mirror of
https://github.com/RVC-Boss/GPT-SoVITS.git
synced 2025-04-05 19:41:56 +08:00
Merge branch 'RVC-Boss:main' into main
This commit is contained in:
commit
19dfdfc053
186
.gitignore
vendored
186
.gitignore
vendored
@ -1,4 +1,5 @@
|
||||
.DS_Store
|
||||
.vscode
|
||||
__pycache__
|
||||
*.pyc
|
||||
env
|
||||
@ -9,6 +10,191 @@ logs
|
||||
reference
|
||||
GPT_weights
|
||||
SoVITS_weights
|
||||
GPT_weights_v2
|
||||
SoVITS_weights_v2
|
||||
GPT_weights_v3
|
||||
SoVITS_weights_v3
|
||||
TEMP
|
||||
weight.json
|
||||
ffmpeg*
|
||||
ffprobe*
|
||||
cfg.json
|
||||
speakers.json
|
||||
ref_audios
|
||||
tools/AP_BWE_main/24kto48k/*
|
||||
!tools/AP_BWE_main/24kto48k/readme.txt
|
||||
|
||||
# Byte-compiled / optimized / DLL files
|
||||
__pycache__/
|
||||
*.py[cod]
|
||||
*$py.class
|
||||
|
||||
# C extensions
|
||||
*.so
|
||||
|
||||
# Distribution / packaging
|
||||
.Python
|
||||
build/
|
||||
develop-eggs/
|
||||
dist/
|
||||
downloads/
|
||||
eggs/
|
||||
.eggs/
|
||||
lib/
|
||||
lib64/
|
||||
parts/
|
||||
sdist/
|
||||
var/
|
||||
wheels/
|
||||
share/python-wheels/
|
||||
*.egg-info/
|
||||
.installed.cfg
|
||||
*.egg
|
||||
MANIFEST
|
||||
|
||||
# PyInstaller
|
||||
# Usually these files are written by a python script from a template
|
||||
# before PyInstaller builds the exe, so as to inject date/other infos into it.
|
||||
*.manifest
|
||||
*.spec
|
||||
|
||||
# Installer logs
|
||||
pip-log.txt
|
||||
pip-delete-this-directory.txt
|
||||
|
||||
# Unit test / coverage reports
|
||||
htmlcov/
|
||||
.tox/
|
||||
.nox/
|
||||
.coverage
|
||||
.coverage.*
|
||||
.cache
|
||||
nosetests.xml
|
||||
coverage.xml
|
||||
*.cover
|
||||
*.py,cover
|
||||
.hypothesis/
|
||||
.pytest_cache/
|
||||
cover/
|
||||
|
||||
# Translations
|
||||
*.mo
|
||||
*.pot
|
||||
|
||||
# Django stuff:
|
||||
*.log
|
||||
local_settings.py
|
||||
db.sqlite3
|
||||
db.sqlite3-journal
|
||||
|
||||
# Flask stuff:
|
||||
instance/
|
||||
.webassets-cache
|
||||
|
||||
# Scrapy stuff:
|
||||
.scrapy
|
||||
|
||||
# Sphinx documentation
|
||||
docs/_build/
|
||||
|
||||
# PyBuilder
|
||||
.pybuilder/
|
||||
target/
|
||||
|
||||
# Jupyter Notebook
|
||||
.ipynb_checkpoints
|
||||
|
||||
# IPython
|
||||
profile_default/
|
||||
ipython_config.py
|
||||
|
||||
# pyenv
|
||||
# For a library or package, you might want to ignore these files since the code is
|
||||
# intended to run in multiple environments; otherwise, check them in:
|
||||
# .python-version
|
||||
|
||||
# pipenv
|
||||
# According to pypa/pipenv#598, it is recommended to include Pipfile.lock in version control.
|
||||
# However, in case of collaboration, if having platform-specific dependencies or dependencies
|
||||
# having no cross-platform support, pipenv may install dependencies that don't work, or not
|
||||
# install all needed dependencies.
|
||||
#Pipfile.lock
|
||||
|
||||
# UV
|
||||
# Similar to Pipfile.lock, it is generally recommended to include uv.lock in version control.
|
||||
# This is especially recommended for binary packages to ensure reproducibility, and is more
|
||||
# commonly ignored for libraries.
|
||||
#uv.lock
|
||||
|
||||
# poetry
|
||||
# Similar to Pipfile.lock, it is generally recommended to include poetry.lock in version control.
|
||||
# This is especially recommended for binary packages to ensure reproducibility, and is more
|
||||
# commonly ignored for libraries.
|
||||
# https://python-poetry.org/docs/basic-usage/#commit-your-poetrylock-file-to-version-control
|
||||
#poetry.lock
|
||||
|
||||
# pdm
|
||||
# Similar to Pipfile.lock, it is generally recommended to include pdm.lock in version control.
|
||||
#pdm.lock
|
||||
# pdm stores project-wide configurations in .pdm.toml, but it is recommended to not include it
|
||||
# in version control.
|
||||
# https://pdm.fming.dev/latest/usage/project/#working-with-version-control
|
||||
.pdm.toml
|
||||
.pdm-python
|
||||
.pdm-build/
|
||||
|
||||
# PEP 582; used by e.g. github.com/David-OConnor/pyflow and github.com/pdm-project/pdm
|
||||
__pypackages__/
|
||||
|
||||
# Celery stuff
|
||||
celerybeat-schedule
|
||||
celerybeat.pid
|
||||
|
||||
# SageMath parsed files
|
||||
*.sage.py
|
||||
|
||||
# Environments
|
||||
.env
|
||||
.venv
|
||||
env/
|
||||
venv/
|
||||
ENV/
|
||||
env.bak/
|
||||
venv.bak/
|
||||
|
||||
# Spyder project settings
|
||||
.spyderproject
|
||||
.spyproject
|
||||
|
||||
# Rope project settings
|
||||
.ropeproject
|
||||
|
||||
# mkdocs documentation
|
||||
/site
|
||||
|
||||
# mypy
|
||||
.mypy_cache/
|
||||
.dmypy.json
|
||||
dmypy.json
|
||||
|
||||
# Pyre type checker
|
||||
.pyre/
|
||||
|
||||
# pytype static type analyzer
|
||||
.pytype/
|
||||
|
||||
# Cython debug symbols
|
||||
cython_debug/
|
||||
|
||||
# PyCharm
|
||||
# JetBrains specific template is maintained in a separate JetBrains.gitignore that can
|
||||
# be found at https://github.com/github/gitignore/blob/main/Global/JetBrains.gitignore
|
||||
# and can be added to the global gitignore or merged into this file. For a more nuclear
|
||||
# option (not recommended) you can uncomment the following to ignore the entire idea folder.
|
||||
#.idea/
|
||||
|
||||
# Ruff stuff:
|
||||
.ruff_cache/
|
||||
|
||||
# PyPI configuration file
|
||||
.pypirc
|
||||
|
@ -34,9 +34,6 @@ RUN if [ "$IMAGE_TYPE" != "elite" ]; then \
|
||||
fi
|
||||
|
||||
|
||||
# Copy the rest of the application
|
||||
COPY . /workspace
|
||||
|
||||
# Copy the rest of the application
|
||||
COPY . /workspace
|
||||
|
||||
|
@ -15,6 +15,8 @@ from torch.utils.data import DataLoader
|
||||
from torch.utils.data import Dataset
|
||||
from transformers import AutoTokenizer
|
||||
|
||||
version = os.environ.get('version',None)
|
||||
|
||||
from text import cleaned_text_to_sequence
|
||||
|
||||
# from config import exp_dir
|
||||
@ -64,7 +66,7 @@ class Text2SemanticDataset(Dataset):
|
||||
# get dict
|
||||
self.path2 = phoneme_path # "%s/2-name2text.txt"%exp_dir#phoneme_path
|
||||
self.path3 = "%s/3-bert" % (
|
||||
os.path.basename(phoneme_path)
|
||||
os.path.dirname(phoneme_path)
|
||||
) # "%s/3-bert"%exp_dir#bert_dir
|
||||
self.path6 = semantic_path # "%s/6-name2semantic.tsv"%exp_dir#semantic_path
|
||||
assert os.path.exists(self.path2)
|
||||
@ -149,7 +151,7 @@ class Text2SemanticDataset(Dataset):
|
||||
phoneme = phoneme.split(" ")
|
||||
|
||||
try:
|
||||
phoneme_ids = cleaned_text_to_sequence(phoneme)
|
||||
phoneme_ids = cleaned_text_to_sequence(phoneme, version)
|
||||
except:
|
||||
traceback.print_exc()
