s": start_f * frame_time, "end_s": assign.shape[0] * frame_time})
|
||||
|
||||
# char aggregation
|
||||
_, word2ph, norm_text_seg = clean_text_inf(seg, text_language, version)
|
||||
char_spans = []
|
||||
if word2ph:
|
||||
ph_to_char = []
|
||||
for ch_idx, repeat in enumerate(word2ph):
|
||||
ph_to_char += [ch_idx] * repeat
|
||||
if ph_spans and ph_to_char:
|
||||
for span in ph_spans:
|
||||
ph_idx = span["phoneme_id"]
|
||||
if 0 <= ph_idx < len(ph_to_char):
|
||||
char_idx = ph_to_char[ph_idx]
|
||||
char_spans.append({"char_index": char_idx, "char": norm_text_seg[char_idx] if char_idx < len(norm_text_seg) else "", "start_s": span["start_s"], "end_s": span["end_s"]})
|
||||
# merge by char_index
|
||||
if char_spans:
|
||||
groups = {}
|
||||
for cs in char_spans:
|
||||
groups.setdefault(cs["char_index"], []).append(cs)
|
||||
merged = []
|
||||
gap_merge_s = 0.08
|
||||
min_dur_s = max(0.015, frame_time)
|
||||
for ci, lst in groups.items():
|
||||
lst = sorted(lst, key=lambda x: x["start_s"])
|
||||
cur = None
|
||||
for it in lst:
|
||||
if cur is None:
|
||||
cur = {"char_index": ci, "char": it.get("char", ""), "start_s": it["start_s"], "end_s": it["end_s"]}
|
||||
else:
|
||||
if it["start_s"] - cur["end_s"] <= gap_merge_s:
|
||||
if it["end_s"] > cur["end_s"]:
|
||||
cur["end_s"] = it["end_s"]
|
||||
else:
|
||||
if cur["end_s"] - cur["start_s"] >= min_dur_s:
|
||||
merged.append(cur)
|
||||
cur = {"char_index": ci, "char": it.get("char", ""), "start_s": it["start_s"], "end_s": it["end_s"]}
|
||||
if cur is not None and (cur["end_s"] - cur["start_s"]) >= min_dur_s:
|
||||
merged.append(cur)
|
||||
# remap to original input text
|
||||
norm2orig = _build_norm_to_orig_map(seg, norm_text_seg)
|
||||
remapped = []
|
||||
punc = {",", ".", ";", "?", "!", "、", ",", "。", "?", "!", ";", ":", "…"}
|
||||
for cs in merged:
|
||||
ci = cs["char_index"]
|
||||
oi = norm2orig[ci] if ci < len(norm2orig) else -1
|
||||
ch_norm = cs.get("char", "")
|
||||
if oi != -1:
|
||||
cs["char"] = seg[oi]
|
||||
remapped.append(cs)
|
||||
else:
|
||||
if ch_norm and (ch_norm in punc or ch_norm.isspace()):
|
||||
continue
|
||||
remapped.append(cs)
|
||||
char_spans = sorted(remapped, key=lambda x: x["start_s"]) if remapped else []
|
||||
|
||||
# offset and record
|
||||
audio_len_s = float(audio.shape[0]) / sr_hz
|
||||
for coll in (char_spans,):
|
||||
for d in coll:
|
||||
d["start_s"] += elapsed_s
|
||||
d["end_s"] += elapsed_s
|
||||
timestamps_all.append({
|
||||
"segment_index": len(timestamps_all),
|
||||
"char_spans": char_spans,
|
||||
"text": norm_text_seg,
|
||||
"segment_start_s": elapsed_s,
|
||||
"segment_end_s": elapsed_s + audio_len_s,
|
||||
})
|
||||
elapsed_s += audio_len_s + 0.3
|
||||
audio_segments.append(audio)
|
||||
|
||||
# concatenate audio
|
||||
if len(audio_segments) == 0:
|
||||
