From 29b6f6834d539c8d89d8e08ad8f6d36c6be69b5d Mon Sep 17 00:00:00 2001 From: ootsuka-repos <94523049+ootsuka-repos@users.noreply.github.com> Date: Sun, 1 Dec 2024 15:04:36 +0900 Subject: [PATCH] Add files via upload --- GPT_SoVITS/TTS_infer_pack/TTS.py | 2066 +++++++++++++++--------------- 1 file changed, 1033 insertions(+), 1033 deletions(-) diff --git a/GPT_SoVITS/TTS_infer_pack/TTS.py b/GPT_SoVITS/TTS_infer_pack/TTS.py index a1eeb28c..689e96ad 100644 --- a/GPT_SoVITS/TTS_infer_pack/TTS.py +++ b/GPT_SoVITS/TTS_infer_pack/TTS.py @@ -1,1034 +1,1034 @@ -from copy import deepcopy -import math -import os, sys, gc -import random -import traceback - -from tqdm import tqdm -now_dir = os.getcwd() -sys.path.append(now_dir) -import ffmpeg -import os -from typing import Generator, List, Tuple, Union -import numpy as np -import torch -import torch.nn.functional as F -import yaml -from transformers import AutoModelForMaskedLM, AutoTokenizer - -from AR.models.t2s_lightning_module import Text2SemanticLightningModule -from feature_extractor.cnhubert import CNHubert -from module.models import SynthesizerTrn -import librosa -from time import time as ttime -from tools.i18n.i18n import I18nAuto, scan_language_list -from tools.my_utils import load_audio -from module.mel_processing import spectrogram_torch -from TTS_infer_pack.text_segmentation_method import splits -from TTS_infer_pack.TextPreprocessor import TextPreprocessor -language=os.environ.get("language","Auto") -language=sys.argv[-1] if sys.argv[-1] in scan_language_list() else language -i18n = I18nAuto(language=language) - -# configs/tts_infer.yaml -""" -custom: - bert_base_path: GPT_SoVITS/pretrained_models/chinese-roberta-wwm-ext-large - cnhuhbert_base_path: GPT_SoVITS/pretrained_models/chinese-hubert-base - device: cpu - is_half: false - t2s_weights_path: GPT_SoVITS/pretrained_models/gsv-v2final-pretrained/s1bert25hz-5kh-longer-epoch=12-step=369668.ckpt - vits_weights_path: GPT_SoVITS/pretrained_models/gsv-v2final-pretrained/s2G2333k.pth - version: v2 -default: - bert_base_path: GPT_SoVITS/pretrained_models/chinese-roberta-wwm-ext-large - cnhuhbert_base_path: GPT_SoVITS/pretrained_models/chinese-hubert-base - device: cpu - is_half: false - t2s_weights_path: GPT_SoVITS/pretrained_models/s1bert25hz-2kh-longer-epoch=68e-step=50232.ckpt - vits_weights_path: GPT_SoVITS/pretrained_models/s2G488k.pth - version: v1 -default_v2: - bert_base_path: GPT_SoVITS/pretrained_models/chinese-roberta-wwm-ext-large - cnhuhbert_base_path: GPT_SoVITS/pretrained_models/chinese-hubert-base - device: cpu - is_half: false - t2s_weights_path: GPT_SoVITS/pretrained_models/gsv-v2final-pretrained/s1bert25hz-5kh-longer-epoch=12-step=369668.ckpt - vits_weights_path: GPT_SoVITS/pretrained_models/gsv-v2final-pretrained/s2G2333k.pth - version: v2 -""" - -def set_seed(seed:int): - seed = int(seed) - seed = seed if seed != -1 else random.randrange(1 << 32) - print(f"Set seed to {seed}") - os.environ['PYTHONHASHSEED'] = str(seed) - random.seed(seed) - np.random.seed(seed) - torch.manual_seed(seed) - try: - if torch.cuda.is_available(): - torch.cuda.manual_seed(seed) - torch.cuda.manual_seed_all(seed) - # torch.backends.cudnn.deterministic = True - # torch.backends.cudnn.benchmark = False - # torch.backends.cudnn.enabled = True - # 开启后会影响精度 - torch.backends.cuda.matmul.allow_tf32 = False - torch.backends.cudnn.allow_tf32 = False - except: - pass - return seed - -class TTS_Config: - default_configs={ - "default":{ - "device": "cpu", - "is_half": False, - "version": "v1", - "t2s_weights_path": "GPT_SoVITS/pretrained_models/s1bert25hz-2kh-longer-epoch=68e-step=50232.ckpt", - "vits_weights_path": "GPT_SoVITS/pretrained_models/s2G488k.pth", - "cnhuhbert_base_path": "GPT_SoVITS/pretrained_models/chinese-hubert-base", - "bert_base_path": "GPT_SoVITS/pretrained_models/chinese-roberta-wwm-ext-large", - }, - "default_v2":{ - "device": "cpu", - "is_half": False, - "version": "v2", - "t2s_weights_path": "GPT_SoVITS/pretrained_models/gsv-v2final-pretrained/s1bert25hz-5kh-longer-epoch=12-step=369668.ckpt", - "vits_weights_path": "GPT_SoVITS/pretrained_models/gsv-v2final-pretrained/s2G2333k.pth", - "cnhuhbert_base_path": "GPT_SoVITS/pretrained_models/chinese-hubert-base", - "bert_base_path": "GPT_SoVITS/pretrained_models/chinese-roberta-wwm-ext-large", - }, - } - configs:dict = None - v1_languages:list = ["auto", "en", "zh", "ja", "all_zh", "all_ja"] - v2_languages:list = ["auto", "auto_yue", "en", "zh", "ja", "yue", "ko", "all_zh", "all_ja", "all_yue", "all_ko"] - languages:list = v2_languages - # "all_zh",#全部按中文识别 - # "en",#全部按英文识别#######不变 - # "all_ja",#全部按日文识别 - # "all_yue",#全部按中文识别 - # "all_ko",#全部按韩文识别 - # "zh",#按中英混合识别####不变 - # "ja",#按日英混合识别####不变 - # "yue",#按粤英混合识别####不变 - # "ko",#按韩英混合识别####不变 - # "auto",#多语种启动切分识别语种 - # "auto_yue",#多语种启动切分识别语种 - - def __init__(self, configs: Union[dict, str]=None): - - # 设置默认配置文件路径 - configs_base_path:str = "GPT_SoVITS/configs/" - os.makedirs(configs_base_path, exist_ok=True) - self.configs_path:str = os.path.join(configs_base_path, "tts_infer.yaml") - - if configs in ["", None]: - if not os.path.exists(self.configs_path): - self.save_configs() - print(f"Create default config file at {self.configs_path}") - configs:dict = deepcopy(self.default_configs) - - if isinstance(configs, str): - self.configs_path = configs - configs:dict = self._load_configs(self.configs_path) - - assert isinstance(configs, dict) - version = configs.get("version", "v2").lower() - assert version in ["v1", "v2"] - self.default_configs["default"] = configs.get("default", self.default_configs["default"]) - self.default_configs["default_v2"] = configs.get("default_v2", self.default_configs["default_v2"]) - - default_config_key = "default"if version=="v1" else "default_v2" - self.configs:dict = configs.get("custom", deepcopy(self.default_configs[default_config_key])) - - - self.device = self.configs.get("device", torch.device("cpu")) - self.is_half = self.configs.get("is_half", False) - self.version = version - self.t2s_weights_path = self.configs.get("t2s_weights_path", None) - self.vits_weights_path = self.configs.get("vits_weights_path", None) - self.bert_base_path = self.configs.get("bert_base_path", None) - self.cnhuhbert_base_path = self.configs.get("cnhuhbert_base_path", None) - self.languages = self.v2_languages if self.version=="v2" else self.v1_languages - - - if (self.t2s_weights_path in [None, ""]) or (not os.path.exists(self.t2s_weights_path)): - self.t2s_weights_path = self.default_configs[default_config_key]['t2s_weights_path'] - print(f"fall back to default t2s_weights_path: {self.t2s_weights_path}") - if (self.vits_weights_path in [None, ""]) or (not os.path.exists(self.vits_weights_path)): - self.vits_weights_path = self.default_configs[default_config_key]['vits_weights_path'] - print(f"fall back to default vits_weights_path: {self.vits_weights_path}") - if (self.bert_base_path in [None, ""]) or (not os.path.exists(self.bert_base_path)): - self.bert_base_path = self.default_configs[default_config_key]['bert_base_path'] - print(f"fall back to default bert_base_path: {self.bert_base_path}") - if (self.cnhuhbert_base_path in [None, ""]) or (not os.path.exists(self.cnhuhbert_base_path)): - self.cnhuhbert_base_path = self.default_configs[default_config_key]['cnhuhbert_base_path'] - print(f"fall back to default cnhuhbert_base_path: {self.cnhuhbert_base_path}") - self.update_configs() - - - self.max_sec = None - self.hz:int = 50 - self.semantic_frame_rate:str = "25hz" - self.segment_size:int = 20480 - self.filter_length:int = 2048 - self.sampling_rate:int = 32000 - self.hop_length:int = 640 - self.win_length:int = 2048 - self.n_speakers:int = 300 - - - - def _load_configs(self, configs_path: str)->dict: - if os.path.exists(configs_path): - ... - else: - print(i18n("路径不存在,使用默认配置")) - self.save_configs(configs_path) - with open(configs_path, 'r') as f: - configs = yaml.load(f, Loader=yaml.FullLoader) - - return configs - - def save_configs(self, configs_path:str=None)->None: - configs=deepcopy(self.default_configs) - if self.configs is not None: - configs["custom"] = self.update_configs() - - if configs_path is None: - configs_path = self.configs_path - with open(configs_path, 'w') as f: - yaml.dump(configs, f) - - def update_configs(self): - self.config = { - "device" : str(self.device), - "is_half" : self.is_half, - "version" : self.version, - "t2s_weights_path" : self.t2s_weights_path, - "vits_weights_path" : self.vits_weights_path, - "bert_base_path" : self.bert_base_path, - "cnhuhbert_base_path": self.cnhuhbert_base_path, - } - return self.config - - def update_version(self, version:str)->None: - self.version = version - self.languages = self.v2_languages if self.version=="v2" else self.v1_languages - - def __str__(self): - self.configs = self.update_configs() - string = "TTS Config".center(100, '-') + '\n' - for k, v in self.configs.items(): - string += f"{str(k).ljust(20)}: {str(v)}\n" - string += "-" * 100 + '\n' - return string - - def __repr__(self): - return self.