mirror of
https://github.com/RVC-Boss/GPT-SoVITS.git
synced 2025-04-06 03:57:44 +08:00
commit
27ad6e2608
5
.gitignore
vendored
5
.gitignore
vendored
@ -7,5 +7,8 @@ runtime
|
|||||||
output
|
output
|
||||||
logs
|
logs
|
||||||
reference
|
reference
|
||||||
|
GPT_weights
|
||||||
SoVITS_weights
|
SoVITS_weights
|
||||||
GPT_weights
|
TEMP
|
||||||
|
|
||||||
|
|
||||||
|
@ -337,7 +337,7 @@ class Text2SemanticDecoder(nn.Module):
|
|||||||
|
|
||||||
# AR Decoder
|
# AR Decoder
|
||||||
y = prompts
|
y = prompts
|
||||||
prefix_len = y.shape[1]
|
|
||||||
x_len = x.shape[1]
|
x_len = x.shape[1]
|
||||||
x_attn_mask = torch.zeros((x_len, x_len), dtype=torch.bool)
|
x_attn_mask = torch.zeros((x_len, x_len), dtype=torch.bool)
|
||||||
stop = False
|
stop = False
|
||||||
@ -353,47 +353,41 @@ class Text2SemanticDecoder(nn.Module):
|
|||||||
"first_infer": 1,
|
"first_infer": 1,
|
||||||
"stage": 0,
|
"stage": 0,
|
||||||
}
|
}
|
||||||
for idx in tqdm(range(1500)):
|
################### first step ##########################
|
||||||
if cache["first_infer"] == 1:
|
if y is not None:
|
||||||
y_emb = self.ar_audio_embedding(y)
|
y_emb = self.ar_audio_embedding(y)
|
||||||
else:
|
y_len = y_emb.shape[1]
|
||||||
y_emb = torch.cat(
|
prefix_len = y.shape[1]
|
||||||
[cache["y_emb"], self.ar_audio_embedding(y[:, -1:])], 1
|
|
||||||
)
|
|
||||||
cache["y_emb"] = y_emb
|
|
||||||
y_pos = self.ar_audio_position(y_emb)
|
y_pos = self.ar_audio_position(y_emb)
|
||||||
# x 和逐渐增长的 y 一起输入给模型
|
xy_pos = torch.concat([x, y_pos], dim=1)
|
||||||
if cache["first_infer"] == 1:
|
cache["y_emb"] = y_emb
|
||||||
xy_pos = torch.concat([x, y_pos], dim=1)
|
ref_free = False
|
||||||
else:
|
else:
|
||||||
xy_pos = y_pos[:, -1:]
|
y_emb = None
|
||||||
y_len = y_pos.shape[1]
|
y_len = 0
|
||||||
###以下3个不做缓存
|
prefix_len = 0
|
||||||
if cache["first_infer"] == 1:
|
y_pos = None
|
||||||
x_attn_mask_pad = F.pad(
|
xy_pos = x
|
||||||
|
y = torch.zeros(x.shape[0], 0, dtype=torch.int, device=x.device)
|
||||||
|
ref_free = True
|
||||||
|
|
||||||
|
x_attn_mask_pad = F.pad(
|
||||||
x_attn_mask,
|
x_attn_mask,
|
||||||
(0, y_len), ###xx的纯0扩展到xx纯0+xy纯1,(x,x+y)
|
(0, y_len), ###xx的纯0扩展到xx纯0+xy纯1,(x,x+y)
|
||||||
value=True,
|
value=True,
|
||||||
)
|
)
|
||||||
y_attn_mask = F.pad( ###yy的右上1扩展到左边xy的0,(y,x+y)
|
y_attn_mask = F.pad( ###yy的右上1扩展到左边xy的0,(y,x+y)
|
||||||
torch.triu(torch.ones(y_len, y_len, dtype=torch.bool), diagonal=1),
|
torch.triu(torch.ones(y_len, y_len, dtype=torch.bool), diagonal=1),
|
||||||
(x_len, 0),
|
(x_len, 0),
|
||||||
value=False,
|
value=False,
|
||||||
)
|
)
|
||||||
xy_attn_mask = torch.concat([x_attn_mask_pad, y_attn_mask], dim=0).to(
|
xy_attn_mask = torch.concat([x_attn_mask_pad, y_attn_mask], dim=0).to(
|
||||||
y.device
|
x.device
|
||||||
)
|
)
|
||||||
else:
|
|
||||||
###最右边一列(是错的)
|
|
||||||
# xy_attn_mask=torch.ones((1, x_len+y_len), dtype=torch.bool,device=xy_pos.device)
|
for idx in tqdm(range(1500)):
|
||||||
# xy_attn_mask[:,-1]=False
|
|
||||||
###最下面一行(是对的)
|
|
||||||
xy_attn_mask = torch.zeros(
|
|
||||||
(1, x_len + y_len), dtype=torch.bool, device=xy_pos.device