|
||||
# print(f"{item_name} not in self.phoneme_data !")
|
||||
|
@ -1,16 +1,18 @@
|
||||
# modified from https://github.com/yangdongchao/SoundStorm/blob/master/soundstorm/s1/AR/models/t2s_model.py
|
||||
# reference: https://github.com/lifeiteng/vall-e
|
||||
import math
|
||||
from typing import List, Optional
|
||||
import torch
|
||||
from tqdm import tqdm
|
||||
|
||||
from AR.models.utils import make_pad_mask
|
||||
from AR.models.utils import make_pad_mask, make_pad_mask_left
|
||||
from AR.models.utils import (
|
||||
topk_sampling,
|
||||
sample,
|
||||
logits_to_probs,
|
||||
multinomial_sample_one_no_sync,
|
||||
dpo_loss,
|
||||
make_reject_y,
|
||||
make_reject_y,
|
||||
get_batch_logps
|
||||
)
|
||||
from AR.modules.embedding import SinePositionalEmbedding
|
||||
@ -34,6 +36,200 @@ default_config = {
|
||||
"EOS": 1024,
|
||||
}
|
||||
|
||||
# @torch.jit.script ## 使用的话首次推理会非常慢,而且推理速度不稳定
|
||||
# Efficient implementation equivalent to the following:
|
||||
def scaled_dot_product_attention(query:torch.Tensor, key:torch.Tensor, value:torch.Tensor, attn_mask:Optional[torch.Tensor]=None, scale:Optional[torch.Tensor]=None) -> torch.Tensor:
|
||||
B, H, L, S =query.size(0), query.size(1), query.size(-2), key.size(-2)
|
||||
if scale is None:
|
||||
scale_factor = torch.tensor(1 / math.sqrt(query.size(-1)))
|
||||
else:
|
||||
scale_factor = scale
|
||||
attn_bias = torch.zeros(B, H, L, S, dtype=query.dtype, device=query.device)
|
||||
|
||||
if attn_mask is not None:
|
||||
if attn_mask.dtype == torch.bool:
|
||||
attn_bias.masked_fill_(attn_mask, float("-inf"))
|
||||
else:
|
||||
attn_bias += attn_mask
|
||||
attn_weight = query @ key.transpose(-2, -1) * scale_factor
|
||||
attn_weight += attn_bias
|
||||
attn_weight = torch.softmax(attn_weight, dim=-1)
|
||||
|
||||
if attn_mask is not None:
|
||||
if attn_mask.dtype == torch.bool:
|
||||
attn_weight.masked_fill_(attn_mask, 0)
|
||||
else:
|
||||
attn_mask[attn_mask!=float("-inf")] =0
|
||||
attn_mask[attn_mask==float("-inf")] =1
|
||||
attn_weight.masked_fill_(attn_mask, 0)
|
||||
|
||||
return attn_weight @ value
|
||||
|
||||
@torch.jit.script
|
||||
class T2SMLP:
|
||||
def __init__(self, w1, b1, w2, b2):
|
||||
self.w1 = w1
|
||||
self.b1 = b1
|
||||
self.w2 = w2
|
||||
self.b2 = b2
|
||||
|
||||
def forward(self, x):
|
||||
x = F.relu(F.linear(x, self.w1, self.b1))
|
||||
x = F.linear(x, self.w2, self.b2)
|
||||
return x
|
||||
|
||||
|
||||
@torch.jit.script
|
||||
class T2SBlock:
|
||||
def __init__(
|
||||
self,
|
||||
num_heads,
|
||||
hidden_dim: int,
|
||||
mlp: T2SMLP,
|
||||
qkv_w,
|
||||
qkv_b,
|
||||
out_w,
|
||||
out_b,
|
||||
norm_w1,
|
||||
norm_b1,
|
||||
norm_eps1,
|
||||
norm_w2,
|
||||
norm_b2,
|
||||
norm_eps2,
|
||||
):
|
||||
self.num_heads = num_heads
|
||||
self.mlp = mlp
|
||||
self.hidden_dim: int = hidden_dim
|
||||
self.qkv_w = qkv_w
|
||||
self.qkv_b = qkv_b
|
||||
self.out_w = out_w
|
||||
self.out_b = out_b
|
||||
self.norm_w1 = norm_w1
|
||||
self.norm_b1 = norm_b1
|
||||
self.norm_eps1 = norm_eps1
|
||||
self.norm_w2 = norm_w2
|
||||
self.norm_b2 = norm_b2
|
||||
self.norm_eps2 = norm_eps2
|
||||
|
||||
self.false = torch.tensor(False, dtype=torch.bool)
|
||||
|
||||
@torch.jit.ignore
|
||||
def to_mask(self, x:torch.Tensor, padding_mask:Optional[torch.Tensor]):
|
||||
if padding_mask is None:
|
||||
return x
|
||||
|
||||
if padding_mask.dtype == torch.bool:
|
||||
return x.masked_fill(padding_mask, 0)
|
||||
else:
|
||||
return x * padding_mask
|
||||
|
||||
def process_prompt(self, x:torch.Tensor, attn_mask : torch.Tensor, padding_mask:Optional[torch.Tensor]=None, torch_sdpa:bool=True):
|
||||
|
||||
|
||||
q, k, v = F.linear(self.to_mask(x, padding_mask), self.qkv_w, self.qkv_b).chunk(3, dim=-1)
|
||||
|
||||
batch_size = q.shape[0]
|
||||
q_len = q.shape[1]
|
||||
kv_len = k.shape[1]
|
||||
|
||||
q = self.to_mask(q, padding_mask)
|
||||
k_cache = self.to_mask(k, padding_mask)
|
||||
v_cache = self.to_mask(v, padding_mask)
|
||||
|
||||
q = q.view(batch_size, q_len, self.num_heads, -1).transpose(1, 2)
|
||||
k = k_cache.view(batch_size, kv_len, self.num_heads, -1).transpose(1, 2)
|
||||
v = v_cache.view(batch_size, kv_len, self.num_heads, -1).transpose(1, 2)
|
||||
|
||||
if torch_sdpa:
|
||||
attn = F.scaled_dot_product_attention(q, k, v, ~attn_mask)
|
||||
else:
|
||||
attn = scaled_dot_product_attention(q, k, v, attn_mask)
|
||||
|
||||
attn = attn.transpose(1, 2).reshape(batch_size, q_len, -1)
|
||||
attn = F.linear(self.to_mask(attn, padding_mask), self.out_w, self.out_b)
|
||||
|
||||
x = x + attn
|
||||
x = F.layer_norm(
|
||||
x, [self.hidden_dim], self.norm_w1, self.norm_b1, self.norm_eps1
|
||||
)
|
||||
x = x + self.mlp.forward(x)
|
||||
x = F.layer_norm(
|
||||
x,
|
||||
[self.hidden_dim],
|
||||
self.norm_w2,
|
||||
self.norm_b2,
|
||||
self.norm_eps2,
|
||||
)
|
||||
return x, k_cache, v_cache
|
||||
|
||||
def decode_next_token(self, x:torch.Tensor, k_cache:torch.Tensor, v_cache:torch.Tensor, attn_mask:torch.Tensor=None, torch_sdpa:bool=True):
|
||||
q, k, v = F.linear(x, self.qkv_w, self.qkv_b).chunk(3, dim=-1)
|
||||
|
||||
k_cache = torch.cat([k_cache, k], dim=1)
|
||||
v_cache = torch.cat([v_cache, v], dim=1)
|
||||
|
||||
batch_size = q.shape[0]
|
||||
q_len = q.shape[1]
|
||||
kv_len = k_cache.shape[1]
|
||||
|
||||
q = q.view(batch_size, q_len, self.num_heads, -1).transpose(1, 2)
|
||||
k = k_cache.view(batch_size, kv_len, self.num_heads, -1).transpose(1, 2)
|
||||
v = v_cache.view(batch_size, kv_len, self.num_heads, -1).transpose(1, 2)
|
||||
|
||||
|
||||
if torch_sdpa:
|
||||
attn = F.scaled_dot_product_attention(q, k, v, (~attn_mask) if attn_mask is not None else None)
|
||||
else:
|
||||
attn = scaled_dot_product_attention(q, k, v, attn_mask)
|
||||
|
||||
attn = attn.transpose(1, 2).reshape(batch_size, q_len, -1)
|
||||
attn = F.linear(attn, self.out_w, self.out_b)
|
||||
|
||||
x = x + attn
|
||||
x = F.layer_norm(
|
||||
x, [self.hidden_dim], self.norm_w1, self.norm_b1, self.norm_eps1
|
||||
)
|
||||
x = x + self.mlp.forward(x)
|
||||
x = F.layer_norm(
|
||||
x,
|
||||
[self.hidden_dim],
|
||||
self.norm_w2,
|
||||
self.norm_b2,
|
||||
self.norm_eps2,
|
||||
)
|
||||
return x, k_cache, v_cache
|
||||
|
||||
|
||||
@torch.jit.script
|
||||
class T2STransformer:
|
||||
def __init__(self, num_blocks : int, blocks: List[T2SBlock]):
|
||||
self.num_blocks : int = num_blocks
|
||||
self.blocks = blocks
|
||||
|
||||
def process_prompt(
|
||||
self, x:torch.Tensor, attn_mask : torch.Tensor,
|
||||
padding_mask : Optional[torch.Tensor]=None,
|
||||
torch_sdpa:bool=True
|
||||
):
|
||||
k_cache : List[torch.Tensor] = []
|
||||
v_cache : List[torch.Tensor] = []
|
||||
for i in range(self.num_blocks):
|
||||
x, k_cache_, v_cache_ = self.blocks[i].process_prompt(x, attn_mask, padding_mask, torch_sdpa)
|
||||
k_cache.append(k_cache_)
|
||||
v_cache.append(v_cache_)
|
||||
return x, k_cache, v_cache
|
||||
|
||||
def decode_next_token(
|
||||
self, x:torch.Tensor,
|
||||
k_cache: List[torch.Tensor],
|
||||
v_cache: List[torch.Tensor],
|
||||
attn_mask : torch.Tensor=None,
|
||||
torch_sdpa:bool=True
|
||||
):
|
||||
for i in range(self.num_blocks):
|
||||
x, k_cache[i], v_cache[i] = self.blocks[i].decode_next_token(x, k_cache[i], v_cache[i], attn_mask, torch_sdpa)
|
||||
return x, k_cache, v_cache
|
||||
|
||||
|
||||
class Text2SemanticDecoder(nn.Module):
|
||||
def __init__(self, config, norm_first=False, top_k=3):
|
||||
@ -89,6 +285,37 @@ class Text2SemanticDecoder(nn.Module):
|
||||
ignore_index=self.EOS,
|
||||
)
|
||||
|
||||
blocks = []
|
||||
|
||||
for i in range(self.num_layers):
|
||||
layer = self.h.layers[i]
|
||||
t2smlp = T2SMLP(
|
||||
layer.linear1.weight,
|
||||
layer.linear1.bias,
|
||||
layer.linear2.weight,
|
||||
layer.linear2.bias
|
||||
)
|
||||
|
||||
block = T2SBlock(
|
||||
self.num_head,
|
||||
self.model_dim,
|
||||
t2smlp,
|
||||
layer.self_attn.in_proj_weight,
|
||||
layer.self_attn.in_proj_bias,
|
||||
layer.self_attn.out_proj.weight,
|
||||
layer.self_attn.out_proj.bias,
|
||||
layer.norm1.weight,
|
||||
layer.norm1.bias,
|
||||
layer.norm1.eps,
|
||||
layer.norm2.weight,
|
||||
layer.norm2.bias,
|
||||
layer.norm2.eps
|
||||
)
|
||||
|
||||
blocks.append(block)
|
||||
|
||||
self.t2s_transformer = T2STransformer(self.num_layers, blocks)
|
||||
|
||||
def make_input_data(self, x, x_lens, y, y_lens, bert_feature):
|
||||
x = self.ar_text_embedding(x)
|
||||
x = x + self.bert_proj(bert_feature.transpose(1, 2))
|
||||
@ -116,7 +343,7 @@ class Text2SemanticDecoder(nn.Module):
|
||||
(0, y_len),
|
||||
value=True,
|
||||
)
|
||||
|
||||
# x_attn_mask[:, x_len]=False
|
||||
y_attn_mask = F.pad(
|
||||
torch.triu(
|
||||
torch.ones(y_len, y_len, dtype=torch.bool, device=x.device),
|
||||
@ -246,14 +473,14 @@ class Text2SemanticDecoder(nn.Module):
|
||||
|
||||
# 需要看下这个函数和 forward 的区别以及没有 semantic 的时候 prompts 输入什么
|
||||
def infer(
|
||||
self,
|
||||
x,
|
||||
x_lens,
|
||||
prompts,
|
||||
bert_feature,
|
||||
top_k: int = -100,
|
||||
early_stop_num: int = -1,
|
||||
temperature: float = 1.0,
|
||||
self,
|
||||
x,
|
||||
x_lens,
|
||||
prompts,
|
||||
bert_feature,
|
||||
top_k: int = -100,
|
||||
early_stop_num: int = -1,
|
||||
temperature: float = 1.0,
|
||||
):
|
||||
x = self.ar_text_embedding(x)
|
||||
x = x + self.bert_proj(bert_feature.transpose(1, 2))
|
||||
@ -321,16 +548,242 @@ class Text2SemanticDecoder(nn.Module):
|
||||
# 错位
|
||||
return targets[:, :-1], targets[:, 1:]
|
||||
|
||||
def infer_panel(
|
||||
def infer_panel_batch_infer(
|
||||
self,
|
||||
x, #####全部文本token
|
||||
x_lens,
|
||||
prompts, ####参考音频token
|
||||
bert_feature,
|
||||
x:List[torch.LongTensor], #####全部文本token
|
||||
x_lens:torch.LongTensor,
|
||||
prompts:torch.LongTensor, ####参考音频token
|
||||
bert_feature:List[torch.LongTensor],
|
||||
top_k: int = -100,
|
||||
top_p: int = 100,
|
||||
early_stop_num: int = -1,
|
||||
temperature: float = 1.0,
|
||||
repetition_penalty: float = 1.35,
|
||||
**kwargs,
|
||||
):
|
||||
if prompts is None:
|
||||
print("Warning: Prompt free is not supported batch_infer! switch to naive_infer")
|
||||
return self.infer_panel_naive_batched(x, x_lens, prompts, bert_feature, top_k=top_k, top_p=top_p, early_stop_num=early_stop_num, temperature=temperature, **kwargs)
|
||||
|
||||
|
||||
max_len = kwargs.get("max_len",x_lens.max())
|
||||
x_list = []
|
||||
for x_item, bert_item in zip(x, bert_feature):
|
||||
# max_len = max(max_len, x_item.shape[0], bert_item.shape[1])
|
||||
x_item = self.ar_text_embedding(x_item.unsqueeze(0))
|
||||
x_item = x_item + self.bert_proj(bert_item.transpose(0, 1).unsqueeze(0))
|
||||
x_item = self.ar_text_position(x_item).squeeze(0)
|
||||
# x_item = F.pad(x_item,(0,0,0,max_len-x_item.shape[0]),value=0) if x_item.shape[0]<max_len else x_item ### padding right
|
||||
x_item = F.pad(x_item,(0,0,max_len-x_item.shape[0],0),value=0) if x_item.shape[0]<max_len else x_item ### padding left
|
||||
x_list.append(x_item)
|
||||
x:torch.Tensor = torch.stack(x_list, dim=0)
|
||||
|
||||
|
||||
# AR Decoder
|
||||
y = prompts
|
||||
|
||||
x_len = x.shape[1]
|
||||
stop = False
|
||||
|
||||
k_cache = None
|
||||
v_cache = None
|
||||
################### first step ##########################
|
||||
assert y is not None, "Error: Prompt free is not supported batch_infer!"