__str__() - - def __hash__(self): - return hash(self.configs_path) - - def __eq__(self, other): - return isinstance(other, TTS_Config) and self.configs_path == other.configs_path - - -class TTS: - def __init__(self, configs: Union[dict, str, TTS_Config]): - if isinstance(configs, TTS_Config): - self.configs = configs - else: - self.configs:TTS_Config = TTS_Config(configs) - - self.t2s_model:Text2SemanticLightningModule = None - self.vits_model:SynthesizerTrn = None - self.bert_tokenizer:AutoTokenizer = None - self.bert_model:AutoModelForMaskedLM = None - self.cnhuhbert_model:CNHubert = None - - self._init_models() - - self.text_preprocessor:TextPreprocessor = \ - TextPreprocessor(self.bert_model, - self.bert_tokenizer, - self.configs.device) - - - self.prompt_cache:dict = { - "ref_audio_path" : None, - "prompt_semantic": None, - "refer_spec" : [], - "prompt_text" : None, - "prompt_lang" : None, - "phones" : None, - "bert_features" : None, - "norm_text" : None, - "aux_ref_audio_paths": [], - } - - - self.stop_flag:bool = False - self.precision:torch.dtype = torch.float16 if self.configs.is_half else torch.float32 - - def _init_models(self,): - self.init_t2s_weights(self.configs.t2s_weights_path) - self.init_vits_weights(self.configs.vits_weights_path) - self.init_bert_weights(self.configs.bert_base_path) - self.init_cnhuhbert_weights(self.configs.cnhuhbert_base_path) - # self.enable_half_precision(self.configs.is_half) - - - - def init_cnhuhbert_weights(self, base_path: str): - print(f"Loading CNHuBERT weights from {base_path}") - self.cnhuhbert_model = CNHubert(base_path) - self.cnhuhbert_model=self.cnhuhbert_model.eval() - self.cnhuhbert_model = self.cnhuhbert_model.to(self.configs.device) - if self.configs.is_half and str(self.configs.device)!="cpu": - self.cnhuhbert_model = self.cnhuhbert_model.half() - - - - def init_bert_weights(self, base_path: str): - print(f"Loading BERT weights from {base_path}") - self.bert_tokenizer = AutoTokenizer.from_pretrained(base_path) - self.bert_model = AutoModelForMaskedLM.from_pretrained(base_path) - self.bert_model=self.bert_model.eval() - self.bert_model = self.bert_model.to(self.configs.device) - if self.configs.is_half and str(self.configs.device)!="cpu": - self.bert_model = self.bert_model.half() - - def init_vits_weights(self, weights_path: str): - print(f"Loading VITS weights from {weights_path}") - self.configs.vits_weights_path = weights_path - dict_s2 = torch.load(weights_path, map_location=self.configs.device) - hps = dict_s2["config"] - if dict_s2['weight']['enc_p.text_embedding.weight'].shape[0] == 322: - self.configs.update_version("v1") - else: - self.configs.update_version("v2") - self.configs.save_configs() - - hps["model"]["version"] = self.configs.version - self.configs.filter_length = hps["data"]["filter_length"] - self.configs.segment_size = hps["train"]["segment_size"] - self.configs.sampling_rate = hps["data"]["sampling_rate"] - self.configs.hop_length = hps["data"]["hop_length"] - self.configs.win_length = hps["data"]["win_length"] - self.configs.n_speakers = hps["data"]["n_speakers"] - self.configs.semantic_frame_rate = "25hz" - kwargs = hps["model"] - vits_model = SynthesizerTrn( - self.configs.filter_length // 2 + 1, - self.configs.segment_size // self.configs.hop_length, - n_speakers=self.configs.n_speakers, - **kwargs - ) - - if hasattr(vits_model, "enc_q"): - del vits_model.enc_q - - vits_model = vits_model.to(self.configs.device) - vits_model = vits_model.eval() - vits_model.load_state_dict(dict_s2["weight"], strict=False) - self.vits_model = vits_model - if self.configs.is_half and str(self.configs.device)!="cpu": - self.vits_model = self.vits_model.half() - - - def init_t2s_weights(self, weights_path: str): - print(f"Loading Text2Semantic weights from {weights_path}") - self.configs.t2s_weights_path = weights_path - self.configs.save_configs() - self.configs.hz = 50 - dict_s1 = torch.load(weights_path, map_location=self.configs.device) - config = dict_s1["config"] - self.configs.max_sec = config["data"]["max_sec"] - t2s_model = Text2SemanticLightningModule(config, "****", is_train=False) - t2s_model.load_state_dict(dict_s1["weight"]) - t2s_model = t2s_model.to(self.configs.device) - t2s_model = t2s_model.eval() - self.t2s_model = t2s_model - if self.configs.is_half and str(self.configs.device)!="cpu": - self.t2s_model = self.t2s_model.half() - - def enable_half_precision(self, enable: bool = True, save: bool = True): - ''' - To enable half precision for the TTS model. - Args: - enable: bool, whether to enable half precision. - - ''' - if str(self.configs.device) == "cpu" and enable: - print("Half precision is not supported on CPU.") - return - - self.configs.is_half = enable - self.precision = torch.float16 if enable else torch.float32 - if save: - self.configs.save_configs() - if enable: - if self.t2s_model is not None: - self.t2s_model =self.t2s_model.half() - if self.vits_model is not None: - self.vits_model = self.vits_model.half() - if self.bert_model is not None: - self.bert_model =self.bert_model.half() - if self.cnhuhbert_model is not None: - self.cnhuhbert_model = self.cnhuhbert_model.half() - else: - if self.t2s_model is not None: - self.t2s_model = self.t2s_model.float() - if self.vits_model is not None: - self.vits_model = self.vits_model.float() - if self.bert_model is not None: - self.bert_model = self.bert_model.float() - if self.cnhuhbert_model is not None: - self.cnhuhbert_model = self.cnhuhbert_model.float() - - def set_device(self, device: torch.device, save: bool = True): - ''' - To set the device for all models. - Args: - device: torch.device, the device to use for all models. - ''' - self.configs.device = device - if save: - self.configs.save_configs() - if self.t2s_model is not None: - self.t2s_model = self.t2s_model.to(device) - if self.vits_model is not None: - self.vits_model = self.vits_model.to(device) - if self.bert_model is not None: - self.bert_model = self.bert_model.to(device) - if self.cnhuhbert_model is not None: - self.cnhuhbert_model = self.cnhuhbert_model.to(device) - - def set_ref_audio(self, ref_audio_path:str): - ''' - To set the reference audio for the TTS model, - including the prompt_semantic and refer_spepc. - Args: - ref_audio_path: str, the path of the reference audio. - ''' - self._set_prompt_semantic(ref_audio_path) - self._set_ref_spec(ref_audio_path) - self._set_ref_audio_path(ref_audio_path) - - def _set_ref_audio_path(self, ref_audio_path): - self.prompt_cache["ref_audio_path"] = ref_audio_path - - def _set_ref_spec(self, ref_audio_path): - spec = self._get_ref_spec(ref_audio_path) - if self.prompt_cache["refer_spec"] in [[],None]: - self.prompt_cache["refer_spec"]=[spec] - else: - self.prompt_cache["refer_spec"][0] = spec - - def _get_ref_spec(self, ref_audio_path): - audio = load_audio(ref_audio_path, int(self.configs.sampling_rate)) - audio = torch.FloatTensor(audio) - maxx=audio.abs().max() - if(maxx>1):audio/=min(2,maxx) - audio_norm = audio - audio_norm = audio_norm.unsqueeze(0) - spec = spectrogram_torch( - audio_norm, - self.configs.filter_length, - self.configs.sampling_rate, - self.configs.hop_length, - self.configs.win_length, - center=False, - ) - spec = spec.to(self.configs.device) - if self.configs.is_half: - spec = spec.half() - return spec - - def _set_prompt_semantic(self, ref_wav_path:str): - zero_wav = np.zeros( - int(self.configs.sampling_rate * 0.3), - dtype=np.float16 if self.configs.is_half else np.float32, - ) - with torch.no_grad(): - wav16k, sr = librosa.load(ref_wav_path, sr=16000) - if (wav16k.shape[0] > 160000 or wav16k.shape[0] < 48000): - raise OSError(i18n("参考音频在3~10秒范围外,请更换!")) - wav16k = torch.from_numpy(wav16k) - zero_wav_torch = torch.from_numpy(zero_wav) - wav16k = wav16k.to(self.configs.device) - zero_wav_torch = zero_wav_torch.to(self.configs.device) - if self.configs.is_half: - wav16k = wav16k.half() - zero_wav_torch = zero_wav_torch.half() - - wav16k = torch.cat([wav16k, zero_wav_torch]) - hubert_feature = self.cnhuhbert_model.model(wav16k.unsqueeze(0))[ - "last_hidden_state" - ].transpose( - 1, 2 - ) # .float() - codes = self.vits_model.extract_latent(hubert_feature) - - prompt_semantic = codes[0, 0].to(self.configs.device) - self.prompt_cache["prompt_semantic"] = prompt_semantic - - def batch_sequences(self, sequences: List[torch.Tensor], axis: int = 0, pad_value: int = 0, max_length:int=None): - seq = sequences[0] - ndim = seq.dim() - if axis < 0: - axis += ndim - dtype:torch.dtype = seq.dtype - pad_value = torch.tensor(pad_value, dtype=dtype) - seq_lengths = [seq.shape[axis] for seq in sequences] - if max_length is None: - max_length = max(seq_lengths) - else: - max_length = max(seq_lengths) if max_length < max(seq_lengths) else max_length - - padded_sequences = [] - for seq, length in zip(sequences, seq_lengths): - padding = [0] * axis + [0, max_length - length] + [0] * (ndim - axis - 1) - padded_seq = torch.nn.functional.pad(seq, padding, value=pad_value) - padded_sequences.append(padded_seq) - batch = torch.stack(padded_sequences) - return batch - - def to_batch(self, data:list, - prompt_data:dict=None, - batch_size:int=5, - threshold:float=0.75, - split_bucket:bool=True, - device:torch.device=torch.device("cpu"), - precision:torch.dtype=torch.float32, - ): - _data:list = [] - index_and_len_list = [] - for idx, item in enumerate(data): - norm_text_len = len(item["norm_text"]) - index_and_len_list.append([idx, norm_text_len]) - - batch_index_list = [] - if split_bucket: - index_and_len_list.sort(key=lambda x: x[1]) - index_and_len_list = np.array(index_and_len_list, dtype=np.int64) - - batch_index_list_len = 0 - pos = 0 - while pos =threshold) or (pos_end-pos==1): - batch_index=index_and_len_list[pos:pos_end, 0].tolist() - batch_index_list_len += len(batch_index) - batch_index_list.append(batch_index) - pos = pos_end - break - pos_end=pos_end-1 - - assert batch_index_list_len == len(data) - - else: - for i in range(len(data)): - if i%batch_size == 0: - batch_index_list.append([]) - batch_index_list[-1].append(i) - - - for batch_idx, index_list in enumerate(batch_index_list): - item_list = [data[idx] for idx in index_list] - phones_list = [] - phones_len_list = [] - # bert_features_list = [] - all_phones_list = [] - all_phones_len_list = [] - all_bert_features_list = [] - norm_text_batch = [] - all_bert_max_len = 0 - all_phones_max_len = 0 - for item in item_list: - if prompt_data is not None: - all_bert_features = torch.cat([prompt_data["bert_features"], item["bert_features"]], 1)\ - .to(dtype=precision, device=device) - all_phones = torch.LongTensor(prompt_data["phones"]+item["phones"]).to(device) - phones = torch.LongTensor(item["phones"]).to(device) - # norm_text = prompt_data["norm_text"]+item["norm_text"] - else: - all_bert_features = item["bert_features"]\ - .to(dtype=precision, device=device) - phones = torch.LongTensor(item["phones"]).to(device) - all_phones = phones - # norm_text = item["norm_text"] - - all_bert_max_len = max(all_bert_max_len, all_bert_features.shape[-1]) - all_phones_max_len = max(all_phones_max_len, all_phones.shape[-1]) - - phones_list.append(phones) - phones_len_list.append(phones.shape[-1]) - all_phones_list.append(all_phones) - all_phones_len_list.append(all_phones.shape[-1]) - all_bert_features_list.append(all_bert_features) - norm_text_batch.append(item["norm_text"]) - - phones_batch = phones_list - all_phones_batch = all_phones_list - all_bert_features_batch = all_bert_features_list - - - max_len = max(all_bert_max_len, all_phones_max_len) - # phones_batch = self.batch_sequences(phones_list, axis=0, pad_value=0, max_length=max_len) - #### 直接对phones和bert_features进行pad。(padding策略会影响T2S模型生成的结果,但不直接影响复读概率。影响复读概率的主要因素是mask的策略) - # all_phones_batch = self.batch_sequences(all_phones_list, axis=0, pad_value=0, max_length=max_len) - # all_bert_features_batch = all_bert_features_list - # all_bert_features_batch = torch.zeros((len(all_bert_features_list), 1024, max_len), dtype=precision, device=device) - # for idx, item in enumerate(all_bert_features_list): - # all_bert_features_batch[idx, :, : item.shape[-1]] = item - - # #### 先对phones进行embedding、对bert_features进行project,再pad到相同长度,(padding策略会影响T2S模型生成的结果,但不直接影响复读概率。影响复读概率的主要因素是mask的策略) - # all_phones_list = [self.t2s_model.model.ar_text_embedding(item.to(self.t2s_model.device)) for item in all_phones_list] - # all_phones_list = [F.pad(item,(0,0,0,max_len-item.shape[0]),value=0) for item in all_phones_list] - # all_phones_batch = torch.stack(all_phones_list, dim=0) - - # all_bert_features_list = [self.t2s_model.model.bert_proj(item.to(self.t2s_model.device).transpose(0, 1)) for item in all_bert_features_list] - # all_bert_features_list = [F.pad(item,(0,0,0,max_len-item.shape[0]), value=0) for item in all_bert_features_list] - # all_bert_features_batch = torch.stack(all_bert_features_list, dim=0) - - batch = { - "phones": phones_batch, - "phones_len": torch.LongTensor(phones_len_list).to(device), - "all_phones": all_phones_batch, - "all_phones_len": torch.LongTensor(all_phones_len_list).to(device), - "all_bert_features": all_bert_features_batch, - "norm_text": norm_text_batch, - "max_len": max_len, - } - _data.append(batch) - - return _data, batch_index_list - - def recovery_order(self, data:list, batch_index_list:list)->list: - ''' - Recovery the order of the audio according to the batch_index_list. - - Args: - data (List[list(np.ndarray)]): the out of order audio . - batch_index_list (List[list[int]]): the batch index list. - - Returns: - list (List[np.ndarray]): the data in the original order. - ''' - length = len(sum(batch_index_list, [])) - _data = [None]*length - for i, index_list in enumerate(batch_index_list): - for j, index in enumerate(index_list): - _data[index] = data[i][j] - return _data - - def stop(self,): - ''' - Stop the inference process. - ''' - self.stop_flag = True - - @torch.no_grad() - def run(self, inputs:dict): - """ - Text to speech inference. - - Args: - inputs (dict): - { - "text": "", # str.(required) text to be synthesized - "text_lang: "", # str.(required) language of the text to be synthesized - "ref_audio_path": "", # str.(required) reference audio path - "aux_ref_audio_paths": [], # list.(optional) auxiliary reference audio paths for multi-speaker tone fusion - "prompt_text": "", # str.(optional) prompt text for the reference audio - "prompt_lang": "", # str.(required) language of the prompt text for the reference audio - "top_k": 5, # int. top k sampling - "top_p": 1, # float. top p sampling - "temperature": 1, # float. temperature for sampling - "text_split_method": "cut0", # str. text split method, see text_segmentation_method.py for details. - "batch_size": 1, # int. batch size for inference - "batch_threshold": 0.75, # float. threshold for batch splitting. - "split_bucket: True, # bool. whether to split the batch into multiple buckets. - "return_fragment": False, # bool. step by step return the audio fragment. - "speed_factor":1.0, # float. control the speed of the synthesized audio. - "fragment_interval":0.3, # float. to control the interval of the audio fragment. - "seed": -1, # int. random seed for reproducibility. - "parallel_infer": True, # bool. whether to use parallel inference. - "repetition_penalty": 1.35 # float. repetition penalty for T2S model. - } - returns: - Tuple[int, np.ndarray]: sampling rate and audio data. - """ - ########## variables initialization ########### - self.stop_flag:bool = False - text:str = inputs.get("text", "") - text_lang:str = inputs.get("text_lang", "") - ref_audio_path:str = inputs.get("ref_audio_path", "") - aux_ref_audio_paths:list = inputs.get("aux_ref_audio_paths", []) - prompt_text:str = inputs.get("prompt_text", "") - prompt_lang:str = inputs.get("prompt_lang", "") - top_k:int = inputs.get("top_k", 5) - top_p:float = inputs.get("top_p", 1) - temperature:float = inputs.get("temperature", 1) - text_split_method:str = inputs.get("text_split_method", "cut0") - batch_size = inputs.get("batch_size", 1) - batch_threshold = inputs.get("batch_threshold", 0.75) - speed_factor = inputs.get("speed_factor", 1.0) - split_bucket = inputs.get("split_bucket", True) - return_fragment = inputs.get("return_fragment", False) - fragment_interval = inputs.get("fragment_interval", 0.3) - seed = inputs.get("seed", -1) - seed = -1 if seed in ["", None] else seed - actual_seed = set_seed(seed) - parallel_infer = inputs.get("parallel_infer", True) - repetition_penalty = inputs.get("repetition_penalty", 1.35) - - if parallel_infer: - print(i18n("并行推理模式已开启")) - self.t2s_model.model.infer_panel = self.t2s_model.model.infer_panel_batch_infer - else: - print(i18n("并行推理模式已关闭")) - self.t2s_model.model.infer_panel = self.t2s_model.model.infer_panel_naive_batched - - if return_fragment: - print(i18n("分段返回模式已开启")) - if split_bucket: - split_bucket = False - print(i18n("分段返回模式不支持分桶处理,已自动关闭分桶处理")) - - if split_bucket and speed_factor==1.0: - print(i18n("分桶处理模式已开启")) - elif speed_factor!