|
|
||||||
)
|
|
||||||
# pdb.set_trace()
|
|
||||||
###缓存重头戏
|
|
||||||
# print(1111,xy_pos.shape,xy_attn_mask.shape,x_len,y_len)
|
|
||||||
xy_dec, _ = self.h((xy_pos, None), mask=xy_attn_mask, cache=cache)
|
xy_dec, _ = self.h((xy_pos, None), mask=xy_attn_mask, cache=cache)
|
||||||
logits = self.ar_predict_layer(
|
logits = self.ar_predict_layer(
|
||||||
xy_dec[:, -1]
|
xy_dec[:, -1]
|
||||||
@ -404,6 +398,10 @@ class Text2SemanticDecoder(nn.Module):
|
|||||||
samples = sample(
|
samples = sample(
|
||||||
logits[0], y, top_k=top_k, top_p=top_p, repetition_penalty=1.35, temperature=temperature
|
logits[0], y, top_k=top_k, top_p=top_p, repetition_penalty=1.35, temperature=temperature
|
||||||
)[0].unsqueeze(0)
|
)[0].unsqueeze(0)
|
||||||
|
# 本次生成的 semantic_ids 和之前的 y 构成新的 y
|
||||||
|
# print(samples.shape)#[1,1]#第一个1是bs
|
||||||
|
y = torch.concat([y, samples], dim=1)
|
||||||
|
|
||||||
if early_stop_num != -1 and (y.shape[1] - prefix_len) > early_stop_num:
|
if early_stop_num != -1 and (y.shape[1] - prefix_len) > early_stop_num:
|
||||||
print("use early stop num:", early_stop_num)
|
print("use early stop num:", early_stop_num)
|
||||||
stop = True
|
stop = True
|
||||||
@ -412,13 +410,38 @@ class Text2SemanticDecoder(nn.Module):
|
|||||||
# print(torch.argmax(logits, dim=-1)[0] == self.EOS, samples[0, 0] == self.EOS)
|
# print(torch.argmax(logits, dim=-1)[0] == self.EOS, samples[0, 0] == self.EOS)
|
||||||
stop = True
|
stop = True
|
||||||
if stop:
|
if stop:
|
||||||
if prompts.shape[1] == y.shape[1]:
|
# if prompts.shape[1] == y.shape[1]:
|
||||||
|
# y = torch.concat([y, torch.zeros_like(samples)], dim=1)
|
||||||
|
# print("bad zero prediction")
|
||||||
|
if y.shape[1]==0:
|
||||||
y = torch.concat([y, torch.zeros_like(samples)], dim=1)
|
y = torch.concat([y, torch.zeros_like(samples)], dim=1)
|
||||||
print("bad zero prediction")
|
print("bad zero prediction")
|
||||||
print(f"T2S Decoding EOS [{prefix_len} -> {y.shape[1]}]")
|
print(f"T2S Decoding EOS [{prefix_len} -> {y.shape[1]}]")
|
||||||
break
|
break
|
||||||
# 本次生成的 semantic_ids 和之前的 y 构成新的 y
|
|
||||||
# print(samples.shape)#[1,1]#第一个1是bs
|
####################### update next step ###################################
|
||||||
y = torch.concat([y, samples], dim=1)
|
|
||||||
cache["first_infer"] = 0
|
cache["first_infer"] = 0
|
||||||
return y, idx
|
if cache["y_emb"] is not None:
|
||||||
|
y_emb = torch.cat(
|
||||||
|
[cache["y_emb"], self.ar_audio_embedding(y[:, -1:])], dim = 1
|
||||||
|
)
|
||||||
|
cache["y_emb"] = y_emb
|
||||||
|
y_pos = self.ar_audio_position(y_emb)
|
||||||
|
xy_pos = y_pos[:, -1:]
|
||||||
|
else:
|
||||||
|
y_emb = self.ar_audio_embedding(y[:, -1:])
|
||||||
|
cache["y_emb"] = y_emb
|
||||||
|
y_pos = self.ar_audio_position(y_emb)
|
||||||
|
xy_pos = y_pos
|
||||||
|
y_len = y_pos.shape[1]
|
||||||
|
|
||||||
|
###最右边一列(是错的)
|
||||||
|
# xy_attn_mask=torch.ones((1, x_len+y_len), dtype=torch.bool,device=xy_pos.device)
|
||||||
|
# xy_attn_mask[:,-1]=False
|
||||||
|
###最下面一行(是对的)
|
||||||
|
xy_attn_mask = torch.zeros(
|
||||||
|