|
||||
ref_free = False
|
||||
|
||||
y_emb = self.ar_audio_embedding(y)
|
||||
y_len = y_emb.shape[1]
|
||||
prefix_len = y.shape[1]
|
||||
y_lens = torch.LongTensor([y_emb.shape[1]]*y_emb.shape[0]).to(x.device)
|
||||
y_pos = self.ar_audio_position(y_emb)
|
||||
xy_pos = torch.concat([x, y_pos], dim=1)
|
||||
|
||||
|
||||
|
||||
##### create mask #####
|
||||
bsz = x.shape[0]
|
||||
src_len = x_len + y_len
|
||||
y_paddind_mask = make_pad_mask_left(y_lens, y_len)
|
||||
x_paddind_mask = make_pad_mask_left(x_lens, max_len)
|
||||
|
||||
# (bsz, x_len + y_len)
|
||||
padding_mask = torch.concat([x_paddind_mask, y_paddind_mask], dim=1)
|
||||
|
||||
x_mask = F.pad(
|
||||
torch.zeros(x_len, x_len, dtype=torch.bool, device=x.device),
|
||||
(0, y_len),
|
||||
value=True,
|
||||
)
|
||||
|
||||
y_mask = F.pad( ###yy的右上1扩展到左边xy的0,(y,x+y)
|
||||
torch.triu(torch.ones(y_len, y_len, dtype=torch.bool, device=x.device), diagonal=1),
|
||||
(x_len, 0),
|
||||
value=False,
|
||||
)
|
||||
|
||||
causal_mask = torch.concat([x_mask, y_mask], dim=0).view(1 , src_len, src_len).repeat(bsz, 1, 1).to(x.device)
|
||||
# padding_mask = padding_mask.unsqueeze(1) * padding_mask.unsqueeze(2) ### [b, x+y, x+y]
|
||||
### 上面是错误的,会导致padding的token被"看见"
|
||||
|
||||
# 正确的padding_mask应该是:
|
||||
# | pad_len | x_len | y_len |
|
||||
# [[PAD, PAD, PAD, 1, 2, 3, 4, 5, 6],
|
||||
# [PAD, PAD, PAD, 1, 2, 3, 4, 5, 6],
|
||||
# [PAD, PAD, PAD, 1, 2, 3, 4, 5, 6], 前3行按理说也应该被mask掉,但是为了防止计算attention时不出现nan,还是保留了,不影响结果
|
||||
# [PAD, PAD, PAD, 1, 2, 3, 4, 5, 6],
|
||||
# [PAD, PAD, PAD, 1, 2, 3, 4, 5, 6],
|
||||
# [PAD, PAD, PAD, 1, 2, 3, 4, 5, 6],
|
||||
# [PAD, PAD, PAD, 1, 2, 3, 4, 5, 6],
|
||||
# [PAD, PAD, PAD, 1, 2, 3, 4, 5, 6],
|
||||
# [PAD, PAD, PAD, 1, 2, 3, 4, 5, 6]]
|
||||
|
||||
padding_mask = padding_mask.view(bsz, 1, src_len).repeat(1, src_len, 1)
|
||||
|
||||
attn_mask:torch.Tensor = causal_mask.logical_or(padding_mask)
|
||||
attn_mask = attn_mask.unsqueeze(1).expand(-1, self.num_head, -1, -1).bool()
|
||||
|
||||
|
||||
# 正确的attn_mask应该是这样的:
|
||||
# | pad_len | x_len | y_len |
|
||||
# [[PAD, PAD, PAD, 1, 2, 3, EOS, EOS, EOS],
|
||||
# [PAD, PAD, PAD, 1, 2, 3, EOS, EOS, EOS],
|
||||
# [PAD, PAD, PAD, 1, 2, 3, EOS, EOS, EOS], 前3行按理说也应该被mask掉,但是为了防止计算attention时不出现nan,还是保留了,不影响结果
|
||||
# [PAD, PAD, PAD, 1, 2, 3, EOS, EOS, EOS],
|
||||
# [PAD, PAD, PAD, 1, 2, 3, EOS, EOS, EOS],
|
||||
# [PAD, PAD, PAD, 1, 2, 3, EOS, EOS, EOS],
|
||||
# [PAD, PAD, PAD, 1, 2, 3, 4, EOS, EOS],
|
||||
# [PAD, PAD, PAD, 1, 2, 3, 4, 5, EOS],
|
||||
# [PAD, PAD, PAD, 1, 2, 3, 4, 5, 6]]
|
||||
|
||||
|
||||
###### decode #####
|
||||
y_list = [None]*y.shape[0]
|
||||
batch_idx_map = list(range(y.shape[0]))
|
||||
idx_list = [None]*y.shape[0]
|
||||
for idx in tqdm(range(1500)):
|
||||
if idx == 0:
|
||||
xy_dec, k_cache, v_cache = self.t2s_transformer.process_prompt(xy_pos, attn_mask, None)
|
||||
else:
|
||||
xy_dec, k_cache, v_cache = self.t2s_transformer.decode_next_token(xy_pos, k_cache, v_cache, attn_mask)
|
||||
logits = self.ar_predict_layer(
|
||||
xy_dec[:, -1]
|
||||
)
|
||||
|
||||
if idx == 0:
|
||||
attn_mask = F.pad(attn_mask[:,:,-1].unsqueeze(-2),(0,1),value=False)
|
||||
logits = logits[:, :-1]
|
||||
else:
|
||||
attn_mask = F.pad(attn_mask,(0,1),value=False)
|
||||
|
||||
samples = sample(
|
||||
logits, y, top_k=top_k, top_p=top_p, repetition_penalty=repetition_penalty, temperature=temperature
|
||||
)[0]
|
||||
|
||||
y = torch.concat([y, samples], dim=1)
|
||||
|
||||
####### 移除batch中已经生成完毕的序列,进一步优化计算量
|
||||
tokens = torch.argmax(logits, dim=-1)
|
||||
reserved_idx_of_batch_for_y = None
|
||||
if (self.EOS in samples[:, 0]) or \
|
||||
(self.EOS in tokens): ###如果生成到EOS,则停止
|
||||
l1 = samples[:, 0]==self.EOS
|
||||
l2 = tokens==self.EOS
|
||||
l = l1.logical_or(l2)
|
||||
removed_idx_of_batch_for_y = torch.where(l==True)[0].tolist()
|
||||
reserved_idx_of_batch_for_y = torch.where(l==False)[0]
|
||||
# batch_indexs = torch.tensor(batch_idx_map, device=y.device)[removed_idx_of_batch_for_y]
|
||||
for i in removed_idx_of_batch_for_y:
|
||||
batch_index = batch_idx_map[i]
|
||||
idx_list[batch_index] = idx
|
||||
y_list[batch_index] = y[i, :-1]
|
||||
|
||||
batch_idx_map = [batch_idx_map[i] for i in reserved_idx_of_batch_for_y.tolist()]
|
||||
|
||||
# 只保留batch中未生成完毕的序列
|
||||
if reserved_idx_of_batch_for_y is not None:
|
||||
# index = torch.LongTensor(batch_idx_map).to(y.device)
|
||||
y = torch.index_select(y, dim=0, index=reserved_idx_of_batch_for_y)
|
||||
attn_mask = torch.index_select(attn_mask, dim=0, index=reserved_idx_of_batch_for_y)
|
||||
if k_cache is not None :
|
||||
for i in range(len(k_cache)):
|
||||
k_cache[i] = torch.index_select(k_cache[i], dim=0, index=reserved_idx_of_batch_for_y)
|
||||
v_cache[i] = torch.index_select(v_cache[i], dim=0, index=reserved_idx_of_batch_for_y)
|
||||
|
||||
|
||||
if (early_stop_num != -1 and (y.shape[1] - prefix_len) > early_stop_num) or idx==1499:
|
||||
print("use early stop num:", early_stop_num)
|
||||
stop = True
|
||||
for i, batch_index in enumerate(batch_idx_map):
|
||||
batch_index = batch_idx_map[i]
|
||||
idx_list[batch_index] = idx
|
||||
y_list[batch_index] = y[i, :-1]
|
||||
|
||||
if not (None in idx_list):
|
||||
stop = True
|
||||
|
||||
if stop:
|
||||
if y.shape[1]==0:
|
||||
y = torch.concat([y, torch.zeros_like(samples)], dim=1)
|
||||
print("bad zero prediction")
|
||||
print(f"T2S Decoding EOS [{prefix_len} -> {y.shape[1]}]")
|
||||
break
|
||||
|
||||
####################### update next step ###################################
|
||||
y_emb = self.ar_audio_embedding(y[:, -1:])
|
||||
xy_pos = y_emb * self.ar_audio_position.x_scale + self.ar_audio_position.alpha * self.ar_audio_position.pe[:, y_len + idx].to( dtype= y_emb.dtype,device=y_emb.device)
|
||||
|
||||
if (None in idx_list):
|
||||
for i in range(x.shape[0]):
|
||||
if idx_list[i] is None:
|
||||
idx_list[i] = 1500-1 ###如果没有生成到EOS,就用最大长度代替
|
||||
|
||||
if ref_free:
|
||||
return y_list, [0]*x.shape[0]
|
||||
# print(idx_list)
|
||||
return y_list, idx_list
|
||||
|
||||
def infer_panel_naive_batched(self,
|
||||
x:List[torch.LongTensor], #####全部文本token
|
||||
x_lens:torch.LongTensor,
|
||||
prompts:torch.LongTensor, ####参考音频token
|
||||
bert_feature:List[torch.LongTensor],
|
||||
top_k: int = -100,
|
||||
top_p: int = 100,
|
||||
early_stop_num: int = -1,
|
||||
temperature: float = 1.0,
|
||||
repetition_penalty: float = 1.35,
|
||||
**kwargs
|
||||
):
|
||||
y_list = []
|
||||
idx_list = []
|
||||
for i in range(len(x)):
|
||||
y, idx = self.infer_panel_naive(x[i].unsqueeze(0),
|
||||
x_lens[i],
|
||||
prompts[i].unsqueeze(0) if prompts is not None else None,
|
||||
bert_feature[i].unsqueeze(0),
|
||||
top_k,
|
||||
top_p,
|
||||
early_stop_num,
|
||||
temperature,
|
||||
repetition_penalty,
|
||||
**kwargs)
|
||||
