feat:solve unified kv cache shape handling, todo: clean up upper level to unify first and following step

This commit is contained in:
zpeng11 2025-08-25 12:06:26 -04:00
parent 0c5f61f98c
commit 26228402e3
4 changed files with 57 additions and 62 deletions

View File

@ -128,7 +128,7 @@ class T2SFirstStageDecoder(nn.Module):
self.early_stop_num = early_stop_num self.early_stop_num = early_stop_num
self.num_layers = num_layers self.num_layers = num_layers
def forward(self, x, prompt, top_k = None, top_p = None, repetition_penalty = None, temperature = None): def forward(self, x, prompt, top_k = None, top_p = None, repetition_penalty = None, temperature = None, first_infer = None):
if top_k is None: if top_k is None:
top_k = torch.LongTensor([15]).to(device=x.device) top_k = torch.LongTensor([15]).to(device=x.device)
if top_p is None: if top_p is None:
@ -146,7 +146,7 @@ class T2SFirstStageDecoder(nn.Module):
"k": None, "k": None,
"v": None, "v": None,
"y_emb": None, "y_emb": None,
"first_infer": 1, "first_infer": first_infer,
"stage": 0, "stage": 0,
} }
@ -216,7 +216,7 @@ class T2SStageDecoder(nn.Module):
self.early_stop_num = early_stop_num self.early_stop_num = early_stop_num
self.num_layers = num_layers self.num_layers = num_layers
def forward(self, y, k, v, y_emb, x_example, top_k = None, top_p = None, repetition_penalty = None, temperature = None): def forward(self, y, k, v, y_emb, x_example, top_k = None, top_p = None, repetition_penalty = None, temperature = None, first_infer = None):
if top_k is None: if top_k is None:
top_k = torch.LongTensor([15]).to(device=y.device) top_k = torch.LongTensor([15]).to(device=y.device)
if top_p is None: if top_p is None:
@ -231,7 +231,7 @@ class T2SStageDecoder(nn.Module):
"k": torch.nn.functional.pad(k, (0, 0, 0, 0, 0, 1)), "k": torch.nn.functional.pad(k, (0, 0, 0, 0, 0, 1)),
"v": torch.nn.functional.pad(v, (0, 0, 0, 0, 0, 1)), "v": torch.nn.functional.pad(v, (0, 0, 0, 0, 0, 1)),
"y_emb": y_emb, "y_emb": y_emb,
"first_infer": 0, "first_infer": first_infer,
"stage": 0, "stage": 0,
} }
@ -336,11 +336,11 @@ class Text2SemanticDecoder(nn.Module):
prefix_len = prompts.shape[1] prefix_len = prompts.shape[1]
x = self.onnx_encoder(x, bert_feature) x = self.onnx_encoder(x, bert_feature)
y, k, v, y_emb, x_example = self.first_stage_decoder(x, prompts, top_k=top_k) y, k, v, y_emb, x_example = self.first_stage_decoder(x, prompts, top_k=top_k, first_infer=torch.LongTensor([1]))
stop = False stop = False
for idx in tqdm(range(1, 1500)): for idx in tqdm(range(1, 1500)):
enco = self.stage_decoder(y, k, v, y_emb, x_example, top_k=top_k) enco = self.stage_decoder(y, k, v, y_emb, x_example, top_k=top_k, first_infer=torch.LongTensor([0]))
y, k, v, y_emb, logits, samples = enco y, k, v, y_emb, logits, samples = enco
if early_stop_num != -1 and (y.shape[1] - prefix_len) > early_stop_num: if early_stop_num != -1 and (y.shape[1] - prefix_len) > early_stop_num:
stop = True stop = True

