mirror of
https://github.com/RVC-Boss/GPT-SoVITS.git
synced 2025-04-05 19:41:56 +08:00
gpt_sovits_v3
gpt_sovits_v3
This commit is contained in:
parent
fa42d26d0e
commit
25cb1bf400
@ -9,7 +9,7 @@ import torch.utils.data
|
||||
from tqdm import tqdm
|
||||
|
||||
from module import commons
|
||||
from module.mel_processing import spectrogram_torch
|
||||
from module.mel_processing import spectrogram_torch,spec_to_mel_torch
|
||||
from text import cleaned_text_to_sequence
|
||||
from utils import load_wav_to_torch, load_filepaths_and_text
|
||||
import torch.nn.functional as F
|
||||
@ -170,8 +170,6 @@ class TextAudioSpeakerLoader(torch.utils.data.Dataset):
|
||||
assert abs(ssl.shape[-1] - wav2.shape[-1] // self.hop_length) < 3, (
|
||||
ssl.shape, wav.shape, wav2.shape, mel.shape, sep_point, self.hop_length, sep_point * self.hop_length, dir)
|
||||
return reference_mel, ssl, wav2, mel
|
||||
|
||||
|
||||
class TextAudioSpeakerCollate():
|
||||
""" Zero-pads model inputs and targets
|
||||
"""
|
||||
@ -232,7 +230,232 @@ class TextAudioSpeakerCollate():
|
||||
text_lengths[i] = text.size(0)
|
||||
|
||||
return ssl_padded, ssl_lengths, spec_padded, spec_lengths, wav_padded, wav_lengths, text_padded, text_lengths
|
||||
class TextAudioSpeakerLoaderV3(torch.utils.data.Dataset):
|
||||
"""
|
||||
1) loads audio, speaker_id, text pairs
|
||||
2) normalizes text and converts them to sequences of integers
|
||||
3) computes spectrograms from audio files.
|
||||
"""
|
||||
|
||||
def __init__(self, hparams, val=False):
|
||||
exp_dir = hparams.exp_dir
|
||||
self.path2 = "%s/2-name2text.txt" % exp_dir
|
||||
self.path4 = "%s/4-cnhubert" % exp_dir
|
||||
self.path5 = "%s/5-wav32k" % exp_dir
|
||||
assert os.path.exists(self.path2)
|
||||
assert os.path.exists(self.path4)
|
||||
assert os.path.exists(self.path5)
|
||||
names4 = set([name[:-3] for name in list(os.listdir(self.path4))]) # 去除.pt后缀
|
||||
names5 = set(os.listdir(self.path5))
|
||||
self.phoneme_data = {}
|
||||
with open(self.path2, "r", encoding="utf8") as f:
|
||||
lines = f.read().strip("\n").split("\n")
|
||||
|
||||
for line in lines:
|
||||
tmp = line.split("\t")
|
||||
if (len(tmp) != 4):
|
||||
continue
|
||||
self.phoneme_data[tmp[0]] = [tmp[1]]
|
||||
|
||||
self.audiopaths_sid_text = list(set(self.phoneme_data) & names4 & names5)
|
||||
tmp = self.audiopaths_sid_text
|
||||
leng = len(tmp)
|
||||
min_num = 100
|
||||
if (leng < min_num):
|
||||
self.audiopaths_sid_text = []
|
||||
for _ in range(max(2, int(min_num / leng))):
|
||||
self.audiopaths_sid_text += tmp
|
||||
self.max_wav_value = hparams.max_wav_value
|
||||
self.sampling_rate = hparams.sampling_rate
|
||||
self.filter_length = hparams.filter_length
|
||||
self.hop_length = hparams.hop_length
|
||||
self.win_length = hparams.win_length
|
||||
self.sampling_rate = hparams.sampling_rate
|
||||
self.val = val
|
||||
|
||||
random.seed(1234)
|
||||
random.shuffle(self.audiopaths_sid_text)
|
||||
|
||||
print("phoneme_data_len:", len(self.phoneme_data.keys()))
|
||||
print("wav_data_len:", len(self.audiopaths_sid_text))
|
||||
|
||||
audiopaths_sid_text_new = []
|
||||
lengths = []
|
||||
skipped_phone = 0
|
||||
skipped_dur = 0
|
||||
for audiopath in tqdm(self.audiopaths_sid_text):
|
||||
try:
|
||||
phoneme = self.phoneme_data[audiopath][0]
|
||||
phoneme = phoneme.split(' ')
|
||||
phoneme_ids = cleaned_text_to_sequence(phoneme, version)
|
||||
except Exception:
|
||||
print(f"{audiopath} not in self.phoneme_data !")