=1.0: - print(i18n("语速调节不支持分桶处理,已自动关闭分桶处理")) - split_bucket = False - else: - print(i18n("分桶处理模式已关闭")) - - if fragment_interval<0.01: - fragment_interval = 0.01 - print(i18n("分段间隔过小,已自动设置为0.01")) - - no_prompt_text = False - if prompt_text in [None, ""]: - no_prompt_text = True - - assert text_lang in self.configs.languages - if not no_prompt_text: - assert prompt_lang in self.configs.languages - - if ref_audio_path in [None, ""] and \ - ((self.prompt_cache["prompt_semantic"] is None) or (self.prompt_cache["refer_spec"] in [None, []])): - raise ValueError("ref_audio_path cannot be empty, when the reference audio is not set using set_ref_audio()") - - ###### setting reference audio and prompt text preprocessing ######## - t0 = ttime() - if (ref_audio_path is not None) and (ref_audio_path != self.prompt_cache["ref_audio_path"]): - if not os.path.exists(ref_audio_path): - raise ValueError(f"{ref_audio_path} not exists") - self.set_ref_audio(ref_audio_path) - - aux_ref_audio_paths = aux_ref_audio_paths if aux_ref_audio_paths is not None else [] - paths = set(aux_ref_audio_paths)&set(self.prompt_cache["aux_ref_audio_paths"]) - if not (len(list(paths)) == len(aux_ref_audio_paths) == len(self.prompt_cache["aux_ref_audio_paths"])): - self.prompt_cache["aux_ref_audio_paths"] = aux_ref_audio_paths - self.prompt_cache["refer_spec"] = [self.prompt_cache["refer_spec"][0]] - for path in aux_ref_audio_paths: - if path in [None, ""]: - continue - if not os.path.exists(path): - print(i18n("音频文件不存在,跳过:{}").format(path)) - continue - self.prompt_cache["refer_spec"].append(self._get_ref_spec(path)) - - if not no_prompt_text: - prompt_text = prompt_text.strip("\n") - if (prompt_text[-1] not in splits): prompt_text += "。" if prompt_lang != "en" else "." - print(i18n("实际输入的参考文本:"), prompt_text) - if self.prompt_cache["prompt_text"] != prompt_text: - self.prompt_cache["prompt_text"] = prompt_text - self.prompt_cache["prompt_lang"] = prompt_lang - phones, bert_features, norm_text = \ - self.text_preprocessor.segment_and_extract_feature_for_text( - prompt_text, - prompt_lang, - self.configs.version) - self.prompt_cache["phones"] = phones - self.prompt_cache["bert_features"] = bert_features - self.prompt_cache["norm_text"] = norm_text - - - - - ###### text preprocessing ######## - t1 = ttime() - data:list = None - if not return_fragment: - data = self.text_preprocessor.preprocess(text, text_lang, text_split_method, self.configs.version) - if len(data) == 0: - yield self.configs.sampling_rate, np.zeros(int(self.configs.sampling_rate), - dtype=np.int16) - return - - batch_index_list:list = None - data, batch_index_list = self.to_batch(data, - prompt_data=self.prompt_cache if not no_prompt_text else None, - batch_size=batch_size, - threshold=batch_threshold, - split_bucket=split_bucket, - device=self.configs.device, - precision=self.precision - ) - else: - print(i18n("############ 切分文本 ############")) - texts = self.text_preprocessor.pre_seg_text(text, text_lang, text_split_method) - data = [] - for i in range(len(texts)): - if i%batch_size == 0: - data.append([]) - data[-1].append(texts[i]) - - def make_batch(batch_texts): - batch_data = [] - print(i18n("############ 提取文本Bert特征 ############")) - for text in tqdm(batch_texts): - phones, bert_features, norm_text = self.text_preprocessor.segment_and_extract_feature_for_text(text, text_lang, self.configs.version) - if phones is None: - continue - res={ - "phones": phones, - "bert_features": bert_features, - "norm_text": norm_text, - } - batch_data.append(res) - if len(batch_data) == 0: - return None - batch, _ = self.to_batch(batch_data, - prompt_data=self.prompt_cache if not no_prompt_text else None, - batch_size=batch_size, - threshold=batch_threshold, - split_bucket=False, - device=self.configs.device, - precision=self.precision - ) - return batch[0] - - - t2 = ttime() - try: - print("############ 推理 ############") - ###### inference ###### - t_34 = 0.0 - t_45 = 0.0 - audio = [] - for item in data: - t3 = ttime() - if return_fragment: - item = make_batch(item) - if item is None: - continue - - batch_phones:List[torch.LongTensor] = item["phones"] - # batch_phones:torch.LongTensor = item["phones"] - batch_phones_len:torch.LongTensor = item["phones_len"] - all_phoneme_ids:torch.LongTensor = item["all_phones"] - all_phoneme_lens:torch.LongTensor = item["all_phones_len"] - all_bert_features:torch.LongTensor = item["all_bert_features"] - norm_text:str = item["norm_text"] - max_len = item["max_len"] - - print(i18n("前端处理后的文本(每句):"), norm_text) - if no_prompt_text : - prompt = None - else: - prompt = self.prompt_cache["prompt_semantic"].expand(len(all_phoneme_ids), -1).to(self.configs.device) - - - pred_semantic_list, idx_list = self.t2s_model.model.infer_panel( - all_phoneme_ids, - all_phoneme_lens, - prompt, - all_bert_features, - # prompt_phone_len=ph_offset, - top_k=top_k, - top_p=top_p, - temperature=temperature, - early_stop_num=self.configs.hz * self.configs.max_sec, - max_len=max_len, - repetition_penalty=repetition_penalty, - ) - t4 = ttime() - t_34 += t4 - t3 - - refer_audio_spec:torch.Tensor = [item.to(dtype=self.precision, device=self.configs.device) for item in self.prompt_cache["refer_spec"]] - - - batch_audio_fragment = [] - - # ## vits并行推理 method 1 - # pred_semantic_list = [item[-idx:] for item, idx in zip(pred_semantic_list, idx_list)] - # pred_semantic_len = torch.LongTensor([item.shape[0] for item in pred_semantic_list]).to(self.configs.device) - # pred_semantic = self.batch_sequences(pred_semantic_list, axis=0, pad_value=0).unsqueeze(0) - # max_len = 0 - # for i in range(0, len(batch_phones)): - # max_len = max(max_len, batch_phones[i].shape[-1]) - # batch_phones = self.batch_sequences(batch_phones, axis=0, pad_value=0, max_length=max_len) - # batch_phones = batch_phones.to(self.configs.device) - # batch_audio_fragment = (self.vits_model.batched_decode( - # pred_semantic, pred_semantic_len, batch_phones, batch_phones_len,refer_audio_spec - # )) - - if speed_factor == 1.0: - # ## vits并行推理 method 2 - pred_semantic_list = [item[-idx:] for item, idx in zip(pred_semantic_list, idx_list)] - upsample_rate = math.prod(self.vits_model.upsample_rates) - audio_frag_idx = [pred_semantic_list[i].shape[0]*2*upsample_rate for i in range(0, len(pred_semantic_list))] - audio_frag_end_idx = [ sum(audio_frag_idx[:i+1]) for i in range(0, len(audio_frag_idx))] - all_pred_semantic = torch.cat(pred_semantic_list).unsqueeze(0).unsqueeze(0).to(self.configs.device) - _batch_phones = torch.cat(batch_phones).unsqueeze(0).to(self.configs.device) - _batch_audio_fragment = (self.vits_model.decode( - all_pred_semantic, _batch_phones, refer_audio_spec, speed=speed_factor - ).detach()[0, 0, :]) - audio_frag_end_idx.insert(0, 0) - batch_audio_fragment= [_batch_audio_fragment[audio_frag_end_idx[i-1]:audio_frag_end_idx[i]] for i in range(1, len(audio_frag_end_idx))] - else: - # ## vits串行推理 - for i, idx in enumerate(idx_list): - phones = batch_phones[i].unsqueeze(0).to(self.configs.device) - _pred_semantic = (pred_semantic_list[i][-idx:].unsqueeze(0).unsqueeze(0)) # .unsqueeze(0)#mq要多unsqueeze一次 - audio_fragment =(self.vits_model.decode( - _pred_semantic, phones, refer_audio_spec, speed=speed_factor - ).detach()[0, 0, :]) - batch_audio_fragment.append( - audio_fragment - ) ###试试重建不带上prompt部分 - - t5 = ttime() - t_45 += t5 - t4 - if return_fragment: - print("%.3f\t%.3f\t%.3f\t%.3f" % (t1 - t0, t2 - t1, t4 - t3, t5 - t4)) - yield self.audio_postprocess([batch_audio_fragment], - self.configs.sampling_rate, - None, - speed_factor, - False, - fragment_interval - ) - else: - audio.append(batch_audio_fragment) - - if self.stop_flag: - yield self.configs.sampling_rate, np.zeros(int(self.configs.sampling_rate), - dtype=np.int16) - return - - if not return_fragment: - print("%.3f\t%.3f\t%.3f\t%.3f" % (t1 - t0, t2 - t1, t_34, t_45)) - if len(audio) == 0: - yield self.configs.sampling_rate, np.zeros(int(self.configs.sampling_rate), - dtype=np.int16) - return - yield self.audio_postprocess(audio, - self.configs.sampling_rate, - batch_index_list, - speed_factor, - split_bucket, - fragment_interval - ) - - except Exception as e: - traceback.print_exc() - # 必须返回一个空音频, 否则会导致显存不释放。 - yield self.configs.sampling_rate, np.zeros(int(self.configs.sampling_rate), - dtype=np.int16) - # 重置模型, 否则会导致显存释放不完全。 - del self.t2s_model - del self.vits_model - self.t2s_model = None - self.vits_model = None - self.init_t2s_weights(self.configs.t2s_weights_path) - self.init_vits_weights(self.configs.vits_weights_path) - raise e - finally: - self.empty_cache() - - def empty_cache(self): - try: - gc.collect() # 触发gc的垃圾回收。避免内存一直增长。 - if "cuda" in str(self.configs.device): - torch.cuda.empty_cache() - elif str(self.configs.device) == "mps": - torch.mps.empty_cache() - except: - pass - - def audio_postprocess(self, - audio:List[torch.Tensor], - sr:int, - batch_index_list:list=None, - speed_factor:float=1.0, - split_bucket:bool=True, - fragment_interval:float=0.3 - )->Tuple[int, np.ndarray]: - zero_wav = torch.zeros( - int(self.configs.sampling_rate * fragment_interval), - dtype=self.precision, - device=self.configs.device - ) - - for i, batch in enumerate(audio): - for j, audio_fragment in enumerate(batch): - max_audio=torch.abs(audio_fragment).max()#简单防止16bit爆音 - if max_audio>1: audio_fragment/=max_audio - audio_fragment:torch.Tensor = torch.cat([audio_fragment, zero_wav], dim=0) - audio[i][j] = audio_fragment.cpu().numpy() - - - if split_bucket: - audio = self.recovery_order(audio, batch_index_list) - else: - # audio = [item for batch in audio for item in batch] - audio = sum(audio, []) - - - audio = np.concatenate(audio, 0) - audio = (audio * 32768).astype(np.int16) - - # try: - # if speed_factor != 1.0: - # audio = speed_change(audio, speed=speed_factor, sr=int(sr)) - # except Exception as e: - # print(f"Failed to change speed of audio: \n{e}") - - return sr, audio - - - - -def speed_change(input_audio:np.ndarray, speed:float, sr:int): - # 将 NumPy 数组转换为原始 PCM 流 - raw_audio = input_audio.astype(np.int16).tobytes() - - # 设置 ffmpeg 输入流 - input_stream = ffmpeg.input('pipe:', format='s16le', acodec='pcm_s16le', ar=str(sr), ac=1) - - # 变速处理 - output_stream = input_stream.filter('atempo', speed) - - # 