y_list.append(y[0])
|
||||
idx_list.append(idx)
|
||||
|
||||
return y_list, idx_list
|
||||
|
||||
def infer_panel_naive(
|
||||
self,
|
||||
x:torch.LongTensor, #####全部文本token
|
||||
x_lens:torch.LongTensor,
|
||||
prompts:torch.LongTensor, ####参考音频token
|
||||
bert_feature:torch.LongTensor,
|
||||
top_k: int = -100,
|
||||
top_p: int = 100,
|
||||
early_stop_num: int = -1,
|
||||
temperature: float = 1.0,
|
||||
repetition_penalty: float = 1.35,
|
||||
**kwargs
|
||||
):
|
||||
x = self.ar_text_embedding(x)
|
||||
x = x + self.bert_proj(bert_feature.transpose(1, 2))
|
||||
@ -338,22 +791,14 @@ class Text2SemanticDecoder(nn.Module):
|
||||
|
||||
# AR Decoder
|
||||
y = prompts
|
||||
|
||||
|
||||
x_len = x.shape[1]
|
||||
x_attn_mask = torch.zeros((x_len, x_len), dtype=torch.bool)
|
||||
stop = False
|
||||
# print(1111111,self.num_layers)
|
||||
cache = {
|
||||
"all_stage": self.num_layers,
|
||||
"k": [None] * self.num_layers, ###根据配置自己手写
|
||||
"v": [None] * self.num_layers,
|
||||
# "xy_pos":None,##y_pos位置编码每次都不一样的没法缓存,每次都要重新拼xy_pos.主要还是写法原因,其实是可以历史统一一样的,但也没啥计算量就不管了
|
||||
"y_emb": None, ##只需要对最新的samples求emb,再拼历史的就行
|
||||
# "logits":None,###原版就已经只对结尾求再拼接了,不用管
|
||||
# "xy_dec":None,###不需要,本来只需要最后一个做logits
|
||||
"first_infer": 1,
|
||||
"stage": 0,
|
||||
}
|
||||
|
||||
k_cache = None
|
||||
v_cache = None
|
||||
################### first step ##########################
|
||||
if y is not None:
|
||||
y_emb = self.ar_audio_embedding(y)
|
||||
@ -361,7 +806,6 @@ class Text2SemanticDecoder(nn.Module):
|
||||
prefix_len = y.shape[1]
|
||||
y_pos = self.ar_audio_position(y_emb)
|
||||
xy_pos = torch.concat([x, y_pos], dim=1)
|
||||
cache["y_emb"] = y_emb
|
||||
ref_free = False
|
||||
else:
|
||||
y_emb = None
|
||||
@ -372,77 +816,78 @@ class Text2SemanticDecoder(nn.Module):
|
||||
y = torch.zeros(x.shape[0], 0, dtype=torch.int, device=x.device)
|
||||
ref_free = True
|
||||
|
||||
bsz = x.shape[0]
|
||||
src_len = x_len + y_len
|
||||
x_attn_mask_pad = F.pad(
|
||||
x_attn_mask,
|
||||
(0, y_len), ###xx的纯0扩展到xx纯0+xy纯1,(x,x+y)
|
||||
value=True,
|
||||
)
|
||||
x_attn_mask,
|
||||
(0, y_len), ###xx的纯0扩展到xx纯0+xy纯1,(x,x+y)
|
||||
value=True,
|
||||
)
|
||||
y_attn_mask = F.pad( ###yy的右上1扩展到左边xy的0,(y,x+y)
|
||||
torch.triu(torch.ones(y_len, y_len, dtype=torch.bool), diagonal=1),
|
||||
(x_len, 0),
|
||||
value=False,
|
||||
)
|
||||
xy_attn_mask = torch.concat([x_attn_mask_pad, y_attn_mask], dim=0).to(
|
||||
x.device
|
||||
)
|
||||
|
||||
xy_attn_mask = torch.concat([x_attn_mask_pad, y_attn_mask], dim=0)\
|
||||
.unsqueeze(0)\
|
||||
.expand(bsz*self.num_head, -1, -1)\
|
||||
.view(bsz, self.num_head, src_len, src_len)\
|
||||
.to(device=x.device, dtype=torch.bool)
|
||||
|
||||
for idx in tqdm(range(1500)):
|
||||
|
||||
xy_dec, _ = self.h((xy_pos, None), mask=xy_attn_mask, cache=cache)
|
||||
if xy_attn_mask is not None:
|
||||
xy_dec, k_cache, v_cache = self.t2s_transformer.process_prompt(xy_pos, xy_attn_mask, None)
|
||||
else:
|
||||
xy_dec, k_cache, v_cache = self.t2s_transformer.decode_next_token(xy_pos, k_cache, v_cache)
|
||||
|
||||
logits = self.ar_predict_layer(
|
||||
xy_dec[:, -1]
|
||||
) ##不用改,如果用了cache的默认就是只有一帧,取最后一帧一样的
|
||||
# samples = topk_sampling(logits, top_k=top_k, top_p=1.0, temperature=temperature)
|
||||
if(idx==0):###第一次跑不能EOS否则没有了
|
||||
logits = logits[:, :-1] ###刨除1024终止符号的概率
|
||||
)
|
||||
|
||||
if idx == 0:
|
||||
xy_attn_mask = None
|
||||
if(idx<11):###至少预测出10个token不然不给停止(0.4s)
|
||||
logits = logits[:, :-1]
|
||||
|
||||
samples = sample(
|
||||
logits[0], y, top_k=top_k, top_p=top_p, repetition_penalty=1.35, temperature=temperature
|
||||
)[0].unsqueeze(0)
|
||||
# 本次生成的 semantic_ids 和之前的 y 构成新的 y
|
||||
# print(samples.shape)#[1,1]#第一个1是bs
|
||||
y = torch.concat([y, samples], dim=1)
|
||||
logits, y, top_k=top_k, top_p=top_p, repetition_penalty=repetition_penalty, temperature=temperature
|
||||
)[0]
|
||||
|
||||
y = torch.concat([y, samples], dim=1)
|
||||
|
||||
if early_stop_num != -1 and (y.shape[1] - prefix_len) > early_stop_num:
|
||||
print("use early stop num:", early_stop_num)
|
||||
stop = True
|
||||
|
||||
if torch.argmax(logits, dim=-1)[0] == self.EOS or samples[0, 0] == self.EOS:
|
||||
# print(torch.argmax(logits, dim=-1)[0] == self.EOS, samples[0, 0] == self.EOS)
|
||||
stop = True
|
||||
if stop:
|
||||
# if prompts.shape[1] == y.shape[1]:
|
||||
# y = torch.concat([y, torch.zeros_like(samples)], dim=1)
|
||||
# print("bad zero prediction")
|
||||
if y.shape[1]==0:
|
||||
if y.shape[1] == 0:
|
||||
y = torch.concat([y, torch.zeros_like(samples)], dim=1)
|
||||
print("bad zero prediction")
|
||||
print(f"T2S Decoding EOS [{prefix_len} -> {y.shape[1]}]")
|
||||
break
|
||||
|
||||
####################### update next step ###################################
|
||||
cache["first_infer"] = 0
|
||||
if cache["y_emb"] is not None:
|
||||
y_emb = torch.cat(
|
||||
[cache["y_emb"], self.ar_audio_embedding(y[:, -1:])], dim = 1
|
||||
)
|
||||
cache["y_emb"] = y_emb
|
||||
y_pos = self.ar_audio_position(y_emb)
|
||||
xy_pos = y_pos[:, -1:]
|
||||
else:
|
||||
y_emb = self.ar_audio_embedding(y[:, -1:])
|
||||
cache["y_emb"] = y_emb
|
||||
y_pos = self.ar_audio_position(y_emb)
|
||||
xy_pos = y_pos
|
||||
y_len = y_pos.shape[1]
|
||||
|
||||
###最右边一列(是错的)
|
||||
# xy_attn_mask=torch.ones((1, x_len+y_len), dtype=torch.bool,device=xy_pos.device)
|
||||
# xy_attn_mask[:,-1]=False
|
||||
###最下面一行(是对的)
|
||||
xy_attn_mask = torch.zeros(
|
||||
(1, x_len + y_len), dtype=torch.bool, device=xy_pos.device
|
||||
)
|
||||
####################### update next step ###################################
|
||||
y_emb = self.ar_audio_embedding(y[:, -1:])
|
||||
xy_pos = y_emb * self.ar_audio_position.x_scale + self.ar_audio_position.alpha * self.ar_audio_position.pe[:, y_len + idx].to(dtype=y_emb.dtype,device=y_emb.device)
|
||||
|
||||
if ref_free:
|
||||
return y[:, :-1], 0
|
||||
return y[:, :-1], idx-1
|
||||
return y[:, :-1], idx
|
||||
|
||||
|
||||
def infer_panel(
|
||||
self,
|
||||
x:torch.LongTensor, #####全部文本token
|
||||
x_lens:torch.LongTensor,
|
||||
prompts:torch.LongTensor, ####参考音频token
|
||||
bert_feature:torch.LongTensor,
|
||||
top_k: int = -100,
|
||||
top_p: int = 100,
|
||||
early_stop_num: int = -1,
|
||||
temperature: float = 1.0,
|
||||
repetition_penalty: float = 1.35,
|
||||
**kwargs
|
||||
):
|
||||
return self.infer_panel_naive(x, x_lens, prompts, bert_feature, top_k, top_p, early_stop_num, temperature, repetition_penalty, **kwargs)
|
||||
|
@ -39,6 +39,39 @@ def make_pad_mask(lengths: torch.Tensor, max_len: int = 0) -> torch.Tensor:
|
||||
return expaned_lengths >= lengths.unsqueeze(-1)
|
||||
|
||||
|
||||
def make_pad_mask_left(lengths: torch.Tensor, max_len: int = 0) -> torch.Tensor:
|
||||
"""
|
||||
Args:
|
||||
lengths:
|
||||
A 1-D tensor containing sentence lengths.