|
||||
skipped_phone += 1
|
||||
continue
|
||||
|
||||
size = os.path.getsize("%s/%s" % (self.path5, audiopath))
|
||||
duration = size / self.sampling_rate / 2
|
||||
|
||||
if duration == 0:
|
||||
print(f"Zero duration for {audiopath}, skipping...")
|
||||
skipped_dur += 1
|
||||
continue
|
||||
|
||||
if 54 > duration > 0.6 or self.val:
|
||||
audiopaths_sid_text_new.append([audiopath, phoneme_ids])
|
||||
lengths.append(size // (2 * self.hop_length))
|
||||
else:
|
||||
skipped_dur += 1
|
||||
continue
|
||||
|
||||
print("skipped_phone: ", skipped_phone, ", skipped_dur: ", skipped_dur)
|
||||
print("total left: ", len(audiopaths_sid_text_new))
|
||||
assert len(audiopaths_sid_text_new) > 1 # 至少能凑够batch size,这里todo
|
||||
self.audiopaths_sid_text = audiopaths_sid_text_new
|
||||
self.lengths = lengths
|
||||
self.spec_min=-12
|
||||
self.spec_max=2
|
||||
|
||||
self.filter_length_mel=self.win_length_mel=1024
|
||||
self.hop_length_mel=256
|
||||
self.n_mel_channels=100
|
||||
self.sampling_rate_mel=24000
|
||||
self.mel_fmin=0
|
||||
self.mel_fmax=None
|
||||
def norm_spec(self, x):
|
||||
return (x - self.spec_min) / (self.spec_max - self.spec_min) * 2 - 1
|
||||
|
||||
def get_audio_text_speaker_pair(self, audiopath_sid_text):
|
||||
audiopath, phoneme_ids = audiopath_sid_text
|
||||
text = torch.FloatTensor(phoneme_ids)
|
||||
try:
|
||||
spec, mel = self.get_audio("%s/%s" % (self.path5, audiopath))
|
||||
with torch.no_grad():
|
||||
ssl = torch.load("%s/%s.pt" % (self.path4, audiopath), map_location="cpu")
|
||||
if (ssl.shape[-1] != spec.shape[-1]):
|
||||
typee = ssl.dtype
|
||||
ssl = F.pad(ssl.float(), (0, 1), mode="replicate").to(typee)
|
||||
ssl.requires_grad = False
|
||||
except:
|
||||
traceback.print_exc()
|
||||
mel = torch.zeros(100, 180)
|
||||
# wav = torch.zeros(1, 96 * self.hop_length)
|
||||
spec = torch.zeros(1025, 96)
|
||||
ssl = torch.zeros(1, 768, 96)
|
||||
text = text[-1:]
|
||||
print("load audio or ssl error!!!!!!", audiopath)
|
||||
return (ssl, spec, mel, text)
|
||||
|
||||
def get_audio(self, filename):
|
||||
audio_array = load_audio(filename,self.sampling_rate)#load_audio的方法是已经归一化到-1~1之间的,不用再/32768
|
||||
audio=torch.FloatTensor(audio_array)#/32768
|
||||
audio_norm = audio
|
||||
audio_norm = audio_norm.unsqueeze(0)
|
||||
audio_array24 = load_audio(filename,24000)#load_audio的方法是已经归一化到-1~1之间的,不用再/32768######这里可以用GPU重采样加速
|
||||
audio24=torch.FloatTensor(audio_array24)#/32768
|
||||
audio_norm24 = audio24
|
||||
audio_norm24 = audio_norm24.unsqueeze(0)
|
||||
|
||||
spec = spectrogram_torch(audio_norm, self.filter_length,
|
||||
self.sampling_rate, self.hop_length, self.win_length,
|
||||
center=False)
|
||||
spec = torch.squeeze(spec, 0)
|
||||
|
||||
|
||||
spec1 = spectrogram_torch(audio_norm24, self.filter_length_mel,self.sampling_rate_mel, self.hop_length_mel, self.win_length_mel,center=False)
|
||||
mel = spec_to_mel_torch(spec1, self.filter_length_mel, self.n_mel_channels, self.sampling_rate_mel, self.mel_fmin, self.mel_fmax)
|