输出流到管道 - out, _ = ( - output_stream.output('pipe:', format='s16le', acodec='pcm_s16le') - .run(input=raw_audio, capture_stdout=True, capture_stderr=True) - ) - - # 将管道输出解码为 NumPy 数组 - processed_audio = np.frombuffer(out, np.int16) - +from copy import deepcopy +import math +import os, sys, gc +import random +import traceback + +from tqdm import tqdm +now_dir = os.getcwd() +sys.path.append(now_dir) +import ffmpeg +import os +from typing import Generator, List, Tuple, Union +import numpy as np +import torch +import torch.nn.functional as F +import yaml +from transformers import AutoModelForMaskedLM, AutoTokenizer + +from AR.models.t2s_lightning_module import Text2SemanticLightningModule +from feature_extractor.cnhubert import CNHubert +from module.models import SynthesizerTrn +import librosa +from time import time as ttime +from tools.i18n.i18n import I18nAuto, scan_language_list +from tools.my_utils import load_audio +from module.mel_processing import spectrogram_torch +from TTS_infer_pack.text_segmentation_method import splits +from TTS_infer_pack.TextPreprocessor import TextPreprocessor +language=os.environ.get("language","Auto") +language=sys.argv[-1] if sys.argv[-1] in scan_language_list() else language +i18n = I18nAuto(language=language) + +# configs/tts_infer.yaml +""" +custom: + bert_base_path: GPT_SoVITS/pretrained_models/chinese-roberta-wwm-ext-large + cnhuhbert_base_path: GPT_SoVITS/pretrained_models/chinese-hubert-base + device: cpu + is_half: false + t2s_weights_path: GPT_SoVITS/pretrained_models/gsv-v2final-pretrained/s1bert25hz-5kh-longer-epoch=12-step=369668.ckpt + vits_weights_path: GPT_SoVITS/pretrained_models/gsv-v2final-pretrained/s2G2333k.pth + version: v2 +default: + bert_base_path: GPT_SoVITS/pretrained_models/chinese-roberta-wwm-ext-large + cnhuhbert_base_path: GPT_SoVITS/pretrained_models/chinese-hubert-base + device: cpu + is_half: false + t2s_weights_path: GPT_SoVITS/pretrained_models/s1bert25hz-2kh-longer-epoch=68e-step=50232.ckpt + vits_weights_path: GPT_SoVITS/pretrained_models/s2G488k.pth + version: v1 +default_v2: + bert_base_path: GPT_SoVITS/pretrained_models/chinese-roberta-wwm-ext-large + cnhuhbert_base_path: GPT_SoVITS/pretrained_models/chinese-hubert-base + device: cpu + is_half: false + t2s_weights_path: GPT_SoVITS/pretrained_models/gsv-v2final-pretrained/s1bert25hz-5kh-longer-epoch=12-step=369668.ckpt + vits_weights_path: GPT_SoVITS/pretrained_models/gsv-v2final-pretrained/s2G2333k.pth + version: v2 +""" + +def set_seed(seed:int): + seed = int(seed) + seed = seed if seed != -1 else random.randrange(1 << 32) + print(f"Set seed to {seed}") + os.environ['PYTHONHASHSEED'] = str(seed) + random.seed(seed) + np.random.seed(seed) + torch.manual_seed(seed) + try: + if torch.cuda.is_available(): + torch.cuda.manual_seed(seed) + torch.cuda.manual_seed_all(seed) + # torch.backends.cudnn.deterministic = True + # torch.backends.cudnn.benchmark = False + # torch.backends.cudnn.enabled = True + # 开启后会影响精度 + torch.backends.cuda.matmul.allow_tf32 = False + torch.backends.cudnn.allow_tf32 = False + except: + pass + return seed + +class TTS_Config: + default_configs={ + "default":{ + "device": "cpu", + "is_half": False, + "version": "v1", + "t2s_weights_path": "GPT_SoVITS/pretrained_models/s1bert25hz-2kh-longer-epoch=68e-step=50232.ckpt", + "vits_weights_path": "GPT_SoVITS/pretrained_models/s2G488k.pth", + "cnhuhbert_base_path": "GPT_SoVITS/pretrained_models/chinese-hubert-base", + "bert_base_path": "GPT_SoVITS/pretrained_models/chinese-roberta-wwm-ext-large", + }, + "default_v2":{ + "device": "cpu", + "is_half": False, + "version": "v2", + "t2s_weights_path": "GPT_SoVITS/pretrained_models/gsv-v2final-pretrained/s1bert25hz-5kh-longer-epoch=12-step=369668.ckpt", + "vits_weights_path": "GPT_SoVITS/pretrained_models/gsv-v2final-pretrained/s2G2333k.pth", + "cnhuhbert_base_path": "GPT_SoVITS/pretrained_models/chinese-hubert-base", + "bert_base_path": "GPT_SoVITS/pretrained_models/chinese-roberta-wwm-ext-large", + }, + } + configs:dict = None + v1_languages:list = ["auto", "en", "zh", "ja", "all_zh", "all_ja"] + v2_languages:list = ["auto", "auto_yue", "en", "zh", "ja", "yue", "ko", "all_zh", "all_ja", "all_yue", "all_ko"] + languages:list = v2_languages + # "all_zh",#全部按中文识别 + # "en",#全部按英文识别#######不变 + # "all_ja",#全部按日文识别 + # "all_yue",#全部按中文识别 + # "all_ko",#全部按韩文识别 + # "zh",#按中英混合识别####不变 + # "ja",#按日英混合识别####不变 + # "yue",#按粤英混合识别####不变 + # "ko",#按韩英混合识别####不变 + # "auto",#多语种启动切分识别语种 + # "auto_yue",#多语种启动切分识别语种 + + def __init__(self, configs: Union[dict, str]=None): + + # 设置默认配置文件路径 + configs_base_path:str = "GPT_SoVITS/configs/" + os.makedirs(configs_base_path, exist_ok=True) + self.configs_path:str = os.path.join(configs_base_path, "tts_infer.yaml") + + if configs in ["", None]: + if not os.path.exists(self.configs_path): + self.save_configs() + print(f"Create default config file at {self.configs_path}") + configs:dict = deepcopy(self.default_configs) + + if isinstance(configs, str): + self.configs_path = configs + configs:dict = self._load_configs(self.configs_path) + + assert isinstance(configs, dict) + version = configs.get("version", "v2").lower() + assert version in ["v1", "v2"] + self.default_configs["default"] = configs.get("default", self.default_configs["default"]) + self.default_configs["default_v2"] = configs.get("default_v2", self.default_configs["default_v2"]) + + default_config_key = "default"if version=="v1" else "default_v2" + self.configs:dict = configs.get("custom", deepcopy(self.default_configs[default_config_key])) + + + self.device = self.configs.get("device", torch.device("cpu")) + self.is_half = self.configs.get("is_half", False) + self.version = version + self.t2s_weights_path = self.configs.get("t2s_weights_path", None) + self.vits_weights_path = self.configs.get("vits_weights_path", None) + self.bert_base_path = self.configs.get("bert_base_path", None) + self.cnhuhbert_base_path = self.configs.get("cnhuhbert_base_path", None) + self.languages = self.v2_languages if self.version=="v2" else self.v1_languages + + + if (self.t2s_weights_path in [None, ""]) or (not os.path.exists(self.t2s_weights_path)): + self.t2s_weights_path = self.default_configs[default_config_key]['t2s_weights_path'] + print(f"fall back to default t2s_weights_path: {self.t2s_weights_path}") + if (self.vits_weights_path in [None, ""]) or (not os.path.exists(self.vits_weights_path)): + self.vits_weights_path = self.default_configs[default_config_key]['vits_weights_path'] + print(f"fall back to default vits_weights_path: {self.vits_weights_path}") + if (self.bert_base_path in [None, ""]) or (not os.path.exists(self.bert_base_path)): + self.bert_base_path = self.default_configs[default_config_key]['bert_base_path'] + print(f"fall back to default bert_base_path: {self.bert_base_path}") + if (self.cnhuhbert_base_path in [None, ""]) or (not os.path.exists(self.cnhuhbert_base_path)): + self.cnhuhbert_base_path = self.default_configs[default_config_key]['cnhuhbert_base_path'] + print(f"fall back to default cnhuhbert_base_path: {self.cnhuhbert_base_path}") + self.update_configs() + + + self.max_sec = None + self.hz:int = 50 + self.semantic_frame_rate:str = "25hz" + self.segment_size:int = 20480 + self.filter_length:int = 2048 + self.sampling_rate:int = 32000 + self.hop_length:int = 640 + self.win_length:int = 2048 + self.n_speakers:int = 300 + + + + def _load_configs(self, configs_path: str)->dict: + if os.path.exists(configs_path): + ... + else: + print(i18n("路径不存在,使用默认配置")) + self.save_configs(configs_path) + with open(configs_path, "r", encoding="utf-8") as f: + configs = yaml.load(f, Loader=yaml.FullLoader) + + return configs + + def save_configs(self, configs_path:str=None)->None: + configs=deepcopy(self.default_configs) + if self.configs is not None: + configs["custom"] = self.update_configs() + + if configs_path is None: + configs_path = self.configs_path + with open(configs_path, "w", encoding="utf-8") as f: + yaml.dump(configs, f) + + def update_configs(self): + self.config = { + "device" : str(self.device), + "is_half" : self.is_half, + "version" : self.version, + "t2s_weights_path" : self.t2s_weights_path, + "vits_weights_path" : self.vits_weights_path, + "bert_base_path" : self.bert_base_path, + "cnhuhbert_base_path": self.cnhuhbert_base_path, + } + return self.config + + def update_version(self, version:str)->None: + self.version = version + self.languages = self.v2_languages if self.version=="v2" else self.v1_languages + + def __str__(self): + self.configs = self.update_configs() + string = "TTS Config".center(100, '-') + '\n' + for k, v in self.configs.items(): + string += f"{str(k).ljust(20)}: {str(v)}\n" + string += "-" * 100 + '\n' + return string + + def __repr__(self): + return self.