(1, x_len + y_len), dtype=torch.bool, device=xy_pos.device
|
||||||
|
)
|
||||||
|
if ref_free:
|
||||||
|
return y[:, :-1], 0
|
||||||
|
return y[:, :-1], idx-1
|
||||||
|
@ -114,7 +114,8 @@ def logits_to_probs(
|
|||||||
top_p: Optional[int] = None,
|
top_p: Optional[int] = None,
|
||||||
repetition_penalty: float = 1.0,
|
repetition_penalty: float = 1.0,
|
||||||
):
|
):
|
||||||
previous_tokens = previous_tokens.squeeze()
|
if previous_tokens is not None:
|
||||||
|
previous_tokens = previous_tokens.squeeze()
|
||||||
# print(logits.shape,previous_tokens.shape)
|
# print(logits.shape,previous_tokens.shape)
|
||||||
# pdb.set_trace()
|
# pdb.set_trace()
|
||||||
if previous_tokens is not None and repetition_penalty != 1.0:
|
if previous_tokens is not None and repetition_penalty != 1.0:
|
||||||
|
@ -5,8 +5,8 @@ from torch.nn.functional import (
|
|||||||
_none_or_dtype,
|
_none_or_dtype,
|
||||||
_in_projection_packed,
|
_in_projection_packed,
|
||||||
)
|
)
|
||||||
|
from torch.nn import functional as F
|
||||||
# import torch
|
import torch
|
||||||
# Tensor = torch.Tensor
|
# Tensor = torch.Tensor
|
||||||
# from typing import Callable, List, Optional, Tuple, Union
|
# from typing import Callable, List, Optional, Tuple, Union
|
||||||
|
|
||||||
@ -448,9 +448,11 @@ def multi_head_attention_forward_patched(
|
|||||||
k = k.view(bsz, num_heads, src_len, head_dim)
|
k = k.view(bsz, num_heads, src_len, head_dim)
|
||||||
v = v.view(bsz, num_heads, src_len, head_dim)
|
v = v.view(bsz, num_heads, src_len, head_dim)
|
||||||
|
|
||||||
|
# with torch.backends.cuda.sdp_kernel(enable_flash=True, enable_math=True, enable_mem_efficient=True):
|
||||||
attn_output = scaled_dot_product_attention(
|
attn_output = scaled_dot_product_attention(
|
||||||
q, k, v, attn_mask, dropout_p, is_causal
|
q, k, v, attn_mask, dropout_p, is_causal
|
||||||
)
|
)
|
||||||
|
|
||||||
attn_output = (
|
attn_output = (
|
||||||
attn_output.permute(2, 0, 1, 3).contiguous().view(bsz * tgt_len, embed_dim)
|
attn_output.permute(2, 0, 1, 3).contiguous().view(bsz * tgt_len, embed_dim)
|
||||||
)
|
)
|
||||||
|
@ -365,15 +365,19 @@ def merge_short_text_in_array(texts, threshold):
|
|||||||
result[len(result) - 1] += text
|
result[len(result) - 1] += text
|
||||||
return result
|
return result
|
||||||
|
|
||||||
def get_tts_wav(ref_wav_path, prompt_text, prompt_language, text, text_language, how_to_cut=i18n("不切"), top_k=20, top_p=0.6, temperature=0.6):
|
def get_tts_wav(ref_wav_path, prompt_text, prompt_language, text, text_language, how_to_cut=i18n("不切"), top_k=20, top_p=0.6, temperature=0.6, ref_free = False):
|
||||||
|
if prompt_text is None or len(prompt_text) == 0:
|
||||||
|
ref_free = True
|
||||||
t0 = ttime()
|
t0 = ttime()
|
||||||
prompt_language = dict_language[prompt_language]
|
prompt_language = dict_language[prompt_language]
|
||||||
text_language = dict_language[text_language]
|
text_language = dict_language[text_language]
|
||||||
prompt_text = prompt_text.strip("\n")
|
if not ref_free:
|
||||||
if (prompt_text[-1] not in splits): prompt_text += "。" if prompt_language != "en" else "."