||||
mel = torch.squeeze(mel, 0)
|
||||
mel=self.norm_spec(mel)
|
||||
# print(1111111,spec.shape,mel.shape)
|
||||
return spec, mel
|
||||
|
||||
def get_sid(self, sid):
|
||||
sid = torch.LongTensor([int(sid)])
|
||||
return sid
|
||||
|
||||
def __getitem__(self, index):
|
||||
# with torch.no_grad():
|
||||
return self.get_audio_text_speaker_pair(self.audiopaths_sid_text[index])
|
||||
|
||||
def __len__(self):
|
||||
return len(self.audiopaths_sid_text)
|
||||
class TextAudioSpeakerCollateV3():
|
||||
""" Zero-pads model inputs and targets
|
||||
"""
|
||||
|
||||
def __init__(self, return_ids=False):
|
||||
self.return_ids = return_ids
|
||||
|
||||
def __call__(self, batch):
|
||||
"""Collate's training batch from normalized text, audio and speaker identities
|
||||
PARAMS
|
||||
------
|
||||
batch: [text_normalized, spec_normalized, wav_normalized, sid]
|
||||
"""
|
||||
#ssl, spec, wav,mel, text
|
||||
# Right zero-pad all one-hot text sequences to max input length
|
||||
_, ids_sorted_decreasing = torch.sort(
|
||||
torch.LongTensor([x[1].size(1) for x in batch]),
|
||||
dim=0, descending=True)
|
||||
#(ssl, spec,mel, text)
|
||||
max_ssl_len = max([x[0].size(2) for x in batch])
|
||||
|
||||
max_ssl_len1 = int(8 * ((max_ssl_len // 8) + 1))
|
||||
max_ssl_len = int(2 * ((max_ssl_len // 2) + 1))
|
||||
|
||||
# max_ssl_len = int(8 * ((max_ssl_len // 8) + 1))
|
||||
# max_ssl_len1=max_ssl_len
|
||||
|
||||
max_spec_len = max([x[1].size(1) for x in batch])
|
||||
max_spec_len = int(2 * ((max_spec_len // 2) + 1))
|
||||
# max_wav_len = max([x[2].size(1) for x in batch])
|
||||
|
||||
max_text_len = max([x[3].size(0) for x in batch])
|
||||
max_mel_len=int(max_ssl_len1*1.25*1.5)###24000/256,32000/640=16000/320
|
||||
|
||||
ssl_lengths = torch.LongTensor(len(batch))
|
||||
spec_lengths = torch.LongTensor(len(batch))
|
||||
text_lengths = torch.LongTensor(len(batch))
|
||||
# wav_lengths = torch.LongTensor(len(batch))
|
||||
mel_lengths = torch.LongTensor(len(batch))
|
||||
|
||||
spec_padded = torch.FloatTensor(len(batch), batch[0][1].size(0), max_spec_len)
|
||||
mel_padded = torch.FloatTensor(len(batch), batch[0][2].size(0), max_mel_len)
|
||||
ssl_padded = torch.FloatTensor(len(batch), batch[0][0].size(1), max_ssl_len)
|
||||
text_padded = torch.LongTensor(len(batch), max_text_len)
|
||||
# wav_padded = torch.FloatTensor(len(batch), 1, max_wav_len)
|
||||
|
||||
spec_padded.zero_()
|
||||
mel_padded.zero_()
|
||||
ssl_padded.zero_()
|
||||
text_padded.zero_()
|
||||
# wav_padded.zero_()
|
||||
|
||||
for i in range(len(ids_sorted_decreasing)):
|
||||
row = batch[ids_sorted_decreasing[i]]
|
||||
# ssl, spec, wav,mel, text
|
||||
ssl = row[0]
|
||||
ssl_padded[i, :, :ssl.size(2)] = ssl[0, :, :]
|
||||
ssl_lengths[i] = ssl.size(2)
|
||||
|
||||
spec = row[1]
|
||||
spec_padded[i, :, :spec.size(1)] = spec
|
||||
spec_lengths[i] = spec.size(1)
|
||||
|
||||
# wav = row[2]
|
||||
# wav_padded[i, :, :wav.size(1)] = wav
|
||||
# wav_lengths[i] = wav.size(1)
|
||||
|
||||
mel = row[2]