View File

@ -48,33 +48,23 @@ def multi_head_attention_forward_patched(
proj_qkv = linear(query, in_proj_weight, in_proj_bias) proj_qkv = linear(query, in_proj_weight, in_proj_bias)
proj_qkv = proj_qkv.unflatten(-1, (3, query.size(-1))).unsqueeze(0).transpose(0, -2).squeeze(-2).contiguous() proj_qkv = proj_qkv.unflatten(-1, (3, query.size(-1))).unsqueeze(0).transpose(0, -2).squeeze(-2).contiguous()
q, k, v = proj_qkv[0], proj_qkv[1], proj_qkv[2] q, k, v = proj_qkv[0], proj_qkv[1], proj_qkv[2]
# 首轮qkv会产生多个batch后续每轮只会产生一个batch
# onnx导出时处理batch变化导致的输出形状变化非常无力
# 已尝试过where方法索引方法尽管可以动态运行正常导出
# 但都无法在onnx运行时正确处理kv cache形状导致抛出错误
# 此实现需要整体重写将kvcache增长和prefill交给外部调用
if cache["first_infer"] == 1:
cache["k"][cache["stage"]] = k
cache["v"][cache["stage"]] = v
else:
cache["k"][cache["stage"]] = torch.cat([cache["k"][cache["stage"]][:-1], k], 0)
cache["v"][cache["stage"]] = torch.cat([cache["v"][cache["stage"]][:-1], v], 0)
k = cache["k"][cache["stage"]]
v = cache["v"][cache["stage"]]
# 使用动态形状推断来统一处理kv cache首步和后续步骤形状差异
# # k,v : [N, 1, 512] at first time, [1, 1, 512] afterwards # # k,v : [N, 1, 512] at first time, [1, 1, 512] afterwards
# # cache_k, cache_v : [1, N, 1, 512] size increasement is prepared outside # # cache_k, cache_v : [1, N, 1, 512] size increasement is prepared outside
# first_infer_mask = cache["first_infer"] first_infer_mask = cache["first_infer"]
# cache_k = cache["k"][cache["stage"]] cache_k = cache["k"][cache["stage"]]
# cache_v = cache["v"][cache["stage"]] cache_v = cache["v"][cache["stage"]]
# # Magic to get an index of either -1 or -N according to if first_infer_mask is set # Magic to get an index of either -1 or -N according to if first_infer_mask is set
# index_offset = torch.min(torch.tensor([-1]).to(k.device).to(torch.int64), -1 * first_infer_mask * k.shape[0]) minus_one = torch.tensor([-1]).to(k.device).to(torch.int64)
# cache_k[0, index_offset :, :, :] = k multipled = minus_one * first_infer_mask * torch.onnx.operators.shape_as_tensor(query)[0]
# cache_v[0, index_offset :, :, :] = v index_offset = torch.min(minus_one, multipled)
# cache["k"][cache["stage"]] = cache_k cache_k[index_offset :, :, :] = k
# cache["v"][cache["stage"]] = cache_v cache_v[index_offset :, :, :] = v
# k = cache_k cache["k"][cache["stage"]] = cache_k
# v = cache_v cache["v"][cache["stage"]] = cache_v
k = cache_k
v = cache_v
cache["stage"] = (cache["stage"] + 1) % cache["all_stage"] cache["stage"] = (cache["stage"] + 1) % cache["all_stage"]