__str__() + + def __hash__(self): + return hash(self.configs_path) + + def __eq__(self, other): + return isinstance(other, TTS_Config) and self.configs_path == other.configs_path + + +class TTS: + def __init__(self, configs: Union[dict, str, TTS_Config]): + if isinstance(configs, TTS_Config): + self.configs = configs + else: + self.configs:TTS_Config = TTS_Config(configs) + + self.t2s_model:Text2SemanticLightningModule = None + self.vits_model:SynthesizerTrn = None + self.bert_tokenizer:AutoTokenizer = None + self.bert_model:AutoModelForMaskedLM = None + self.cnhuhbert_model:CNHubert = None + + self._init_models() + + self.text_preprocessor:TextPreprocessor = \ + TextPreprocessor(self.bert_model, + self.bert_tokenizer, + self.configs.device) + + + self.prompt_cache:dict = { + "ref_audio_path" : None, + "prompt_semantic": None, + "refer_spec" : [], + "prompt_text" : None, + "prompt_lang" : None, + "phones" : None, + "bert_features" : None, + "norm_text" : None, + "aux_ref_audio_paths": [], + } + + + self.stop_flag:bool = False + self.precision:torch.dtype = torch.float16 if self.configs.is_half else torch.float32 + + def _init_models(self,): + self.init_t2s_weights(self.configs.t2s_weights_path) + self.init_vits_weights(self.configs.vits_weights_path) + self.init_bert_weights(self.configs.bert_base_path) + self.init_cnhuhbert_weights(self.configs.cnhuhbert_base_path) + # self.enable_half_precision(self.configs.is_half) + + + + def init_cnhuhbert_weights(self, base_path: str): + print(f"Loading CNHuBERT weights from {base_path}") + self.cnhuhbert_model = CNHubert(base_path) + self.cnhuhbert_model=self.cnhuhbert_model.eval() + self.cnhuhbert_model = self.cnhuhbert_model.to(self.configs.device) + if self.configs.is_half and str(self.configs.device)!="cpu": + self.cnhuhbert_model = self.cnhuhbert_model.half() + + + + def init_bert_weights(self, base_path: str): + print(f"Loading BERT weights from {base_path}") + self.bert_tokenizer = AutoTokenizer.from_pretrained(base_path) + self.bert_model = AutoModelForMaskedLM.from_pretrained(base_path) + self.bert_model=self.bert_model.eval() + self.bert_model = self.bert_model.to(self.configs.device) + if self.configs.is_half and str(self.configs.device)!="cpu": + self.bert_model = self.bert_model.half() + + def init_vits_weights(self, weights_path: str): + print(f"Loading VITS weights from {weights_path}") + self.configs.vits_weights_path = weights_path + dict_s2 = torch.load(weights_path, map_location=self.configs.device) + hps = dict_s2["config"] + if dict_s2['weight']['enc_p.text_embedding.weight'].shape[0] == 322: + self.configs.update_version("v1") + else: + self.configs.update_version("v2") + self.configs.save_configs() + + hps["model"]["version"] = self.configs.version + self.configs.filter_length = hps["data"]["filter_length"] + self.configs.segment_size = hps["train"]["segment_size"] + self.configs.sampling_rate = hps["data"]["sampling_rate"] + self.configs.hop_length = hps["data"]["hop_length"] + self.configs.win_length = hps["data"]["win_length"] + self.configs.n_speakers = hps["data"]["n_speakers"] + self.configs.semantic_frame_rate = "25hz" + kwargs = hps["model"] + vits_model = SynthesizerTrn( + self.configs.filter_length // 2 + 1, + self.configs.segment_size // self.configs.hop_length, + n_speakers=self.configs.n_speakers, + **kwargs + ) + + if hasattr(vits_model, "enc_q"): + del vits_model.enc_q + + vits_model = vits_model.to(self.configs.device) + vits_model = vits_model.eval() + vits_model.load_state_dict(dict_s2["weight"], strict=False) + self.vits_model = vits_model + if self.configs.is_half and str(self.configs.device)!="cpu": + self.vits_model = self.vits_model.half() + + + def init_t2s_weights(self, weights_path: str): + print(f"Loading Text2Semantic weights from {weights_path}") + self.configs.t2s_weights_path = weights_path + self.configs.save_configs() + self.configs.hz = 50 + dict_s1 = torch.load(weights_path, map_location=self.configs.device) + config = dict_s1["config"] + self.configs.max_sec = config["data"]["max_sec"] + t2s_model = Text2SemanticLightningModule(config, "****", is_train=False) + t2s_model.load_state_dict(dict_s1["weight"]) + t2s_model = t2s_model.to(self.configs.device) + t2s_model = t2s_model.eval() + self.t2s_model = t2s_model + if self.configs.is_half and str(self.configs.device)!="cpu": + self.t2s_model = self.t2s_model.half() + + def enable_half_precision(self, enable: bool = True, save: bool = True): + ''' + To enable half precision for the TTS model. + Args: + enable: bool, whether to enable half precision. + + ''' + if str(self.configs.device) == "cpu" and enable: + print("Half precision is not supported on CPU.") + return + + self.configs.is_half = enable + self.precision = torch.float16 if enable else torch.float32 + if save: + self.configs.save_configs() + if enable: + if self.t2s_model is not None: + self.t2s_model =self.t2s_model.half() + if self.vits_model is not None: + self.vits_model = self.vits_model.half() + if self.bert_model is not None: + self.bert_model =self.bert_model.half() + if self.cnhuhbert_model is not None: + self.cnhuhbert_model = self.cnhuhbert_model.half() + else: + if self.t2s_model is not None: + self.t2s_model = self.t2s_model.float() + if self.vits_model is not None: + self.vits_model = self.vits_model.float() + if self.bert_model is not None: + self.bert_model = self.bert_model.float() + if self.cnhuhbert_model is not None: + self.cnhuhbert_model = self.cnhuhbert_model.float() + + def set_device(self, device: torch.device, save: bool = True): + ''' + To set the device for all models. + Args: + device: torch.device, the device to use for all models. + ''' + self.configs.device = device + if save: + self.configs.save_configs() + if self.t2s_model is not None: + self.t2s_model = self.t2s_model.to(device) + if self.vits_model is not None: + self.vits_model = self.vits_model.to(device) + if self.bert_model is not None: + self.bert_model = self.bert_model.to(device) + if self.cnhuhbert_model is not None: + self.cnhuhbert_model = self.cnhuhbert_model.to(device) + + def set_ref_audio(self, ref_audio_path:str): + ''' + To set the reference audio for the TTS model, + including the prompt_semantic and refer_spepc. + Args: + ref_audio_path: str, the path of the reference audio. + ''' + self._set_prompt_semantic(ref_audio_path) + self._set_ref_spec(ref_audio_path) + self._set_ref_audio_path(ref_audio_path) + + def _set_ref_audio_path(self, ref_audio_path): + self.prompt_cache["ref_audio_path"] = ref_audio_path + + def _set_ref_spec(self, ref_audio_path): + spec = self._get_ref_spec(ref_audio_path) + if self.prompt_cache["refer_spec"] in [[],None]: + self.prompt_cache["refer_spec"]=[spec] + else: + self.prompt_cache["refer_spec"][0] = spec + + def _get_ref_spec(self, ref_audio_path): + audio = load_audio(ref_audio_path, int(self.configs.sampling_rate)) + audio = torch.FloatTensor(audio) + maxx=audio.abs().max() + if(maxx>1):audio/=min(2,maxx) + audio_norm = audio + audio_norm = audio_norm.unsqueeze(0) + spec = spectrogram_torch( + audio_norm, + self.configs.filter_length, + self.configs.sampling_rate, + self.configs.hop_length, + self.configs.win_length, + center=False, + ) + spec = spec.to(self.configs.device) + if self.configs.is_half: + spec = spec.half() + return spec + + def _set_prompt_semantic(self, ref_wav_path:str): + zero_wav = np.zeros( + int(self.configs.sampling_rate * 0.3), + dtype=np.float16 if self.configs.is_half else np.float32, + ) + with torch.no_grad(): + wav16k, sr = librosa.load(ref_wav_path, sr=16000) + if (wav16k.shape[0] > 160000 or wav16k.shape[0] < 48000): + raise OSError(i18n("参考音频在3~10秒范围外,请更换!")) + wav16k = torch.from_numpy(wav16k) + zero_wav_torch = torch.from_numpy(zero_wav) + wav16k = wav16k.to(self.configs.device) + zero_wav_torch = zero_wav_torch.to(self.configs.device) + if self.configs.is_half: + wav16k = wav16k.half() + zero_wav_torch = zero_wav_torch.half() + + wav16k = torch.cat([wav16k, zero_wav_torch]) + hubert_feature = self.cnhuhbert_model.model(wav16k.unsqueeze(0))[ + "last_hidden_state" + ].transpose( + 1, 2 + ) # .float() + codes = self.vits_model.extract_latent(hubert_feature) + + prompt_semantic = codes[0, 0].to(self.configs.device) + self.prompt_cache["prompt_semantic"] = prompt_semantic + + def batch_sequences(self, sequences: List[torch.Tensor], axis: int = 0, pad_value: int = 0, max_length:int=None): + seq = sequences[0] + ndim = seq.dim() + if axis < 0: + axis += ndim + dtype:torch.dtype = seq.dtype + pad_value = torch.tensor(pad_value, dtype=dtype) + seq_lengths = [seq.shape[axis] for seq in sequences] + if max_length is None: + max_length = max(seq_lengths) + else: + max_length = max(seq_lengths) if max_length < max(seq_lengths) else max_length + + padded_sequences = [] + for seq, length in zip(sequences, seq_lengths): + padding = [0] * axis + [0, max_length - length] + [0] * (ndim - axis - 1) + padded_seq = torch.nn.functional.pad(seq, padding, value=pad_value) + padded_sequences.append(padded_seq) + batch = torch.stack(padded_sequences) + return batch + + def to_batch(self, data:list, + prompt_data:dict=None, + batch_size:int=5, + threshold:float=0.75, + split_bucket:bool=True, + device:torch.device=torch.device("cpu"), + precision:torch.dtype=torch.float32, + ): + _data:list = [] + index_and_len_list = [] + for idx, item in