|
prompt_text = prompt_text.strip("\n")
|
||||||
|
if (prompt_text[-1] not in splits): prompt_text += "。" if prompt_language != "en" else "."
|
||||||
|
print(i18n("实际输入的参考文本:"), prompt_text)
|
||||||
text = text.strip("\n")
|
text = text.strip("\n")
|
||||||
if (text[0] not in splits and len(get_first(text)) < 4): text = "。" + text if text_language != "en" else "." + text
|
if (text[0] not in splits and len(get_first(text)) < 4): text = "。" + text if text_language != "en" else "." + text
|
||||||
print(i18n("实际输入的参考文本:"), prompt_text)
|
|
||||||
print(i18n("实际输入的目标文本:"), text)
|
print(i18n("实际输入的目标文本:"), text)
|
||||||
zero_wav = np.zeros(
|
zero_wav = np.zeros(
|
||||||
int(hps.data.sampling_rate * 0.3),
|
int(hps.data.sampling_rate * 0.3),
|
||||||
@ -398,11 +402,10 @@ def get_tts_wav(ref_wav_path, prompt_text, prompt_language, text, text_language,
|
|||||||
1, 2
|
1, 2
|
||||||
) # .float()
|
) # .float()
|
||||||
codes = vq_model.extract_latent(ssl_content)
|
codes = vq_model.extract_latent(ssl_content)
|
||||||
|
|
||||||
prompt_semantic = codes[0, 0]
|
prompt_semantic = codes[0, 0]
|
||||||
t1 = ttime()
|
t1 = ttime()
|
||||||
|
|
||||||
phones1, word2ph1, norm_text1=get_cleaned_text_final(prompt_text, prompt_language)
|
|
||||||
|
|
||||||
if (how_to_cut == i18n("凑四句一切")):
|
if (how_to_cut == i18n("凑四句一切")):
|
||||||
text = cut1(text)
|
text = cut1(text)
|
||||||
elif (how_to_cut == i18n("凑50字一切")):
|
elif (how_to_cut == i18n("凑50字一切")):
|
||||||
@ -419,7 +422,9 @@ def get_tts_wav(ref_wav_path, prompt_text, prompt_language, text, text_language,
|
|||||||
texts = text.split("\n")
|
texts = text.split("\n")
|
||||||
texts = merge_short_text_in_array(texts, 5)
|
texts = merge_short_text_in_array(texts, 5)
|
||||||
audio_opt = []
|
audio_opt = []
|
||||||
bert1=get_bert_final(phones1, word2ph1, norm_text1,prompt_language,device).to(dtype)
|
if not ref_free:
|
||||||
|
phones1, word2ph1, norm_text1=get_cleaned_text_final(prompt_text, prompt_language)
|
||||||
|
bert1=get_bert_final(phones1, word2ph1, norm_text1,prompt_language,device).to(dtype)
|
||||||
|
|
||||||
for text in texts:
|
for text in texts:
|
||||||
# 解决输入目标文本的空行导致报错的问题
|
# 解决输入目标文本的空行导致报错的问题
|
||||||
@ -429,9 +434,13 @@ def get_tts_wav(ref_wav_path, prompt_text, prompt_language, text, text_language,
|
|||||||
print(i18n("实际输入的目标文本(每句):"), text)
|
print(i18n("实际输入的目标文本(每句):"), text)
|
||||||
phones2, word2ph2, norm_text2 = get_cleaned_text_final(text, text_language)
|
phones2, word2ph2, norm_text2 = get_cleaned_text_final(text, text_language)
|
||||||
bert2 = get_bert_final(phones2, word2ph2, norm_text2, text_language, device).to(dtype)