View File

@ -112,14 +112,15 @@ class T2SInitStep(nn.Module):
self.fsdc = t2s.first_stage_decoder self.fsdc = t2s.first_stage_decoder
self.vits = vits self.vits = vits
def forward(self, ref_seq, text_seq, ref_bert, text_bert, ssl_content, top_k=None, top_p=None, repetition_penalty=None, temperature=None): def forward(self, ref_seq, text_seq, ref_bert, text_bert, ssl_content, top_k=None, top_p=None, repetition_penalty=None, temperature=None, first_infer=None):
first_infer = first_infer.to(torch.int64)
codes = self.vits.extract_latent(ssl_content) codes = self.vits.extract_latent(ssl_content)
prompt_semantic = codes[0, 0] prompt_semantic = codes[0, 0]
bert = torch.cat([ref_bert.transpose(0, 1), text_bert.transpose(0, 1)], 1) bert = torch.cat([ref_bert.transpose(0, 1), text_bert.transpose(0, 1)], 1)
all_phoneme_ids = torch.cat([ref_seq, text_seq], 1) all_phoneme_ids = torch.cat([ref_seq, text_seq], 1)
bert = bert.unsqueeze(0) bert = bert.unsqueeze(0)
prompt = prompt_semantic.unsqueeze(0) prompt = prompt_semantic.unsqueeze(0)
[y, k, v, y_emb, x_example] = self.fsdc(self.encoder(all_phoneme_ids, bert), prompt, top_k=top_k, top_p=top_p, repetition_penalty=repetition_penalty, temperature=temperature) [y, k, v, y_emb, x_example] = self.fsdc(self.encoder(all_phoneme_ids, bert), prompt, top_k=top_k, top_p=top_p, repetition_penalty=repetition_penalty, temperature=temperature, first_infer=first_infer)
fake_logits = torch.zeros((1, 1025), dtype=torch.float32) # Dummy logits for ONNX export fake_logits = torch.zeros((1, 1025), dtype=torch.float32) # Dummy logits for ONNX export
fake_samples = torch.zeros((1, 1), dtype=torch.int32) # Dummy samples for ONNX export fake_samples = torch.zeros((1, 1), dtype=torch.int32) # Dummy samples for ONNX export
return y, k, v, y_emb, x_example, fake_logits, fake_samples return y, k, v, y_emb, x_example, fake_logits, fake_samples
@ -129,8 +130,9 @@ class T2SStageStep(nn.Module):
super().__init__() super().__init__()
self.stage_decoder = stage_decoder self.stage_decoder = stage_decoder
def forward(self, iy, ik, iv, iy_emb, ix_example, top_k=None, top_p=None, repetition_penalty=None, temperature=None): def forward(self, iy, ik, iv, iy_emb, ix_example, top_k=None, top_p=None, repetition_penalty=None, temperature=None, first_infer=None):
[y, k, v, y_emb, logits, samples] = self.stage_decoder(iy, ik, iv, iy_emb, ix_example, top_k=top_k, top_p=top_p, repetition_penalty=repetition_penalty, temperature=temperature) first_infer = first_infer.to(torch.int64)
[y, k, v, y_emb, logits, samples] = self.stage_decoder(iy, ik, iv, iy_emb, ix_example, top_k=top_k, top_p=top_p, repetition_penalty=repetition_penalty, temperature=temperature, first_infer=first_infer)
fake_x_example = torch.zeros((1, 512), dtype=torch.float32) # Dummy x_example for ONNX export fake_x_example = torch.zeros((1, 512), dtype=torch.float32) # Dummy x_example for ONNX export
return y, k, v, y_emb, fake_x_example, logits, samples return y, k, v, y_emb, fake_x_example, logits, samples
@ -155,10 +157,10 @@ class T2SModel(nn.Module):
def forward(self, ref_seq, text_seq, ref_bert, text_bert, ssl_content, top_k=None, top_p=None, repetition_penalty=None, temperature=None): def forward(self, ref_seq, text_seq, ref_bert, text_bert, ssl_content, top_k=None, top_p=None, repetition_penalty=None, temperature=None):
# [1,N] [1,N] [N, 1024] [N, 1024] [1, 768, N] # [1,N] [1,N] [N, 1024] [N, 1024] [1, 768, N]
y, k, v, y_emb, x_example, fake_logits, fake_samples = self.init_step(ref_seq, text_seq, ref_bert, text_bert, ssl_content, top_k=top_k, top_p=top_p, repetition_penalty=repetition_penalty, temperature=temperature) y, k, v, y_emb, x_example, fake_logits, fake_samples = self.init_step(ref_seq, text_seq, ref_bert, text_bert, ssl_content, top_k=top_k, top_p=top_p, repetition_penalty=repetition_penalty, temperature=temperature, first_infer=torch.LongTensor([1]))
for idx in range(5): # This is a fake one! DO NOT take this as reference for idx in range(5): # This is a fake one! DO NOT take this as reference
enco = self.stage_decoder(y, k, v, y_emb, x_example, top_k=top_k, top_p=top_p, repetition_penalty=repetition_penalty, temperature=temperature) enco = self.stage_decoder(y, k, v, y_emb, x_example, top_k=top_k, top_p=top_p, repetition_penalty=repetition_penalty, temperature=temperature, first_infer=torch.LongTensor([0]))
y, k, v, y_emb, logits, samples = enco y, k, v, y_emb, logits, samples = enco
# if torch.argmax(logits, dim=-1)[0] == self.t2s_model.EOS or samples[0, 0] == self.t2s_model.EOS: # if torch.argmax(logits, dim=-1)[0] == self.t2s_model.EOS or samples[0, 0] == self.t2s_model.EOS:
# break # break
@ -168,9 +170,9 @@ class T2SModel(nn.Module):
def export(self, ref_seq, text_seq, ref_bert, text_bert, ssl_content, project_name, top_k=None, top_p=None, repetition_penalty=None, temperature=None): def export(self, ref_seq, text_seq, ref_bert, text_bert, ssl_content, project_name, top_k=None, top_p=None, repetition_penalty=None, temperature=None):
torch.onnx.export( torch.onnx.export(
self.init_step, self.init_step,
(ref_seq, text_seq, ref_bert, text_bert, ssl_content, top_k, top_p, repetition_penalty, temperature), (ref_seq, text_seq, ref_bert, text_bert, ssl_content, top_k, top_p, repetition_penalty, temperature, torch.Tensor([True]).to(torch.bool)),
f"onnx/{project_name}/{project_name}_t2s_init_step.onnx", f"onnx/{project_name}/{project_name}_t2s_init_step.onnx",