|
||||
mel_padded[i, :, :mel.size(1)] = mel
|
||||
mel_lengths[i] = mel.size(1)
|
||||
|
||||
text = row[3]
|
||||
text_padded[i, :text.size(0)] = text
|
||||
text_lengths[i] = text.size(0)
|
||||
|
||||
# return ssl_padded, spec_padded,mel_padded, ssl_lengths, spec_lengths, text_padded, text_lengths, wav_padded, wav_lengths,mel_lengths
|
||||
return ssl_padded, spec_padded,mel_padded, ssl_lengths, spec_lengths, text_padded, text_lengths,mel_lengths
|
||||
|
||||
class DistributedBucketSampler(torch.utils.data.distributed.DistributedSampler):
|
||||
"""
|
||||
|
@ -12,7 +12,7 @@ from torch.nn import functional as F
|
||||
from module import commons
|
||||
from module import modules
|
||||
from module import attentions
|
||||
|
||||
from f5_tts.model import DiT
|
||||
from torch.nn import Conv1d, ConvTranspose1d, AvgPool1d, Conv2d
|
||||
from torch.nn.utils import weight_norm, remove_weight_norm, spectral_norm
|
||||
from module.commons import init_weights, get_padding
|
||||
@ -22,7 +22,7 @@ from module.quantize import ResidualVectorQuantizer
|
||||
from text import symbols as symbols_v1
|
||||
from text import symbols2 as symbols_v2
|
||||
from torch.cuda.amp import autocast
|
||||
import contextlib
|
||||
import contextlib,random
|
||||
|
||||
|
||||
class StochasticDurationPredictor(nn.Module):
|
||||
@ -371,6 +371,37 @@ class PosteriorEncoder(nn.Module):
|
||||
return z, m, logs, x_mask
|
||||
|
||||
|
||||
class Encoder(nn.Module):
|
||||
def __init__(self,
|
||||
in_channels,
|
||||
out_channels,
|
||||
hidden_channels,
|
||||
kernel_size,
|
||||
dilation_rate,
|
||||
n_layers,
|
||||
gin_channels=0):
|
||||
super().__init__()
|
||||
self.in_channels = in_channels
|
||||
self.out_channels = out_channels
|
||||
self.hidden_channels = hidden_channels
|
||||
self.kernel_size = kernel_size
|
||||
self.dilation_rate = dilation_rate
|
||||
self.n_layers = n_layers
|
||||
self.gin_channels = gin_channels
|
||||
|
||||
self.pre = nn.Conv1d(in_channels, hidden_channels, 1)
|
||||
self.enc = modules.WN(hidden_channels, kernel_size, dilation_rate, n_layers, gin_channels=gin_channels)
|
||||
self.proj = nn.Conv1d(hidden_channels, out_channels, 1)
|
||||
|
||||
def forward(self, x, x_lengths, g=None):
|
||||
if(g!=None):
|
||||
g = g.detach()
|
||||
x_mask = torch.unsqueeze(commons.sequence_mask(x_lengths, x.size(2)), 1).to(x.dtype)
|
||||
x = self.pre(x) * x_mask
|
||||
x = self.enc(x, x_mask, g=g)
|
||||
stats = self.proj(x) * x_mask
|
||||
return stats, x_mask
|
||||
|
||||
class WNEncoder(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
@ -1028,3 +1059,218 @@ class SynthesizerTrn(nn.Module):
|
||||
ssl = self.ssl_proj(x)
|
||||
quantized, codes, commit_loss, quantized_list = self.quantizer(ssl)
|
||||
return codes.transpose(0, 1)
|
||||
class CFM(torch.nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
in_channels,dit
|
||||
):
|
||||
super().__init__()
|
||||
self.sigma_min = 1e-6
|
||||
|
||||
self.estimator = dit
|
||||
|
||||
self.in_channels = in_channels
|
||||
|