|
||||
max_len:
|
||||
The length of masks.
|
||||
Returns:
|
||||
Return a 2-D bool tensor, where masked positions
|
||||
are filled with `True` and non-masked positions are
|
||||
filled with `False`.
|
||||
|
||||
#>>> lengths = torch.tensor([1, 3, 2, 5])
|
||||
#>>> make_pad_mask(lengths)
|
||||
tensor(
|
||||
[
|
||||
[True, True, False],
|
||||
[True, False, False],
|
||||
[True, True, False],
|
||||
...
|
||||
]
|
||||
)
|
||||
"""
|
||||
assert lengths.ndim == 1, lengths.ndim
|
||||
max_len = max(max_len, lengths.max())
|
||||
n = lengths.size(0)
|
||||
seq_range = torch.arange(0, max_len, device=lengths.device)
|
||||
expaned_lengths = seq_range.unsqueeze(0).repeat(n, 1)
|
||||
expaned_lengths -= (max_len-lengths).unsqueeze(-1)
|
||||
|
||||
return expaned_lengths<0
|
||||
|
||||
|
||||
# https://github.com/microsoft/unilm/blob/master/xtune/src/transformers/modeling_utils.py
|
||||
def top_k_top_p_filtering(
|
||||
logits, top_k=0, top_p=1.0, filter_value=-float("Inf"), min_tokens_to_keep=1
|
||||
@ -115,17 +148,17 @@ def logits_to_probs(
|
||||
top_p: Optional[int] = None,
|
||||
repetition_penalty: float = 1.0,
|
||||
):
|
||||
if previous_tokens is not None:
|
||||
previous_tokens = previous_tokens.squeeze()
|
||||
# if previous_tokens is not None:
|
||||
# previous_tokens = previous_tokens.squeeze()
|
||||
# print(logits.shape,previous_tokens.shape)
|
||||
# pdb.set_trace()
|
||||
if previous_tokens is not None and repetition_penalty != 1.0:
|
||||
previous_tokens = previous_tokens.long()
|
||||
score = torch.gather(logits, dim=0, index=previous_tokens)
|
||||
score = torch.gather(logits, dim=1, index=previous_tokens)
|
||||
score = torch.where(
|
||||
score < 0, score * repetition_penalty, score / repetition_penalty
|
||||
)
|
||||
logits.scatter_(dim=0, index=previous_tokens, src=score)
|
||||
logits.scatter_(dim=1, index=previous_tokens, src=score)
|
||||
|
||||
if top_p is not None and top_p < 1.0:
|
||||
sorted_logits, sorted_indices = torch.sort(logits, descending=True)
|
||||
@ -133,9 +166,9 @@ def logits_to_probs(
|
||||
torch.nn.functional.softmax(sorted_logits, dim=-1), dim=-1
|
||||
)
|
||||
sorted_indices_to_remove = cum_probs > top_p
|
||||
sorted_indices_to_remove[0] = False # keep at least one option
|
||||
sorted_indices_to_remove[:, 0] = False # keep at least one option
|
||||
indices_to_remove = sorted_indices_to_remove.scatter(
|
||||
dim=0, index=sorted_indices, src=sorted_indices_to_remove
|
||||
dim=1, index=sorted_indices, src=sorted_indices_to_remove
|
||||
)
|
||||
logits = logits.masked_fill(indices_to_remove, -float("Inf"))
|
||||
|
||||
@ -143,7 +176,7 @@ def logits_to_probs(
|
||||
|
||||
if top_k is not None:
|
||||
v, _ = torch.topk(logits, min(top_k, logits.size(-1)))
|
||||
pivot = v.select(-1, -1).unsqueeze(-1)
|
||||
pivot = v[: , -1].unsqueeze(-1)
|
||||
logits = torch.where(logits < pivot, -float("Inf"), logits)
|
||||
|
||||
probs = torch.nn.functional.softmax(logits, dim=-1)
|
||||
|
@ -12,33 +12,33 @@ import torch
|
||||
|
||||
|
||||
def multi_head_attention_forward_patched(
|
||||
query: Tensor,
|
||||
key: Tensor,
|
||||
value: Tensor,
|
||||
embed_dim_to_check: int,
|
||||
num_heads: int,
|
||||
in_proj_weight: Optional[Tensor],
|
||||
in_proj_bias: Optional[Tensor],
|
||||
bias_k: Optional[Tensor],
|
||||
bias_v: Optional[Tensor],
|
||||
add_zero_attn: bool,
|
||||
query,
|
||||
key,
|
||||
value,
|
||||
embed_dim_to_check,
|
||||
num_heads,
|
||||
in_proj_weight,
|
||||
in_proj_bias,
|
||||
bias_k,
|
||||
bias_v,
|
||||
add_zero_attn,
|
||||
dropout_p: float,
|
||||
out_proj_weight: Tensor,
|
||||
out_proj_bias: Optional[Tensor],
|
||||
training: bool = True,
|
||||
key_padding_mask: Optional[Tensor] = None,
|
||||
need_weights: bool = True,
|
||||
attn_mask: Optional[Tensor] = None,
|
||||
use_separate_proj_weight: bool = False,
|
||||
q_proj_weight: Optional[Tensor] = None,
|
||||
k_proj_weight: Optional[Tensor] = None,
|
||||
v_proj_weight: Optional[Tensor] = None,
|
||||
static_k: Optional[Tensor] = None,
|
||||
static_v: Optional[Tensor] = None,
|
||||
average_attn_weights: bool = True,
|
||||
is_causal: bool = False,
|
||||
out_proj_weight,
|
||||
out_proj_bias,
|
||||
training = True,
|
||||
key_padding_mask = None,
|
||||
need_weights = True,
|
||||
attn_mask = None,
|
||||
use_separate_proj_weight = False,
|
||||
q_proj_weight = None,
|
||||
k_proj_weight = None,
|
||||
v_proj_weight = None,
|
||||
static_k = None,
|
||||
static_v = None,
|
||||
average_attn_weights = True,
|
||||
is_causal = False,
|
||||
cache=None,
|
||||
) -> Tuple[Tensor, Optional[Tensor]]:
|
||||
):
|
||||
r"""
|
||||
Args:
|
||||
query, key, value: map a query and a set of key-value pairs to an output.
|
||||
|
21
GPT_SoVITS/BigVGAN/LICENSE
Normal file
21
GPT_SoVITS/BigVGAN/LICENSE
Normal file
@ -0,0 +1,21 @@
|
||||
MIT License
|
||||
|
||||
Copyright (c) 2024 NVIDIA CORPORATION.
|
||||
|
||||
Permission is hereby granted, free of charge, to any person obtaining a copy
|
||||
of this software and associated documentation files (the "Software"), to deal
|
||||
in the Software without restriction, including without limitation the rights
|
||||
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
||||
copies of the Software, and to permit persons to whom the Software is
|
||||
furnished to do so, subject to the following conditions:
|
||||
|
||||
The above copyright notice and this permission notice shall be included in all
|
||||
copies or substantial portions of the Software.
|
||||
|
||||
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
||||
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
||||
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
||||
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
||||
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
||||
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
||||
SOFTWARE.
|
266
GPT_SoVITS/BigVGAN/README.md
Normal file
266
GPT_SoVITS/BigVGAN/README.md
Normal file
@ -0,0 +1,266 @@
|
||||
## BigVGAN: A Universal Neural Vocoder with Large-Scale Training
|
||||
|
||||
#### Sang-gil Lee, Wei Ping, Boris Ginsburg, Bryan Catanzaro, Sungroh Yoon
|
||||
|
||||
[[Paper]](https://arxiv.org/abs/2206.04658) - [[Code]](https://github.com/NVIDIA/BigVGAN) - [[Showcase]](https://bigvgan-demo.github.io/) - [[Project Page]](https://research.nvidia.com/labs/adlr/projects/bigvgan/) - [[Weights]](https://huggingface.co/collections/nvidia/bigvgan-66959df3d97fd7d98d97dc9a) - [[Demo]](https://huggingface.co/spaces/nvidia/BigVGAN)
|
||||
|
||||
[](https://paperswithcode.com/sota/speech-synthesis-on-libritts?p=bigvgan-a-universal-neural-vocoder-with-large)
|
||||
|
||||
<center><img src="https://user-images.githubusercontent.com/15963413/218609148-881e39df-33af-4af9-ab95-1427c4ebf062.png" width="800"></center>
|
||||
|
||||
## News
|
||||
- **Sep 2024 (v2.4):**
|
||||
- We have updated the pretrained checkpoints trained for 5M steps. This is final release of the BigVGAN-v2 checkpoints.
|
||||
|
||||
- **Jul 2024 (v2.3):**
|
||||
- General refactor and code improvements for improved readability.
|
||||
- Fully fused CUDA kernel of anti-alised activation (upsampling + activation + downsampling) with inference speed benchmark.