input_names=["ref_text_phones", "input_text_phones", "ref_text_bert", "input_text_bert", "hubert_ssl_content", "top_k", "top_p", "repetition_penalty", "temperature"], input_names=["ref_text_phones", "input_text_phones", "ref_text_bert", "input_text_bert", "hubert_ssl_content", "top_k", "top_p", "repetition_penalty", "temperature", "if_init_step"],
output_names=["y", "k", "v", "y_emb", "x_example", 'logits', 'samples'], output_names=["y", "k", "v", "y_emb", "x_example", 'logits', 'samples'],
dynamic_axes={ dynamic_axes={
"ref_text_phones": {1: "ref_length"}, "ref_text_phones": {1: "ref_length"},
@ -180,16 +182,17 @@ class T2SModel(nn.Module):
"hubert_ssl_content": {2: "ssl_length"}, "hubert_ssl_content": {2: "ssl_length"},
}, },
opset_version=16, opset_version=16,
do_constant_folding=False
) )
simplify_onnx_model(f"onnx/{project_name}/{project_name}_t2s_init_step.onnx") # simplify_onnx_model(f"onnx/{project_name}/{project_name}_t2s_init_step.onnx")
y, k, v, y_emb, x_example, fake_logits, fake_samples = self.init_step(ref_seq, text_seq, ref_bert, text_bert, ssl_content, top_k=top_k, top_p=top_p, repetition_penalty=repetition_penalty, temperature=temperature) y, k, v, y_emb, x_example, fake_logits, fake_samples = self.init_step(ref_seq, text_seq, ref_bert, text_bert, ssl_content, top_k=top_k, top_p=top_p, repetition_penalty=repetition_penalty, temperature=temperature, first_infer=torch.Tensor([True]).to(torch.bool))
stage_step = T2SStageStep(self.stage_decoder) stage_step = T2SStageStep(self.stage_decoder)
torch.onnx.export( torch.onnx.export(
stage_step, stage_step,
(y, k, v, y_emb, x_example, top_k, top_p, repetition_penalty, temperature), (y, k, v, y_emb, x_example, top_k, top_p, repetition_penalty, temperature, torch.Tensor([False]).to(torch.bool)),
f"onnx/{project_name}/{project_name}_t2s_stage_step.onnx", f"onnx/{project_name}/{project_name}_t2s_stage_step.onnx",
input_names=["iy", "ik", "iv", "iy_emb", "ix_example", "top_k", "top_p", "repetition_penalty", "temperature"], input_names=["iy", "ik", "iv", "iy_emb", "ix_example", "top_k", "top_p", "repetition_penalty", "temperature", "if_init_step"],
output_names=["y", "k", "v", "y_emb","x_example", "logits", "samples"], output_names=["y", "k", "v", "y_emb","x_example", "logits", "samples"],
dynamic_axes={ dynamic_axes={
"iy": {1: "iy_length"}, "iy": {1: "iy_length"},
@ -329,7 +332,7 @@ def combineInitStepAndStageStep(init_step_onnx_path, stage_step_onnx_path, combi
# Define the inputs for the main graph # Define the inputs for the main graph
# 1. The boolean condition to select the branch # 1. The boolean condition to select the branch
cond_input = helper.make_tensor_value_info('if_init_step', TensorProto.BOOL, []) # cond_input = helper.make_tensor_value_info('if_init_step', TensorProto.BOOL, [])
main_outputs = [output for output in init_step_model.graph.output] main_outputs = [output for output in init_step_model.graph.output]
@ -346,7 +349,7 @@ def combineInitStepAndStageStep(init_step_onnx_path, stage_step_onnx_path, combi
main_graph = helper.make_graph( main_graph = helper.make_graph(
nodes=[if_node], nodes=[if_node],
name="t2s_combined_graph", name="t2s_combined_graph",
inputs=[cond_input] + data_inputs_init + data_inputs_stage, inputs= data_inputs_init + data_inputs_stage,
outputs=main_outputs outputs=main_outputs
) )
@ -483,29 +486,29 @@ if __name__ == "__main__":
# 因为io太频繁可能导致模型导出出错(wsl非常明显),请自行重试 # 因为io太频繁可能导致模型导出出错(wsl非常明显),请自行重试
gpt_path = "GPT_SoVITS/pretrained_models/s1bert25hz-2kh-longer-epoch=68e-step=50232.ckpt" # gpt_path = "GPT_SoVITS/pretrained_models/s1bert25hz-2kh-longer-epoch=68e-step=50232.ckpt"
vits_path = "GPT_SoVITS/pretrained_models/s2G488k.pth" # vits_path = "GPT_SoVITS/pretrained_models/s2G488k.pth"
exp_path = "v1_export" # exp_path = "v1_export"
version = "v1" # version = "v1"
export(vits_path, gpt_path, exp_path, version) # export(vits_path, gpt_path, exp_path, version)
gpt_path = "GPT_SoVITS/pretrained_models/gsv-v2final-pretrained/s1bert25hz-5kh-longer-epoch=12-step=369668.ckpt" gpt_path = "GPT_SoVITS/pretrained_models/gsv-v2final-pretrained/s1bert25hz-5kh-longer-epoch=12-step=369668.ckpt"
vits_path = "GPT_SoVITS/pretrained_models/gsv-v2final-pretrained/s2G2333k.pth" vits_path = "GPT_SoVITS/pretrained_models/gsv-v2final-pretrained/s2G2333k.pth"
exp_path = "v2_export" exp_path = "v2_export"
version = "v2" version = "v2"
export(vits_path, gpt_path, exp_path, version) export(vits_path, gpt_path, exp_path, version, t2s_model_combine = True)
gpt_path = "GPT_SoVITS/pretrained_models/s1v3.ckpt" # gpt_path = "GPT_SoVITS/pretrained_models/s1v3.ckpt"
vits_path = "GPT_SoVITS/pretrained_models/v2Pro/s2Gv2Pro.pth" # vits_path = "GPT_SoVITS/pretrained_models/v2Pro/s2Gv2Pro.pth"
exp_path = "v2pro_export" # exp_path = "v2pro_export"
version = "v2Pro" # version = "v2Pro"
export(vits_path, gpt_path, exp_path, version) # export(vits_path, gpt_path, exp_path, version)
gpt_path = "GPT_SoVITS/pretrained_models/gsv-v2final-pretrained/s1bert25hz-5kh-longer-epoch=12-step=369668.ckpt" # gpt_path = "GPT_SoVITS/pretrained_models/gsv-v2final-pretrained/s1bert25hz-5kh-longer-epoch=12-step=369668.ckpt"
vits_path = "GPT_SoVITS/pretrained_models/v2Pro/s2Gv2ProPlus.pth" # vits_path = "GPT_SoVITS/pretrained_models/v2Pro/s2Gv2ProPlus.pth"
exp_path = "v2proplus_export" # exp_path = "v2proplus_export"
version = "v2ProPlus" # version = "v2ProPlus"
export(vits_path, gpt_path, exp_path, version, t2s_model_combine = True, half_precision=True) # export(vits_path, gpt_path, exp_path, version, t2s_model_combine = True, half_precision=True)