|
bert2 = get_bert_final(phones2, word2ph2, norm_text2, text_language, device).to(dtype)
|
||||||
bert = torch.cat([bert1, bert2], 1)
|
if not ref_free:
|
||||||
|
bert = torch.cat([bert1, bert2], 1)
|
||||||
|
all_phoneme_ids = torch.LongTensor(phones1+phones2).to(device).unsqueeze(0)
|
||||||
|
else:
|
||||||
|
bert = bert2
|
||||||
|
all_phoneme_ids = torch.LongTensor(phones2).to(device).unsqueeze(0)
|
||||||
|
|
||||||
all_phoneme_ids = torch.LongTensor(phones1 + phones2).to(device).unsqueeze(0)
|
|
||||||
bert = bert.to(device).unsqueeze(0)
|
bert = bert.to(device).unsqueeze(0)
|
||||||
all_phoneme_len = torch.tensor([all_phoneme_ids.shape[-1]]).to(device)
|
all_phoneme_len = torch.tensor([all_phoneme_ids.shape[-1]]).to(device)
|
||||||
prompt = prompt_semantic.unsqueeze(0).to(device)
|
prompt = prompt_semantic.unsqueeze(0).to(device)
|
||||||
@ -441,7 +450,7 @@ def get_tts_wav(ref_wav_path, prompt_text, prompt_language, text, text_language,
|
|||||||
pred_semantic, idx = t2s_model.model.infer_panel(
|
pred_semantic, idx = t2s_model.model.infer_panel(
|
||||||
all_phoneme_ids,
|
all_phoneme_ids,
|
||||||
all_phoneme_len,
|
all_phoneme_len,
|
||||||
prompt,
|
None if ref_free else prompt,
|
||||||
bert,
|
bert,
|
||||||
# prompt_phone_len=ph_offset,
|
# prompt_phone_len=ph_offset,
|
||||||
top_k=top_k,
|
top_k=top_k,
|
||||||
@ -607,7 +616,10 @@ with gr.Blocks(title="GPT-SoVITS WebUI") as app:
|
|||||||
gr.Markdown(value=i18n("*请上传并填写参考信息"))
|
gr.Markdown(value=i18n("*请上传并填写参考信息"))
|
||||||
with gr.Row():
|
with gr.Row():
|
||||||
inp_ref = gr.Audio(label=i18n("请上传3~10秒内参考音频,超过会报错!"), type="filepath")
|
inp_ref = gr.Audio(label=i18n("请上传3~10秒内参考音频,超过会报错!"), type="filepath")
|
||||||
prompt_text = gr.Textbox(label=i18n("参考音频的文本"), value="")
|
with gr.Column():
|
||||||
|
ref_text_free = gr.Checkbox(label=i18n("开启无参考文本模式 无参考文本时该选项无效"), value=False, interactive=True, show_label=True)
|
||||||
|
gr.Markdown("使用无参考文本模式时建议使用微调GPT")
|
||||||
|
prompt_text = gr.Textbox(label=i18n("参考音频的文本"), value="")
|
||||||
prompt_language = gr.Dropdown(
|
prompt_language = gr.Dropdown(
|
||||||
label=i18n("参考音频的语种"), choices=[i18n("中文"), i18n("英文"), i18n("日文"), i18n("中英混合"), i18n("日英混合"), i18n("多语种混合")], value=i18n("中文")
|
label=i18n("参考音频的语种"), choices=[i18n("中文"), i18n("英文"), i18n("日文"), i18n("中英混合"), i18n("日英混合"), i18n("多语种混合")], value=i18n("中文")
|
||||||
)
|
)
|
||||||
@ -624,6 +636,7 @@ with gr.Blocks(title="GPT-SoVITS WebUI") as app:
|
|||||||
interactive=True,
|
interactive=True,
|
||||||
)
|
)
|
||||||
with gr.Row():
|
with gr.Row():
|
||||||
|