|
||||
|
||||
- **Jul 2024 (v2.2):** The repository now includes an interactive local demo using gradio.
|
||||
|
||||
- **Jul 2024 (v2.1):** BigVGAN is now integrated with 🤗 Hugging Face Hub with easy access to inference using pretrained checkpoints. We also provide an interactive demo on Hugging Face Spaces.
|
||||
|
||||
- **Jul 2024 (v2):** We release BigVGAN-v2 along with pretrained checkpoints. Below are the highlights:
|
||||
- Custom CUDA kernel for inference: we provide a fused upsampling + activation kernel written in CUDA for accelerated inference speed. Our test shows 1.5 - 3x faster speed on a single A100 GPU.
|
||||
- Improved discriminator and loss: BigVGAN-v2 is trained using a [multi-scale sub-band CQT discriminator](https://arxiv.org/abs/2311.14957) and a [multi-scale mel spectrogram loss](https://arxiv.org/abs/2306.06546).
|
||||
- Larger training data: BigVGAN-v2 is trained using datasets containing diverse audio types, including speech in multiple languages, environmental sounds, and instruments.
|
||||
- We provide pretrained checkpoints of BigVGAN-v2 using diverse audio configurations, supporting up to 44 kHz sampling rate and 512x upsampling ratio.
|
||||
|
||||
## Installation
|
||||
|
||||
The codebase has been tested on Python `3.10` and PyTorch `2.3.1` conda packages with either `pytorch-cuda=12.1` or `pytorch-cuda=11.8`. Below is an example command to create the conda environment:
|
||||
|
||||
```shell
|
||||
conda create -n bigvgan python=3.10 pytorch torchvision torchaudio pytorch-cuda=12.1 -c pytorch -c nvidia
|
||||
conda activate bigvgan
|
||||
```
|
||||
|
||||
Clone the repository and install dependencies:
|
||||
|
||||
```shell
|
||||
git clone https://github.com/NVIDIA/BigVGAN
|
||||
cd BigVGAN
|
||||
pip install -r requirements.txt
|
||||
```
|
||||
|
||||
## Inference Quickstart using 🤗 Hugging Face Hub
|
||||
|
||||
Below example describes how you can use BigVGAN: load the pretrained BigVGAN generator from Hugging Face Hub, compute mel spectrogram from input waveform, and generate synthesized waveform using the mel spectrogram as the model's input.
|
||||
|
||||
```python
|
||||
device = 'cuda'
|
||||
|
||||
import torch
|
||||
import bigvgan
|
||||
import librosa
|
||||
from meldataset import get_mel_spectrogram
|
||||
|
||||
# instantiate the model. You can optionally set use_cuda_kernel=True for faster inference.
|
||||
model = bigvgan.BigVGAN.from_pretrained('nvidia/bigvgan_v2_24khz_100band_256x', use_cuda_kernel=False)
|
||||
|
||||
# remove weight norm in the model and set to eval mode
|
||||
model.remove_weight_norm()
|
||||
model = model.eval().to(device)
|
||||
|
||||
# load wav file and compute mel spectrogram
|
||||
wav_path = '/path/to/your/audio.wav'
|
||||
wav, sr = librosa.load(wav_path, sr=model.h.sampling_rate, mono=True) # wav is np.ndarray with shape [T_time] and values in [-1, 1]
|
||||
wav = torch.FloatTensor(wav).unsqueeze(0) # wav is FloatTensor with shape [B(1), T_time]
|
||||
|
||||
# compute mel spectrogram from the ground truth audio
|
||||
mel = get_mel_spectrogram(wav, model.h).to(device) # mel is FloatTensor with shape [B(1), C_mel, T_frame]
|
||||
|
||||
# generate waveform from mel
|
||||
with torch.inference_mode():
|
||||
wav_gen = model(mel) # wav_gen is FloatTensor with shape [B(1), 1, T_time] and values in [-1, 1]
|
||||
wav_gen_float = wav_gen.squeeze(0).cpu() # wav_gen is FloatTensor with shape [1, T_time]
|
||||
|
||||
# you can convert the generated waveform to 16 bit linear PCM
|
||||
wav_gen_int16 = (wav_gen_float * 32767.0).numpy().astype('int16') # wav_gen is now np.ndarray with shape [1, T_time] and int16 dtype
|
||||
```
|
||||
|
||||
## Local gradio demo <a href='https://github.com/gradio-app/gradio'><img src='https://img.shields.io/github/stars/gradio-app/gradio'></a>
|
||||
|
||||
You can run a local gradio demo using below command:
|
||||
|
||||
```python
|
||||
pip install -r demo/requirements.txt
|
||||
python demo/app.py
|
||||
```
|
||||
|
||||
## Training
|
||||
|
||||
Create symbolic link to the root of the dataset. The codebase uses filelist with the relative path from the dataset. Below are the example commands for LibriTTS dataset:
|
||||
|
||||
```shell
|
||||
cd filelists/LibriTTS && \
|
||||
ln -s /path/to/your/LibriTTS/train-clean-100 train-clean-100 && \
|
||||
ln -s /path/to/your/LibriTTS/train-clean-360 train-clean-360 && \
|
||||
ln -s /path/to/your/LibriTTS/train-other-500 train-other-500 && \
|
||||
ln -s /path/to/your/LibriTTS/dev-clean dev-clean && \
|
||||
ln -s /path/to/your/LibriTTS/dev-other dev-other && \
|
||||
ln -s /path/to/your/LibriTTS/test-clean test-clean && \
|
||||
ln -s /path/to/your/LibriTTS/test-other test-other && \
|
||||
cd ../..
|
||||
```
|
||||
|
||||
Train BigVGAN model. Below is an example command for training BigVGAN-v2 using LibriTTS dataset at 24kHz with a full 100-band mel spectrogram as input:
|
||||
|
||||
```shell
|
||||
python train.py \
|
||||
--config configs/bigvgan_v2_24khz_100band_256x.json \
|
||||
--input_wavs_dir filelists/LibriTTS \
|
||||
--input_training_file filelists/LibriTTS/train-full.txt \
|
||||
--input_validation_file filelists/LibriTTS/val-full.txt \
|
||||
--list_input_unseen_wavs_dir filelists/LibriTTS filelists/LibriTTS \
|
||||
--list_input_unseen_validation_file filelists/LibriTTS/dev-clean.txt filelists/LibriTTS/dev-other.txt \
|
||||
--checkpoint_path exp/bigvgan_v2_24khz_100band_256x
|
||||
```
|
||||
|
||||
## Synthesis
|
||||
|
||||
Synthesize from BigVGAN model. Below is an example command for generating audio from the model.
|
||||
It computes mel spectrograms using wav files from `--input_wavs_dir` and saves the generated audio to `--output_dir`.
|
||||
|
||||
```shell
|
||||
python inference.py \
|
||||
--checkpoint_file /path/to/your/bigvgan_v2_24khz_100band_256x/bigvgan_generator.pt \
|
||||
--input_wavs_dir /path/to/your/input_wav \
|
||||
--output_dir /path/to/your/output_wav
|
||||
```
|
||||
|
||||
`inference_e2e.py` supports synthesis directly from the mel spectrogram saved in `.npy` format, with shapes `[1, channel, frame]` or `[channel, frame]`.
|
||||
It loads mel spectrograms from `--input_mels_dir` and saves the generated audio to `--output_dir`.
|
||||
|
||||
Make sure that the STFT hyperparameters for mel spectrogram are the same as the model, which are defined in `config.json` of the corresponding model.
|
||||
|
||||
```shell
|
||||
python inference_e2e.py \
|
||||
--checkpoint_file /path/to/your/bigvgan_v2_24khz_100band_256x/bigvgan_generator.pt \
|
||||
--input_mels_dir /path/to/your/input_mel \
|
||||
--output_dir /path/to/your/output_wav
|
||||
```
|
||||
|
||||
## Using Custom CUDA Kernel for Synthesis
|
||||
|
||||
You can apply the fast CUDA inference kernel by using a parameter `use_cuda_kernel` when instantiating BigVGAN:
|
||||
|
||||
```python
|
||||
generator = BigVGAN(h, use_cuda_kernel=True)
|
||||
```
|
||||
|
||||
You can also pass `--use_cuda_kernel` to `inference.py` and `inference_e2e.py` to enable this feature.
|
||||
|
||||
When applied for the first time, it builds the kernel using `nvcc` and `ninja`. If the build succeeds, the kernel is saved to `alias_free_activation/cuda/build` and the model automatically loads the kernel. The codebase has been tested using CUDA `12.1`.
|
||||
|
||||
Please make sure that both are installed in your system and `nvcc` installed in your system matches the version your PyTorch build is using.
|
||||
|
||||
We recommend running `test_cuda_vs_torch_model.py` first to build and check the correctness of the CUDA kernel. See below example command and its output, where it returns `[Success] test CUDA fused vs. plain torch BigVGAN inference`:
|
||||
|
||||
```python
|
||||
python tests/test_cuda_vs_torch_model.py \
|
||||
--checkpoint_file /path/to/your/bigvgan_generator.pt
|
||||
```
|
||||
|
||||
```shell
|
||||
loading plain Pytorch BigVGAN
|
||||
...
|
||||
loading CUDA kernel BigVGAN with auto-build
|
||||
Detected CUDA files, patching ldflags
|
||||
Emitting ninja build file /path/to/your/BigVGAN/alias_free_activation/cuda/build/build.ninja..
|
||||
Building extension module anti_alias_activation_cuda...
|
||||
...
|
||||
Loading extension module anti_alias_activation_cuda...
|
||||
...
|
||||
Loading '/path/to/your/bigvgan_generator.pt'
|
||||
...
|
||||
[Success] test CUDA fused vs. plain torch BigVGAN inference
|
||||
> mean_difference=0.0007238413265440613
|
||||
...
|
||||
```
|
||||
|
||||
If you see `[Fail] test CUDA fused vs. plain torch BigVGAN inference`, it means that the CUDA kernel inference is incorrect. Please check if `nvcc` installed in your system is compatible with your PyTorch version.
|
||||
|
||||
## Pretrained Models
|
||||
|
||||
We provide the [pretrained models on Hugging Face Collections](https://huggingface.co/collections/nvidia/bigvgan-66959df3d97fd7d98d97dc9a).
|
||||
One can download the checkpoints of the generator weight (named `bigvgan_generator.pt`) and its discriminator/optimizer states (named `bigvgan_discriminator_optimizer.pt`) within the listed model repositories.