||||
self.criterion = torch.nn.MSELoss()
|
||||
|
||||
@torch.inference_mode()
|
||||
def inference(self, mu, x_lens, prompt, n_timesteps, temperature=1.0, inference_cfg_rate=0):
|
||||
"""Forward diffusion"""
|
||||
B, T = mu.size(0), mu.size(1)
|
||||
x = torch.randn([B, self.in_channels, T], device=mu.device,dtype=mu.dtype) * temperature
|
||||
prompt_len = prompt.size(-1)
|
||||
prompt_x = torch.zeros_like(x,dtype=mu.dtype)
|
||||
prompt_x[..., :prompt_len] = prompt[..., :prompt_len]
|
||||
x[..., :prompt_len] = 0
|
||||
mu=mu.transpose(2,1)
|
||||
t = 0
|
||||
d = 1 / n_timesteps
|
||||
for j in range(n_timesteps):
|
||||
t_tensor = torch.ones(x.shape[0], device=x.device,dtype=mu.dtype) * t
|
||||
d_tensor = torch.ones(x.shape[0], device=x.device,dtype=mu.dtype) * d
|
||||
# v_pred = model(x, t_tensor, d_tensor, **extra_args)
|
||||
v_pred = self.estimator(x, prompt_x, x_lens, t_tensor,d_tensor, mu,drop_audio_cond=False,drop_text=False).transpose(2, 1)
|
||||
if inference_cfg_rate>1e-5:
|
||||
neg = self.estimator(x, prompt_x, x_lens, t_tensor, d_tensor, mu, drop_audio_cond=True, drop_text=True).transpose(2, 1)
|
||||
v_pred=v_pred+(v_pred-neg)*inference_cfg_rate
|
||||
x = x + d * v_pred
|
||||
t = t + d
|
||||
x[:, :, :prompt_len] = 0
|
||||
return x
|
||||
def forward(self, x1, x_lens, prompt_lens, mu):
|
||||
b, _, t = x1.shape
|
||||
|
||||
# random timestep
|
||||
t = torch.rand([b], device=mu.device, dtype=x1.dtype)
|
||||
x0 = torch.randn_like(x1,device=mu.device)
|
||||
vt = x1 - x0
|
||||
xt = x0 + t[:, None, None] * vt
|
||||
dt = torch.zeros_like(t,device=mu.device)
|
||||
prompt = torch.zeros_like(x1)
|
||||
for bib in range(b):
|
||||
prompt[bib, :, :prompt_lens[bib]] = x1[bib, :, :prompt_lens[bib]]
|
||||
xt[bib, :, :prompt_lens[bib]] = 0
|
||||
gailv=0.3# if ttime()>1736250488 else 0.1
|
||||
if random.random() < gailv:
|
||||
base = torch.randint(2, 8, (t.shape[0],), device=mu.device)
|
||||
d = 1/torch.pow(2, base)
|
||||
d_input = d.clone()
|
||||
d_input[d_input < 1e-2] = 0
|
||||
# with torch.no_grad():
|
||||
v_pred_1 = self.estimator(xt, prompt, x_lens, t, d_input, mu).transpose(2, 1).detach()
|
||||
# v_pred_1 = self.diffusion(xt, t, d_input, cond=conditioning).detach()
|
||||
x_mid = xt + d[:, None, None] * v_pred_1
|
||||
# v_pred_2 = self.diffusion(x_mid, t+d, d_input, cond=conditioning).detach()
|
||||
v_pred_2 = self.estimator(x_mid, prompt, x_lens, t+d, d_input, mu).transpose(2, 1).detach()
|
||||
vt = (v_pred_1 + v_pred_2) / 2
|
||||
vt = vt.detach()
|
||||
dt = 2*d
|
||||
|
||||
vt_pred = self.estimator(xt, prompt, x_lens, t,dt, mu).transpose(2,1)
|
||||
loss = 0
|
||||
|
||||
# print(45555555,estimator_out.shape,u.shape,x_lens,prompt_lens)#45555555 torch.Size([7, 465, 100]) torch.Size([7, 100, 465]) tensor([461, 461, 451, 451, 442, 442, 442], device='cuda:0') tensor([ 96, 93, 185, 59, 244, 262, 294], device='cuda:0')
|
||||
for bib in range(b):
|
||||
loss += self.criterion(vt_pred[bib, :, prompt_lens[bib]:x_lens[bib]], vt[bib, :, prompt_lens[bib]:x_lens[bib]])