enumerate(data): + norm_text_len = len(item["norm_text"]) + index_and_len_list.append([idx, norm_text_len]) + + batch_index_list = [] + if split_bucket: + index_and_len_list.sort(key=lambda x: x[1]) + index_and_len_list = np.array(index_and_len_list, dtype=np.int64) + + batch_index_list_len = 0 + pos = 0 + while pos =threshold) or (pos_end-pos==1): + batch_index=index_and_len_list[pos:pos_end, 0].tolist() + batch_index_list_len += len(batch_index) + batch_index_list.append(batch_index) + pos = pos_end + break + pos_end=pos_end-1 + + assert batch_index_list_len == len(data) + + else: + for i in range(len(data)): + if i%batch_size == 0: + batch_index_list.append([]) + batch_index_list[-1].append(i) + + + for batch_idx, index_list in enumerate(batch_index_list): + item_list = [data[idx] for idx in index_list] + phones_list = [] + phones_len_list = [] + # bert_features_list = [] + all_phones_list = [] + all_phones_len_list = [] + all_bert_features_list = [] + norm_text_batch = [] + all_bert_max_len = 0 + all_phones_max_len = 0 + for item in item_list: + if prompt_data is not None: + all_bert_features = torch.cat([prompt_data["bert_features"], item["bert_features"]], 1)\ + .to(dtype=precision, device=device) + all_phones = torch.LongTensor(prompt_data["phones"]+item["phones"]).to(device) + phones = torch.LongTensor(item["phones"]).to(device) + # norm_text = prompt_data["norm_text"]+item["norm_text"] + else: + all_bert_features = item["bert_features"]\ + .to(dtype=precision, device=device) + phones = torch.LongTensor(item["phones"]).to(device) + all_phones = phones + # norm_text = item["norm_text"] + + all_bert_max_len = max(all_bert_max_len, all_bert_features.shape[-1]) + all_phones_max_len = max(all_phones_max_len, all_phones.shape[-1]) + + phones_list.append(phones) + phones_len_list.append(phones.shape[-1]) + all_phones_list.append(all_phones) + all_phones_len_list.append(all_phones.shape[-1]) + all_bert_features_list.append(all_bert_features) + norm_text_batch.append(item["norm_text"]) + + phones_batch = phones_list + all_phones_batch = all_phones_list + all_bert_features_batch = all_bert_features_list + + + max_len = max(all_bert_max_len, all_phones_max_len) + # phones_batch = self.batch_sequences(phones_list, axis=0, pad_value=0, max_length=max_len) + #### 直接对phones和bert_features进行pad。(padding策略会影响T2S模型生成的结果,但不直接影响复读概率。影响复读概率的主要因素是mask的策略) + # all_phones_batch = self.batch_sequences(all_phones_list, axis=0, pad_value=0, max_length=max_len) + # all_bert_features_batch = all_bert_features_list + # all_bert_features_batch = torch.zeros((len(all_bert_features_list), 1024, max_len), dtype=precision, device=device) + # for idx, item in enumerate(all_bert_features_list): + # all_bert_features_batch[idx, :, : item.shape[-1]] = item + + # #### 先对phones进行embedding、对bert_features进行project,再pad到相同长度,(padding策略会影响T2S模型生成的结果,但不直接影响复读概率。影响复读概率的主要因素是mask的策略) + # all_phones_list = [self.t2s_model.model.ar_text_embedding(item.to(self.t2s_model.device)) for item in all_phones_list] + # all_phones_list = [F.pad(item,(0,0,0,max_len-item.shape[0]),value=0) for item in all_phones_list] + # all_phones_batch = torch.stack(all_phones_list, dim=0) + + # all_bert_features_list = [self.t2s_model.model.bert_proj(item.to(self.t2s_model.device).transpose(0, 1)) for item in all_bert_features_list] + # all_bert_features_list = [F.pad(item,(0,0,0,max_len-item.shape[0]), value=0) for item in all_bert_features_list] + # all_bert_features_batch = torch.stack(all_bert_features_list, dim=0) + + batch = { + "phones": phones_batch, + "phones_len": torch.LongTensor(phones_len_list).to(device), + "all_phones": all_phones_batch, + "all_phones_len": torch.LongTensor(all_phones_len_list).to(device), + "all_bert_features": all_bert_features_batch, + "norm_text": norm_text_batch, + "max_len": max_len, + } + _data.append(batch) + + return _data, batch_index_list + + def recovery_order(self, data:list, batch_index_list:list)->list: + ''' + Recovery the order of the audio according to the batch_index_list. + + Args: + data (List[list(np.ndarray)]): the out of order audio . + batch_index_list (List[list[int]]): the batch index list. + + Returns: + list (List[np.ndarray]): the data in the original order. + ''' + length = len(sum(batch_index_list, [])) + _data = [None]*length + for i, index_list in enumerate(batch_index_list): + for j, index in enumerate(index_list): + _data[index] = data[i][j] + return _data + + def stop(self,): + ''' + Stop the inference process. + ''' + self.stop_flag = True + + @torch.no_grad() + def run(self, inputs:dict): + """ + Text to speech inference. + + Args: + inputs (dict): + { + "text": "", # str.(required) text to be synthesized + "text_lang: "", # str.(required) language of the text to be synthesized + "ref_audio_path": "", # str.(required) reference audio path + "aux_ref_audio_paths": [], # list.(optional) auxiliary reference audio paths for multi-speaker tone fusion + "prompt_text": "", # str.(optional) prompt text for the reference audio + "prompt_lang": "", # str.(required) language of the prompt text for the reference audio + "top_k": 5, # int. top k sampling + "top_p": 1, # float. top p sampling + "temperature": 1, # float. temperature for sampling + "text_split_method": "cut0", # str. text split method, see text_segmentation_method.py for details. + "batch_size": 1, # int. batch size for inference + "batch_threshold": 0.75, # float. threshold for batch splitting. + "split_bucket: True, # bool. whether to split the batch into multiple buckets. + "return_fragment": False, # bool. step by step return the audio fragment. + "speed_factor":1.0, # float. control the speed of the synthesized audio. + "fragment_interval":0.3, # float. to control the interval of the audio fragment. + "seed": -1, # int. random seed for reproducibility. + "parallel_infer": True, # bool. whether to use parallel inference. + "repetition_penalty": 1.35 # float. repetition penalty for T2S model. + } + returns: + Tuple[int, np.ndarray]: sampling rate and audio data. + """ + ########## variables initialization ########### + self.stop_flag:bool = False + text:str = inputs.get("text", "") + text_lang:str = inputs.get("text_lang", "") + ref_audio_path:str = inputs.get("ref_audio_path", "") + aux_ref_audio_paths:list = inputs.get("aux_ref_audio_paths", []) + prompt_text:str = inputs.get("prompt_text", "") + prompt_lang:str = inputs.get("prompt_lang", "") + top_k:int = inputs.get("top_k", 5) + top_p:float = inputs.get("top_p", 1) + temperature:float = inputs.get("temperature", 1) + text_split_method:str = inputs.get("text_split_method", "cut0") + batch_size = inputs.get("batch_size", 1) + batch_threshold = inputs.get("batch_threshold", 0.75) + speed_factor = inputs.get("speed_factor", 1.0) + split_bucket = inputs.get("split_bucket", True) + return_fragment = inputs.get("return_fragment", False) + fragment_interval = inputs.get("fragment_interval", 0.3) + seed = inputs.get("seed", -1) + seed = -1 if seed in ["", None] else seed + actual_seed = set_seed(seed) + parallel_infer = inputs.get("parallel_infer", True) + repetition_penalty = inputs.get("repetition_penalty", 1.35) + + if parallel_infer: + print(i18n("并行推理模式已开启")) + self.t2s_model.model.infer_panel = self.t2s_model.model.infer_panel_batch_infer + else: + print(i18n("并行推理模式已关闭")) + self.t2s_model.model.infer_panel = self.t2s_model.model.infer_panel_naive_batched + + if return_fragment: + print(i18n("分段返回模式已开启")) + if split_bucket: + split_bucket = False + print(i18n("分段返回模式不支持分桶处理,已自动关闭分桶处理")) + + if split_bucket and speed_factor==1.0: + print(i18n("分桶处理模式已开启")) + elif speed_factor!=1.0: + print(i18n("语速调节不支持分桶处理,已自动关闭分桶处理")) + split_bucket = False + else: + print(i18n("分桶处理模式已关闭")) + + if fragment_interval<0.01: + fragment_interval = 0.01 + print(i18n("分段间隔过小,已自动设置为0.01")) + + no_prompt_text = False + if prompt_text in [None, ""]: + no_prompt_text = True + + assert text_lang in self.configs.languages + if not no_prompt_text: + assert prompt_lang in self.configs.languages + + if ref_audio_path in [None, ""] and \ + ((self.prompt_cache["prompt_semantic"] is None) or (self.prompt_cache["refer_spec"] in [None, []])): + raise ValueError("ref_audio_path cannot be empty, when the reference audio is not set using set_ref_audio()") + + ###### setting reference audio and prompt text preprocessing ######## + t0 = ttime() + if (ref_audio_path is not None) and (ref_audio_path != self.prompt_cache["ref_audio_path"]): + if not os.path.exists(ref_audio_path): + raise ValueError(f"{ref_audio_path} not exists") + self.set_ref_audio(ref_audio_path) + + aux_ref_audio_paths = aux_ref_audio_paths if aux_ref_audio_paths is not None else [] + paths = set(aux_ref_audio_paths)&set(self.prompt_cache["aux_ref_audio_paths"]) + if not (len(list(paths)) == len(aux_ref_audio_paths) == len(self.prompt_cache["aux_ref_audio_paths"])): + self.prompt_cache["aux_ref_audio_paths"] = aux_ref_audio_paths + self.prompt_cache["refer_spec"] = [self.prompt_cache["refer_spec"][0]] + for path in aux_ref_audio_paths: + if path in [None, ""]: + continue + if not os.path.exists(path): + print(i18n("音频文件不存在,跳过:{}").format(path)) + continue + self.prompt_cache["refer_spec"].append(self._get_ref_spec(path)) + + if not no_prompt_text: + prompt_text = prompt_text.strip("\n") + if (prompt_text[-1] not in splits): prompt_text += "。" if prompt_lang != "en" else "." + print(i18n("实际输入的参考文本:"), prompt_text) + if self.prompt_cache["prompt_text"] != prompt_text: + self.prompt_cache["prompt_text"] = prompt_text + self.prompt_cache["prompt_lang"] = prompt_lang + phones, bert_features, norm_text = \ + self.text_preprocessor.segment_and_extract_feature_for_text( + prompt_text, + prompt_lang, + self.configs.version) + self.prompt_cache["phones"] = phones + self.prompt_cache["bert_features"] = bert_features + self.prompt_cache["norm_text"] = norm_text + + + + + ###### text preprocessing ######## + t1 = ttime() + data:list = None + if not return_fragment: + data = self.text_preprocessor.preprocess(text, text_lang, text_split_method, self.configs.version) + if len(data) == 0: + yield self.configs.sampling_rate, np.zeros(int(self.configs.sampling_rate), + dtype=np.int16) + return + + batch_index_list:list = None + data, batch_index_list = self.to_batch(data, + prompt_data=self.prompt_cache if not no_prompt_text else None, + batch_size=batch_size, + threshold=batch_threshold, + split_bucket=split_bucket, + device=self.configs.device, + precision=self.precision + ) + else: + print(i18n("############ 切分文本 ############")) + texts = self.text_preprocessor.pre_seg_text(text, text_lang, text_split_method) + data = [] + for i in range(len(texts)): + if i%batch_size == 0: + data.append([]) + data[-1].append(texts[i]) + + def make_batch(batch_texts): + batch_data = [] + print(i18n("############ 提取文本Bert特征 ############")) + for text in tqdm(batch_texts): + phones, bert_features, norm_text = self.text_preprocessor.segment_and_extract_feature_for_text(text, text_lang, self.configs.version) + if phones is None: + continue + res={ + "phones": phones, + "bert_features": bert_features, + "norm_text": norm_text, + } + batch_data.append(res) + if len(batch_data) == 0: + return None + batch, _ = self.to_batch(batch_data, + prompt_data=self.prompt_cache if not no_prompt_text else None, + batch_size=batch_size, + threshold=batch_threshold, + split_bucket=False, + device=self.configs.device, + precision=self.precision + ) + return batch[0] + + + t2 = ttime() + try: + print("############ 推理 ############") + ###### inference ###### + t_34 = 0.0 + t_45 = 0.0 + audio = [] + for item in data: + t3 = ttime() + if return_fragment: + item = make_batch(item) + if item is None: + continue + + batch_phones:List[torch.LongTensor] = item["phones"] + # batch_phones:torch.LongTensor = item["phones"] + batch_phones_len:torch.LongTensor = item["phones_len"] + all_phoneme_ids:torch.LongTensor = item["all_phones"] + all_phoneme_lens:torch.LongTensor = item["all_phones_len"] + all_bert_features:torch.LongTensor = item["all_bert_features"] + norm_text:str = item["norm_text"] + max_len = item["max_len"] + + print(i18n("前端处理后的文本(每句):"), norm_text) + if no_prompt_text : + prompt = None + else: + prompt = self.prompt_cache["prompt_semantic"].expand(len(all_phoneme_ids), -1).to(self.configs.device) + + + pred_semantic_list, idx_list = self.t2s_model.model.infer_panel( + all_phoneme_ids, + all_phoneme_lens, + prompt, + all_bert_features, + # prompt_phone_len=ph_offset, + top_k=top_k, + top_p=top_p, + temperature=temperature, + early_stop_num=self.configs.hz * self.configs.max_sec, + max_len=max_len, + repetition_penalty=repetition_penalty, + ) + t4 = ttime() + t_34 += t4 - t3 + + refer_audio_spec:torch.Tensor = [item.to(dtype=self.precision, device=self.configs.device) for item in self.prompt_cache["refer_spec"]] + + + batch_audio_fragment = [] + + # ## vits并行推理 method 1 + # pred_semantic_list = [item[-idx:] for item, idx in zip(pred_semantic_list, idx_list)] + # pred_semantic_len = torch.LongTensor([item.shape[0] for item in pred_semantic_list]).to(self.configs.device) + # pred_semantic = self.batch_sequences(pred_semantic_list, axis=0, pad_value=0).unsqueeze(0) + # max_len = 0 + # for i in range(0, len(batch_phones)): + # max_len = max(max_len, batch_phones[i].shape[-1]) + # batch_phones = self.batch_sequences(batch_phones, axis=0, pad_value=0, max_length=max_len) + # batch_phones = batch_phones.to(self.configs.device) + # batch_audio_fragment = (self.vits_model.batched_decode( + # pred_semantic, pred_semantic_len, batch_phones, batch_phones_len,refer_audio_spec + # )) + + if speed_factor == 1.0: + # ## vits并行推理 method 2 + pred_semantic_list = [item[-idx:] for item, idx in zip(pred_semantic_list, idx_list)] + upsample_rate = math.prod(self.vits_model.upsample_rates) + audio_frag_idx = [pred_semantic_list[i].shape[0]*2*upsample_rate for i in range(0, len(pred_semantic_list))] + audio_frag_end_idx = [ sum(audio_frag_idx[:i+1]) for i in range(0, len(audio_frag_idx))] + all_pred_semantic = torch.cat(pred_semantic_list).unsqueeze(0).unsqueeze(0).to(self.configs.device) + _batch_phones = torch.cat(batch_phones).unsqueeze(0).to(self.configs.device) + _batch_audio_fragment = (self.vits_model.decode( + all_pred_semantic, _batch_phones, refer_audio_spec, speed=speed_factor + ).detach()[0, 0, :]) + audio_frag_end_idx.insert(0, 0) + batch_audio_fragment= [_batch_audio_fragment[audio_frag_end_idx[i-1]:audio_frag_end_idx[i]] for i in range(1, len(audio_frag_end_idx))] + else: + # ## vits串行推理 + for i, idx in enumerate(idx_list): + phones = batch_phones[i].unsqueeze(0).to(self.configs.device) + _pred_semantic = (pred_semantic_list[i][-idx:].unsqueeze(0).unsqueeze(0)) # .unsqueeze(0)#mq要多unsqueeze一次 + audio_fragment =(self.vits_model.decode( + _pred_semantic, phones, refer_audio_spec, speed=speed_factor + ).detach()[0, 0, :]) + batch_audio_fragment.append( + audio_fragment + ) ###试试重建不带上prompt部分 + + t5 = ttime() + t_45 += t5 - t4 + if return_fragment: + print("%.3f\t%.3f\t%.3f\t%.3f" % (t1 - t0, t2 - t1, t4 - t3, t5 - t4)) + yield self.audio_postprocess([batch_audio_fragment], + self.configs.sampling_rate, + None, + speed_factor, + False, + fragment_interval + ) + else: + audio.append(batch_audio_fragment) + + if self.stop_flag: + yield self.configs.sampling_rate, np.zeros(int(self.configs.sampling_rate), + dtype=np.int16) + return + + if not return_fragment: + print("%.3f\t%.3f\t%.3f\t%.3f" % (t1 - t0, t2 - t1, t_34, t_45)) + if len(audio) == 0: + yield self.configs.sampling_rate, np.zeros(int(self.configs.sampling_rate), + dtype=np.int16) + return + yield self.audio_postprocess(audio, + self.configs.sampling_rate, + batch_index_list, + speed_factor, + split_bucket, + fragment_interval + ) + + except Exception as e: + traceback.print_exc() + # 必须返回一个空音频, 否则会导致显存不释放。 + yield self.configs.sampling_rate, np.zeros(int(self.configs.sampling_rate), + dtype=np.int16) + # 重置模型, 否则会导致显存释放不完全。 + del self.t2s_model + del self.vits_model + self.t2s_model = None + self.vits_model = None + self.init_t2s_weights(self.configs.t2s_weights_path) + self.init_vits_weights(self.configs.vits_weights_path) + raise e + finally: + self.empty_cache() + + def empty_cache(self): + try: + gc.collect() # 触发gc的垃圾回收。避免内存一直增长。 + if "cuda" in str(self.configs.device): + torch.cuda.empty_cache() + elif str(self.configs.device) == "mps": + torch.mps.empty_cache() + except: + pass + + def audio_postprocess(self, + audio:List[torch.Tensor], + sr:int, + batch_index_list:list=None, + speed_factor:float=1.0, + split_bucket:bool=True, + fragment_interval:float=0.3 + )->Tuple[int, np.ndarray]: + zero_wav = torch.zeros( + int(self.configs.sampling_rate * fragment_interval), + dtype=self.precision, + device=self.configs.device + ) + + for i, batch in enumerate(audio): + for j, audio_fragment in enumerate(batch): + max_audio=torch.abs(audio_fragment).max()#简单防止16bit爆音 + if max_audio>1: audio_fragment/=max_audio + audio_fragment:torch.Tensor = torch.cat([audio_fragment, zero_wav], dim=0) + audio[i][j] = audio_fragment.cpu().numpy() + + + if split_bucket: + audio = self.recovery_order(audio, batch_index_list) + else: + # audio = [item for batch in audio for item in batch] + audio = sum(audio, []) + + + audio = np.concatenate(audio, 0) + audio = (audio * 32768).astype(np.int16) + + # try: + # if speed_factor != 1.0: + # audio = speed_change(audio, speed=speed_factor, sr=int(sr)) + # except Exception as e: + # print(f"Failed to change speed of audio: \n{e}") + + return sr, audio + + + + +def speed_change(input_audio:np.ndarray, speed:float, sr:int): + # 将 NumPy 数组转换为原始 PCM 流 + raw_audio = input_audio.astype(np.int16).tobytes() + + # 设置 ffmpeg 输入流 + input_stream = ffmpeg.input('pipe:', format='s16le', acodec='pcm_s16le', ar=str(sr), ac=1) + + # 变速处理 + output_stream = input_stream.filter('atempo', speed) + + # 输出流到管道 + out, _ = ( + output_stream.output('pipe:', format='s16le', acodec='pcm_s16le') + .run(input=raw_audio, capture_stdout=True, capture_stderr=True) + ) + + # 将管道输出解码为 NumPy 数组 + processed_audio = np.frombuffer(out, np.int16) + return processed_audio \ No newline at end of file