|
||||
|
||||
| Model Name | Sampling Rate | Mel band | fmax | Upsampling Ratio | Params | Dataset | Steps | Fine-Tuned |
|
||||
|:--------------------------------------------------------------------------------------------------------:|:-------------:|:--------:|:-----:|:----------------:|:------:|:--------------------------:|:-----:|:----------:|
|
||||
| [bigvgan_v2_44khz_128band_512x](https://huggingface.co/nvidia/bigvgan_v2_44khz_128band_512x) | 44 kHz | 128 | 22050 | 512 | 122M | Large-scale Compilation | 5M | No |
|
||||
| [bigvgan_v2_44khz_128band_256x](https://huggingface.co/nvidia/bigvgan_v2_44khz_128band_256x) | 44 kHz | 128 | 22050 | 256 | 112M | Large-scale Compilation | 5M | No |
|
||||
| [bigvgan_v2_24khz_100band_256x](https://huggingface.co/nvidia/bigvgan_v2_24khz_100band_256x) | 24 kHz | 100 | 12000 | 256 | 112M | Large-scale Compilation | 5M | No |
|
||||
| [bigvgan_v2_22khz_80band_256x](https://huggingface.co/nvidia/bigvgan_v2_22khz_80band_256x) | 22 kHz | 80 | 11025 | 256 | 112M | Large-scale Compilation | 5M | No |
|
||||
| [bigvgan_v2_22khz_80band_fmax8k_256x](https://huggingface.co/nvidia/bigvgan_v2_22khz_80band_fmax8k_256x) | 22 kHz | 80 | 8000 | 256 | 112M | Large-scale Compilation | 5M | No |
|
||||
| [bigvgan_24khz_100band](https://huggingface.co/nvidia/bigvgan_24khz_100band) | 24 kHz | 100 | 12000 | 256 | 112M | LibriTTS | 5M | No |
|
||||
| [bigvgan_base_24khz_100band](https://huggingface.co/nvidia/bigvgan_base_24khz_100band) | 24 kHz | 100 | 12000 | 256 | 14M | LibriTTS | 5M | No |
|
||||
| [bigvgan_22khz_80band](https://huggingface.co/nvidia/bigvgan_22khz_80band) | 22 kHz | 80 | 8000 | 256 | 112M | LibriTTS + VCTK + LJSpeech | 5M | No |
|
||||
| [bigvgan_base_22khz_80band](https://huggingface.co/nvidia/bigvgan_base_22khz_80band) | 22 kHz | 80 | 8000 | 256 | 14M | LibriTTS + VCTK + LJSpeech | 5M | No |
|
||||
|
||||
The paper results are based on the original 24kHz BigVGAN models (`bigvgan_24khz_100band` and `bigvgan_base_24khz_100band`) trained on LibriTTS dataset.
|
||||
We also provide 22kHz BigVGAN models with band-limited setup (i.e., fmax=8000) for TTS applications.
|
||||
Note that the checkpoints use `snakebeta` activation with log scale parameterization, which have the best overall quality.
|
||||
|
||||
You can fine-tune the models by:
|
||||
|
||||
1. downloading the checkpoints (both the generator weight and its discriminator/optimizer states)
|
||||
2. resuming training using your audio dataset by specifying `--checkpoint_path` that includes the checkpoints when launching `train.py`
|
||||
|
||||
## Training Details of BigVGAN-v2
|
||||
|
||||
Comapred to the original BigVGAN, the pretrained checkpoints of BigVGAN-v2 used `batch_size=32` with a longer `segment_size=65536` and are trained using 8 A100 GPUs.
|
||||
|
||||
Note that the BigVGAN-v2 `json` config files in `./configs` use `batch_size=4` as default to fit in a single A100 GPU for training. You can fine-tune the models adjusting `batch_size` depending on your GPUs.
|
||||
|
||||
When training BigVGAN-v2 from scratch with small batch size, it can potentially encounter the early divergence problem mentioned in the paper. In such case, we recommend lowering the `clip_grad_norm` value (e.g. `100`) for the early training iterations (e.g. 20000 steps) and increase the value to the default `500`.
|
||||
|
||||
## Evaluation Results of BigVGAN-v2
|
||||
|
||||
Below are the objective results of the 24kHz model (`bigvgan_v2_24khz_100band_256x`) obtained from the LibriTTS `dev` sets. BigVGAN-v2 shows noticeable improvements of the metrics. The model also exhibits reduced perceptual artifacts, especially for non-speech audio.
|
||||
|
||||
| Model | Dataset | Steps | PESQ(↑) | M-STFT(↓) | MCD(↓) | Periodicity(↓) | V/UV F1(↑) |
|
||||
|:----------:|:-----------------------:|:-----:|:---------:|:----------:|:----------:|:--------------:|:----------:|
|
||||
| BigVGAN | LibriTTS | 1M | 4.027 | 0.7997 | 0.3745 | 0.1018 | 0.9598 |
|
||||
| BigVGAN | LibriTTS | 5M | 4.256 | 0.7409 | 0.2988 | 0.0809 | 0.9698 |
|
||||
| BigVGAN-v2 | Large-scale Compilation | 3M | 4.359 | 0.7134 | 0.3060 | 0.0621 | 0.9777 |
|
||||
| BigVGAN-v2 | Large-scale Compilation | 5M | **4.362** | **0.7026** | **0.2903** | **0.0593** | **0.9793** |
|
||||
|
||||
## Speed Benchmark
|
||||
|
||||
Below are the speed and VRAM usage benchmark results of BigVGAN from `tests/test_cuda_vs_torch_model.py`, using `bigvgan_v2_24khz_100band_256x` as a reference model.
|
||||
|
||||
| GPU | num_mel_frame | use_cuda_kernel | Speed (kHz) | Real-time Factor | VRAM (GB) |
|
||||
|:--------------------------:|:-------------:|:---------------:|:-----------:|:----------------:|:---------:|
|
||||
| NVIDIA A100 | 256 | False | 1672.1 | 69.7x | 1.3 |
|
||||
| | | True | 3916.5 | 163.2x | 1.3 |
|
||||
| | 2048 | False | 1899.6 | 79.2x | 1.7 |
|
||||
| | | True | 5330.1 | 222.1x | 1.7 |
|
||||
| | 16384 | False | 1973.8 | 82.2x | 5.0 |
|
||||
| | | True | 5761.7 | 240.1x | 4.4 |
|
||||
| NVIDIA GeForce RTX 3080 | 256 | False | 841.1 | 35.0x | 1.3 |
|
||||
| | | True | 1598.1 | 66.6x | 1.3 |
|
||||
| | 2048 | False | 929.9 | 38.7x | 1.7 |
|
||||
| | | True | 1971.3 | 82.1x | 1.6 |
|
||||
| | 16384 | False | 943.4 | 39.3x | 5.0 |
|
||||
| | | True | 2026.5 | 84.4x | 3.9 |
|
||||
| NVIDIA GeForce RTX 2080 Ti | 256 | False | 515.6 | 21.5x | 1.3 |
|
||||
| | | True | 811.3 | 33.8x | 1.3 |
|
||||
| | 2048 | False | 576.5 | 24.0x | 1.7 |
|
||||
| | | True | 1023.0 | 42.6x | 1.5 |
|
||||
| | 16384 | False | 589.4 | 24.6x | 5.0 |
|
||||
| | | True | 1068.1 | 44.5x | 3.2 |
|
||||
|
||||
## Acknowledgements
|
||||
|
||||
We thank Vijay Anand Korthikanti and Kevin J. Shih for their generous support in implementing the CUDA kernel for inference.
|
||||
|
||||
## References
|
||||
|
||||
- [HiFi-GAN](https://github.com/jik876/hifi-gan) (for generator and multi-period discriminator)
|
||||
- [Snake](https://github.com/EdwardDixon/snake) (for periodic activation)
|
||||
- [Alias-free-torch](https://github.com/junjun3518/alias-free-torch) (for anti-aliasing)
|
||||
- [Julius](https://github.com/adefossez/julius) (for low-pass filter)
|
||||
- [UnivNet](https://github.com/mindslab-ai/univnet) (for multi-resolution discriminator)
|
||||
- [descript-audio-codec](https://github.com/descriptinc/descript-audio-codec) and [vocos](https://github.com/gemelo-ai/vocos) (for multi-band multi-scale STFT discriminator and multi-scale mel spectrogram loss)
|
||||
- [Amphion](https://github.com/open-mmlab/Amphion) (for multi-scale sub-band CQT discriminator)
|
126
GPT_SoVITS/BigVGAN/activations.py
Normal file
126
GPT_SoVITS/BigVGAN/activations.py
Normal file
@ -0,0 +1,126 @@
|
||||
# Implementation adapted from https://github.com/EdwardDixon/snake under the MIT license.
|
||||
# LICENSE is in incl_licenses directory.
|
||||
|
||||
import torch
|
||||
from torch import nn, sin, pow
|
||||
from torch.nn import Parameter
|
||||
|
||||
|
||||
class Snake(nn.Module):
|
||||
"""
|
||||
Implementation of a sine-based periodic activation function
|
||||
Shape:
|
||||
- Input: (B, C, T)
|
||||
- Output: (B, C, T), same shape as the input
|
||||
Parameters:
|
||||
- alpha - trainable parameter
|
||||
References:
|
||||
- This activation function is from this paper by Liu Ziyin, Tilman Hartwig, Masahito Ueda:
|
||||
https://arxiv.org/abs/2006.08195
|
||||
Examples:
|
||||
>>> a1 = snake(256)
|
||||
>>> x = torch.randn(256)
|
||||
>>> x = a1(x)
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self, in_features, alpha=1.0, alpha_trainable=True, alpha_logscale=False
|
||||
):
|
||||
"""
|
||||
Initialization.
|
||||
INPUT:
|
||||
- in_features: shape of the input
|
||||
- alpha: trainable parameter
|
||||
alpha is initialized to 1 by default, higher values = higher-frequency.
|
||||
alpha will be trained along with the rest of your model.
|
||||
"""
|
||||
super(Snake, self).__init__()
|
||||
self.in_features = in_features
|
||||
|
||||
# Initialize alpha
|
||||
self.alpha_logscale = alpha_logscale
|
||||
if self.alpha_logscale: # Log scale alphas initialized to zeros
|
||||
self.alpha = Parameter(torch.zeros(in_features) * alpha)
|
||||
else: # Linear scale alphas initialized to ones
|
||||
self.alpha = Parameter(torch.ones(in_features) * alpha)
|
||||
|
||||
self.alpha.requires_grad = alpha_trainable
|
||||
|
||||
self.no_div_by_zero = 0.000000001
|
||||
|
||||
def forward(self, x):
|
||||
"""
|
||||
Forward pass of the function.
|
||||
Applies the function to the input elementwise.