|
||||
loss /= b
|
||||
|
||||
return loss#, estimator_out + (1 - self.sigma_min) * z
|
||||
|
||||
|
||||
class SynthesizerTrnV3(nn.Module):
|
||||
"""
|
||||
Synthesizer for Training
|
||||
"""
|
||||
|
||||
def __init__(self,
|
||||
spec_channels,
|
||||
segment_size,
|
||||
inter_channels,
|
||||
hidden_channels,
|
||||
filter_channels,
|
||||
n_heads,
|
||||
n_layers,
|
||||
kernel_size,
|
||||
p_dropout,
|
||||
resblock,
|
||||
resblock_kernel_sizes,
|
||||
resblock_dilation_sizes,
|
||||
upsample_rates,
|
||||
upsample_initial_channel,
|
||||
upsample_kernel_sizes,
|
||||
n_speakers=0,
|
||||
gin_channels=0,
|
||||
use_sdp=True,
|
||||
semantic_frame_rate=None,
|
||||
freeze_quantizer=None,
|
||||
**kwargs):
|
||||
|
||||
super().__init__()
|
||||
self.spec_channels = spec_channels
|
||||
self.inter_channels = inter_channels
|
||||
self.hidden_channels = hidden_channels
|
||||
self.filter_channels = filter_channels
|
||||
self.n_heads = n_heads
|
||||
self.n_layers = n_layers
|
||||
self.kernel_size = kernel_size
|
||||
self.p_dropout = p_dropout
|
||||
self.resblock = resblock
|
||||
self.resblock_kernel_sizes = resblock_kernel_sizes
|
||||
self.resblock_dilation_sizes = resblock_dilation_sizes
|
||||
self.upsample_rates = upsample_rates
|
||||
self.upsample_initial_channel = upsample_initial_channel
|
||||
self.upsample_kernel_sizes = upsample_kernel_sizes
|
||||
self.segment_size = segment_size
|
||||
self.n_speakers = n_speakers
|
||||
self.gin_channels = gin_channels
|
||||
|
||||
self.model_dim=512
|
||||
self.use_sdp = use_sdp
|
||||
self.enc_p = TextEncoder(inter_channels,hidden_channels,filter_channels,n_heads,n_layers,kernel_size,p_dropout)
|
||||
# self.ref_enc = modules.MelStyleEncoder(spec_channels, style_vector_dim=gin_channels)###回滚。。。
|
||||
self.ref_enc = modules.MelStyleEncoder(704, style_vector_dim=gin_channels)###回滚。。。
|
||||
# self.dec = Generator(inter_channels, resblock, resblock_kernel_sizes, resblock_dilation_sizes, upsample_rates,
|
||||
# upsample_initial_channel, upsample_kernel_sizes, gin_channels=gin_channels)
|
||||
# self.enc_q = PosteriorEncoder(spec_channels, inter_channels, hidden_channels, 5, 1, 16,
|
||||
# gin_channels=gin_channels)
|
||||
# self.flow = ResidualCouplingBlock(inter_channels, hidden_channels, 5, 1, 4, gin_channels=gin_channels)
|
||||
|
||||
|
||||
ssl_dim = 768
|
||||
assert semantic_frame_rate in ['25hz', "50hz"]
|
||||
self.semantic_frame_rate = semantic_frame_rate
|
||||
if semantic_frame_rate == '25hz':
|
||||
self.ssl_proj = nn.Conv1d(ssl_dim, ssl_dim, 2, stride=2)
|
||||
else:
|
||||
self.ssl_proj = nn.Conv1d(ssl_dim, ssl_dim, 1, stride=1)
|
||||
|
||||
self.quantizer = ResidualVectorQuantizer(
|
||||
dimension=ssl_dim,
|
||||
n_q=1,
|
||||
bins=1024
|
||||
)
|
||||
self.freeze_quantizer=freeze_quantizer
|
||||
|
||||
inter_channels2=512
|
||||
self.bridge=nn.Sequential(
|
||||
nn.Conv1d(inter_channels, inter_channels2, 1, stride=1),
|
||||
nn.LeakyReLU()
|
||||
)
|
||||