View File

@ -98,7 +98,8 @@ t2s_combined = ort.InferenceSession(MODEL_PATH+"_export_t2s_combined.onnx")
"top_k": top_k, "top_k": top_k,
"top_p": top_p, "top_p": top_p,
"repetition_penalty": repetition_penalty, "repetition_penalty": repetition_penalty,
"temperature": temperature "temperature": temperature,
"if_init_step": np.array([True], dtype=bool)
}) })
# t2s_stage_step = ort.InferenceSession(MODEL_PATH+"_export_t2s_sdec.onnx") # t2s_stage_step = ort.InferenceSession(MODEL_PATH+"_export_t2s_sdec.onnx")
@ -120,7 +121,8 @@ for idx in tqdm(range(1, 1500)):
"top_k": top_k, "top_k": top_k,
"top_p": top_p, "top_p": top_p,
"repetition_penalty": repetition_penalty, "repetition_penalty": repetition_penalty,
"temperature": temperature "temperature": temperature,
"if_init_step": np.array([False], dtype=bool)
}) })
if np.argmax(logits, axis=-1)[0] == 1024 or samples[0, 0] == 1024: # 1024 is the EOS token if np.argmax(logits, axis=-1)[0] == 1024 or samples[0, 0] == 1024: # 1024 is the EOS token
break break