return JSONResponse({"code": 400, "message": "无有效文本"}, status_code=400)
|
||||
pad = np.zeros(int(sr_hz * 0.3), dtype=audio_segments[0].dtype)
|
||||
out = []
|
||||
for i, a in enumerate(audio_segments):
|
||||
out.append(a)
|
||||
if i < len(audio_segments) - 1:
|
||||
out.append(pad)
|
||||
audio_np = np.concatenate(out, 0)
|
||||
mx = np.abs(audio_np).max()
|
||||
if mx > 1:
|
||||
audio_np = audio_np / mx
|
||||
|
||||
# srt
|
||||
srt_lines = []
|
||||
idx_counter = 1
|
||||
for rec in timestamps_all:
|
||||
if rec.get("char_spans"):
|
||||
for c in rec["char_spans"]:
|
||||
srt_lines.append(str(idx_counter))
|
||||
srt_lines.append(f"{_fmt_srt_time(c['start_s'])} --> { _fmt_srt_time(c['end_s'])}")
|
||||
srt_lines.append(c.get("char", ""))
|
||||
srt_lines.append("")
|
||||
idx_counter += 1
|
||||
else:
|
||||
st = rec.get("segment_start_s")
|
||||
ed = rec.get("segment_end_s")
|
||||
if st is not None and ed is not None:
|
||||
srt_lines.append(str(idx_counter))
|
||||
srt_lines.append(f"{_fmt_srt_time(st)} --> { _fmt_srt_time(ed)}")
|
||||
srt_lines.append(rec.get("text", ""))
|
||||
srt_lines.append("")
|
||||
idx_counter += 1
|
||||
srt_text = "\n".join(srt_lines)
|
||||
|
||||
# pack wav
|
||||
import base64
|
||||
buf = BytesIO()
|
||||
sf.write(buf, audio_np, sr_hz, format="WAV")
|
||||
wav_b64 = base64.b64encode(buf.getvalue()).decode("utf-8")
|
||||
return JSONResponse({"code": 0, "sr": sr_hz, "audio_wav_base64": wav_b64, "timestamps": timestamps_all, "srt": srt_text})
|
||||
|
||||
|
||||
@app.post("/tts_json")
|
||||
async def tts_json_post(request: Request):
|
||||
body = await request.json()
|
||||
return synthesize_json(
|
||||
body.get("refer_wav_path"),
|
||||
body.get("prompt_text"),
|
||||
body.get("prompt_language"),
|
||||
body.get("text"),
|
||||
body.get("text_language"),
|
||||
body.get("top_k", 15),
|
||||
body.get("top_p", 0.6),
|
||||
body.get("temperature", 0.6),
|
||||
body.get("speed", 1.0),
|
||||
body.get("inp_refs", []),
|
||||
body.get("sample_steps", 32),
|
||||
body.get("if_sr", False),
|
||||
)
|
||||
|
||||
|
||||
@app.get("/tts_json")
|
||||
async def tts_json_get(
|
||||
refer_wav_path: str,
|
||||
prompt_text: str,
|
||||
prompt_language: str,
|
||||
text: str,
|
||||
text_language: str,
|
||||
top_k: int = 15,
|
||||
top_p: float = 0.6,
|
||||
temperature: float = 0.6,
|
||||
speed: float = 1.0,
|
||||
inp_refs: list = Query(default=[]),
|
||||
sample_steps: int = 32,
|
||||
if_sr: bool = False,
|
||||
):
|
||||
return synthesize_json(
|
||||
refer_wav_path,
|
||||
prompt_text,
|
||||
prompt_language,
|
||||
text,
|
||||
text_language,
|
||||
top_k,
|
||||
top_p,
|
||||
temperature,
|
||||
speed,
|
||||
inp_refs,
|
||||
sample_steps,
|
||||
if_sr,
|
||||
)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
uvicorn.run(app, host=host, port=port, workers=1)
|
||||
|
Loading…
x
Reference in New Issue
Block a user