self.wns1=Encoder(inter_channels2, inter_channels2, inter_channels2, 5, 1, 8,gin_channels=gin_channels)
|
||||
self.linear_mel=nn.Conv1d(inter_channels2,100,1,stride=1)
|
||||
self.cfm = CFM(100,DiT(**dict(dim=1024, depth=22, heads=16, ff_mult=2, text_dim=inter_channels2, conv_layers=4)),)#text_dim is condition feature dim
|
||||
|
||||
def forward(self, ssl, y, mel,ssl_lengths,y_lengths, text, text_lengths,mel_lengths):#ssl_lengths no need now
|
||||
with autocast(enabled=False):
|
||||
y_mask = torch.unsqueeze(commons.sequence_mask(y_lengths, y.size(2)), 1).to(y.dtype)
|
||||
ge = self.ref_enc(y[:,:704] * y_mask, y_mask)
|
||||
maybe_no_grad = torch.no_grad() if self.freeze_quantizer else contextlib.nullcontext()
|
||||
with maybe_no_grad:
|
||||
if self.freeze_quantizer:
|
||||
self.ssl_proj.eval()#
|
||||
self.quantizer.eval()
|
||||
ssl = self.ssl_proj(ssl)
|
||||
quantized, codes, commit_loss, quantized_list = self.quantizer(
|
||||
ssl, layers=[0]
|
||||
)
|
||||
with maybe_no_grad:
|
||||
quantized = F.interpolate(quantized, scale_factor=2, mode="nearest")##BCT
|
||||
x, m_p, logs_p, y_mask = self.enc_p(quantized, y_lengths, text, text_lengths, ge)
|
||||
fea=self.bridge(x)
|
||||
fea = F.interpolate(fea, scale_factor=1.875, mode="nearest")##BCT
|
||||
fea, y_mask_ = self.wns1(fea, mel_lengths, ge)###如果1min微调没问题就不需要微操学习率了
|
||||
B=ssl.shape[0]
|
||||
prompt_len_max = mel_lengths*2/3
|
||||
prompt_len = (torch.rand([B], device=fea.device) * prompt_len_max).floor().to(dtype=torch.long)
|
||||
minn=min(mel.shape[-1],fea.shape[-1])
|
||||
mel=mel[:,:,:minn]
|
||||
fea=fea[:,:,:minn]
|
||||
cfm_loss= self.cfm(mel, mel_lengths, prompt_len, fea)
|
||||
return cfm_loss
|
||||
|
||||
@torch.no_grad()
|
||||
def decode_encp(self, codes,text, refer,ge=None):
|
||||
# print(2333333,refer.shape)
|
||||
# ge=None
|
||||
if(ge==None):
|
||||
refer_lengths = torch.LongTensor([refer.size(2)]).to(refer.device)
|
||||
refer_mask = torch.unsqueeze(commons.sequence_mask(refer_lengths, refer.size(2)), 1).to(refer.dtype)
|
||||
ge = self.ref_enc(refer[:,:704] * refer_mask, refer_mask)
|
||||
y_lengths = torch.LongTensor([int(codes.size(2)*2)]).to(codes.device)
|
||||
y_lengths1 = torch.LongTensor([int(codes.size(2)*2.5*1.5)]).to(codes.device)
|
||||
text_lengths = torch.LongTensor([text.size(-1)]).to(text.device)
|
||||
|
||||
quantized = self.quantizer.decode(codes)
|
||||
if self.semantic_frame_rate == '25hz':
|
||||
quantized = F.interpolate(quantized, scale_factor=2, mode="nearest")##BCT
|
||||
x, m_p, logs_p, y_mask = self.enc_p(quantized, y_lengths, text, text_lengths, ge)
|
||||
fea=self.bridge(x)
|
||||
fea = F.interpolate(fea, scale_factor=1.875, mode="nearest")##BCT
|
||||
####more wn paramter to learn mel
|
||||
fea, y_mask_ = self.wns1(fea, y_lengths1, ge)
|
||||
return fea,ge
|
||||
|
||||
def extract_latent(self, x):
|
||||
ssl = self.ssl_proj(x)
|
||||
quantized, codes, commit_loss, quantized_list = self.quantizer(ssl)
|
||||
return codes.transpose(0,1)
|
||||
|
Loading…
x
Reference in New Issue
Block a user