gr.Markdown("gpt采样参数(无参考文本时不要太低):")
|
||||||
top_k = gr.Slider(minimum=1,maximum=100,step=1,label=i18n("top_k"),value=5,interactive=True)
|
top_k = gr.Slider(minimum=1,maximum=100,step=1,label=i18n("top_k"),value=5,interactive=True)
|
||||||
top_p = gr.Slider(minimum=0,maximum=1,step=0.05,label=i18n("top_p"),value=1,interactive=True)
|
top_p = gr.Slider(minimum=0,maximum=1,step=0.05,label=i18n("top_p"),value=1,interactive=True)
|
||||||
temperature = gr.Slider(minimum=0,maximum=1,step=0.05,label=i18n("temperature"),value=1,interactive=True)
|
temperature = gr.Slider(minimum=0,maximum=1,step=0.05,label=i18n("temperature"),value=1,interactive=True)
|
||||||
@ -632,7 +645,7 @@ with gr.Blocks(title="GPT-SoVITS WebUI") as app:
|
|||||||
|
|
||||||
inference_button.click(
|
inference_button.click(
|
||||||
get_tts_wav,
|
get_tts_wav,
|
||||||
[inp_ref, prompt_text, prompt_language, text, text_language, how_to_cut,top_k,top_p,temperature],
|
[inp_ref, prompt_text, prompt_language, text, text_language, how_to_cut, top_k, top_p, temperature, ref_text_free],
|
||||||
[output],
|
[output],
|
||||||
)
|
)
|
||||||
|
|
||||||
|
@ -228,6 +228,7 @@ class TextEncoder(nn.Module):
|
|||||||
)
|
)
|
||||||
|
|
||||||
y = self.ssl_proj(y * y_mask) * y_mask
|
y = self.ssl_proj(y * y_mask) * y_mask
|
||||||
|
|
||||||
y = self.encoder_ssl(y * y_mask, y_mask)
|
y = self.encoder_ssl(y * y_mask, y_mask)
|
||||||
|
|
||||||
text_mask = torch.unsqueeze(
|
text_mask = torch.unsqueeze(
|
||||||
@ -958,11 +959,13 @@ class SynthesizerTrn(nn.Module):
|
|||||||
|
|
||||||
@torch.no_grad()
|
@torch.no_grad()
|
||||||
def decode(self, codes, text, refer, noise_scale=0.5):
|
def decode(self, codes, text, refer, noise_scale=0.5):
|
||||||
refer_lengths = torch.LongTensor([refer.size(2)]).to(refer.device)
|
ge = None
|
||||||
refer_mask = torch.unsqueeze(
|
if refer is not None:
|
||||||
commons.sequence_mask(refer_lengths, refer.size(2)), 1
|
refer_lengths = torch.LongTensor([refer.size(2)]).to(refer.device)
|
||||||
).to(refer.dtype)
|
refer_mask = torch.unsqueeze(
|
||||||
ge = self.ref_enc(refer * refer_mask, refer_mask)
|
commons.sequence_mask(refer_lengths, refer.size(2)), 1
|
||||||
|
).to(refer.dtype)
|
||||||
|
ge = self.ref_enc(refer * refer_mask, refer_mask)
|
||||||
|
|
||||||
y_lengths = torch.LongTensor([codes.size(2) * 2]).to(codes.device)
|
y_lengths = torch.LongTensor([codes.size(2) * 2]).to(codes.device)
|
||||||
text_lengths = torch.LongTensor([text.size(-1)]).to(text.device)
|
text_lengths = torch.LongTensor([text.size(-1)]).to(text.device)
|
||||||
|
Loading…
x
Reference in New Issue
Block a user