|
||||
Snake ∶= x + 1/a * sin^2 (xa)
|
||||
"""
|
||||
alpha = self.alpha.unsqueeze(0).unsqueeze(-1) # Line up with x to [B, C, T]
|
||||
if self.alpha_logscale:
|
||||
alpha = torch.exp(alpha)
|
||||
x = x + (1.0 / (alpha + self.no_div_by_zero)) * pow(sin(x * alpha), 2)
|
||||
|
||||
return x
|
||||
|
||||
|
||||
class SnakeBeta(nn.Module):
|
||||
"""
|
||||
A modified Snake function which uses separate parameters for the magnitude of the periodic components
|
||||
Shape:
|
||||
- Input: (B, C, T)
|
||||
- Output: (B, C, T), same shape as the input
|
||||
Parameters:
|
||||
- alpha - trainable parameter that controls frequency
|
||||
- beta - trainable parameter that controls magnitude
|
||||
References:
|
||||
- This activation function is a modified version based on this paper by Liu Ziyin, Tilman Hartwig, Masahito Ueda:
|
||||
https://arxiv.org/abs/2006.08195
|
||||
Examples:
|
||||
>>> a1 = snakebeta(256)
|
||||
>>> x = torch.randn(256)
|
||||
>>> x = a1(x)
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self, in_features, alpha=1.0, alpha_trainable=True, alpha_logscale=False
|
||||
):
|
||||
"""
|
||||
Initialization.
|
||||
INPUT:
|
||||
- in_features: shape of the input
|
||||
- alpha - trainable parameter that controls frequency
|
||||
- beta - trainable parameter that controls magnitude
|
||||
alpha is initialized to 1 by default, higher values = higher-frequency.
|
||||
beta is initialized to 1 by default, higher values = higher-magnitude.
|
||||
alpha will be trained along with the rest of your model.
|
||||
"""
|
||||
super(SnakeBeta, self).__init__()
|
||||
self.in_features = in_features
|
||||
|
||||
# Initialize alpha
|
||||
self.alpha_logscale = alpha_logscale
|
||||
if self.alpha_logscale: # Log scale alphas initialized to zeros
|
||||
self.alpha = Parameter(torch.zeros(in_features) * alpha)
|
||||
self.beta = Parameter(torch.zeros(in_features) * alpha)
|
||||
else: # Linear scale alphas initialized to ones
|
||||
self.alpha = Parameter(torch.ones(in_features) * alpha)
|
||||
self.beta = Parameter(torch.ones(in_features) * alpha)
|
||||
|
||||
self.alpha.requires_grad = alpha_trainable
|
||||
self.beta.requires_grad = alpha_trainable
|
||||
|
||||
self.no_div_by_zero = 0.000000001
|
||||
|
||||
def forward(self, x):
|
||||
"""
|
||||
Forward pass of the function.
|
||||
Applies the function to the input elementwise.
|
||||
SnakeBeta ∶= x + 1/b * sin^2 (xa)
|
||||
"""
|
||||
alpha = self.alpha.unsqueeze(0).unsqueeze(-1) # Line up with x to [B, C, T]
|
||||
beta = self.beta.unsqueeze(0).unsqueeze(-1)
|
||||
if self.alpha_logscale:
|
||||
alpha = torch.exp(alpha)
|
||||
beta = torch.exp(beta)
|
||||
x = x + (1.0 / (beta + self.no_div_by_zero)) * pow(sin(x * alpha), 2)
|
||||
|
||||
return x
|
@ -0,0 +1,77 @@
|
||||
# Copyright (c) 2024 NVIDIA CORPORATION.
|
||||
# Licensed under the MIT license.
|
||||
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
from alias_free_activation.torch.resample import UpSample1d, DownSample1d
|
||||
|
||||
# load fused CUDA kernel: this enables importing anti_alias_activation_cuda
|
||||
from alias_free_activation.cuda import load
|
||||
|
||||
anti_alias_activation_cuda = load.load()
|
||||
|
||||
|
||||
class FusedAntiAliasActivation(torch.autograd.Function):
|
||||
"""
|
||||
Assumes filter size 12, replication padding on upsampling/downsampling, and logscale alpha/beta parameters as inputs.
|
||||
The hyperparameters are hard-coded in the kernel to maximize speed.
|
||||
NOTE: The fused kenrel is incorrect for Activation1d with different hyperparameters.
|
||||
"""
|
||||
|
||||
@staticmethod
|
||||
def forward(ctx, inputs, up_ftr, down_ftr, alpha, beta):
|
||||
activation_results = anti_alias_activation_cuda.forward(
|
||||
inputs, up_ftr, down_ftr, alpha, beta
|
||||
)
|
||||
|
||||
return activation_results
|
||||
|
||||
@staticmethod
|
||||
def backward(ctx, output_grads):
|
||||
raise NotImplementedError
|
||||
return output_grads, None, None
|
||||
|
||||
|
||||
class Activation1d(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
activation,
|
||||
up_ratio: int = 2,
|
||||
down_ratio: int = 2,
|
||||
up_kernel_size: int = 12,
|
||||
down_kernel_size: int = 12,
|
||||
fused: bool = True,
|
||||
):
|
||||
super().__init__()
|
||||
self.up_ratio = up_ratio
|
||||
self.down_ratio = down_ratio
|
||||
self.act = activation
|
||||
self.upsample = UpSample1d(up_ratio, up_kernel_size)
|
||||
self.downsample = DownSample1d(down_ratio, down_kernel_size)
|
||||
|
||||
self.fused = fused # Whether to use fused CUDA kernel or not
|
||||
|
||||
def forward(self, x):
|
||||
if not self.fused:
|
||||
x = self.upsample(x)
|
||||
x = self.act(x)
|
||||
x = self.downsample(x)
|
||||
return x
|
||||
else:
|
||||
if self.act.__class__.__name__ == "Snake":
|
||||
beta = self.act.alpha.data # Snake uses same params for alpha and beta
|
||||
else:
|
||||
beta = (
|
||||
self.act.beta.data
|
||||
) # Snakebeta uses different params for alpha and beta
|
||||
alpha = self.act.alpha.data
|
||||
if (
|
||||
not self.act.alpha_logscale
|
||||
): # Exp baked into cuda kernel, cancel it out with a log
|
||||
alpha = torch.log(alpha)
|
||||
beta = torch.log(beta)
|
||||
|
||||
x = FusedAntiAliasActivation.apply(
|
||||
x, self.upsample.filter, self.downsample.lowpass.filter, alpha, beta
|
||||
)
|
||||
return x
|
@ -0,0 +1,23 @@
|
||||
/* coding=utf-8
|
||||
* Copyright (c) 2024, NVIDIA CORPORATION. All rights reserved.
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
#include <torch/extension.h>
|
||||
|
||||
extern "C" torch::Tensor fwd_cuda(torch::Tensor const &input, torch::Tensor const &up_filter, torch::Tensor const &down_filter, torch::Tensor const &alpha, torch::Tensor const &beta);
|
||||
|
||||
PYBIND11_MODULE(TORCH_EXTENSION_NAME, m) {
|
||||
m.def("forward", &fwd_cuda, "Anti-Alias Activation forward (CUDA)");
|
||||
}
|
@ -0,0 +1,246 @@
|
||||
/* coding=utf-8
|
||||
* Copyright (c) 2024, NVIDIA CORPORATION. All rights reserved.
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
#include <ATen/ATen.h>
|
||||
#include <cuda.h>
|
||||
#include <cuda_runtime.h>
|
||||
#include <cuda_fp16.h>
|
||||
#include <cuda_profiler_api.h>
|
||||
#include <ATen/cuda/CUDAContext.h>
|
||||
#include <torch/extension.h>
|
||||
#include "type_shim.h"
|
||||
#include <assert.h>
|
||||
#include <cfloat>
|
||||
#include <limits>
|
||||
#include <stdint.h>
|
||||
#include <c10/macros/Macros.h>
|
||||
|
||||
namespace
|
||||
{
|
||||
// Hard-coded hyperparameters
|
||||
// WARP_SIZE and WARP_BATCH must match the return values batches_per_warp and
|
||||
constexpr int ELEMENTS_PER_LDG_STG = 1; //(WARP_ITERATIONS < 4) ? 1 : 4;
|
||||
constexpr int BUFFER_SIZE = 32;
|
||||
constexpr int FILTER_SIZE = 12;
|
||||
constexpr int HALF_FILTER_SIZE = 6;
|
||||
constexpr int UPSAMPLE_REPLICATION_PAD = 5; // 5 on each side, matching torch impl
|
||||
constexpr int DOWNSAMPLE_REPLICATION_PAD_LEFT = 5; // matching torch impl
|
||||
constexpr int DOWNSAMPLE_REPLICATION_PAD_RIGHT = 6; // matching torch impl
|
||||
|
||||
template <typename input_t, typename output_t, typename acc_t>
|
||||
__global__ void anti_alias_activation_forward(
|
||||
output_t *dst,
|
||||
const input_t *src,
|
||||
const input_t *up_ftr,
|
||||
const input_t *down_ftr,
|
||||
const input_t *alpha,
|
||||
const input_t *beta,
|
||||
int batch_size,
|
||||
int channels,
|
||||
int seq_len)
|
||||
{
|
||||
// Up and downsample filters
|
||||
input_t up_filter[FILTER_SIZE];
|
||||
input_t down_filter[FILTER_SIZE];
|
||||
|
||||
// Load data from global memory including extra indices reserved for replication paddings
|
||||
input_t elements[2 * FILTER_SIZE + 2 * BUFFER_SIZE + 2 * UPSAMPLE_REPLICATION_PAD] = {0};
|
||||
input_t intermediates[2 * FILTER_SIZE + 2 * BUFFER_SIZE + DOWNSAMPLE_REPLICATION_PAD_LEFT + DOWNSAMPLE_REPLICATION_PAD_RIGHT] = {0};
|
||||
|
||||
// Output stores downsampled output before writing to dst
|
||||
output_t output[BUFFER_SIZE];
|
||||
|
||||
// blockDim/threadIdx = (128, 1, 1)
|
||||
// gridDim/blockIdx = (seq_blocks, channels, batches)
|
||||
int block_offset = (blockIdx.x * 128 * BUFFER_SIZE + seq_len * (blockIdx.y + gridDim.y * blockIdx.z));
|
||||
int local_offset = threadIdx.x * BUFFER_SIZE;
|
||||
int seq_offset = blockIdx.x * 128 * BUFFER_SIZE + local_offset;
|
||||
|
||||
// intermediate have double the seq_len
|
||||
int intermediate_local_offset = threadIdx.x * BUFFER_SIZE * 2;
|
||||
int intermediate_seq_offset = blockIdx.x * 128 * BUFFER_SIZE * 2 + intermediate_local_offset;
|
||||
|
||||
// Get values needed for replication padding before moving pointer
|
||||
const input_t *right_most_pntr = src + (seq_len * (blockIdx.y + gridDim.y * blockIdx.z));
|
||||
input_t seq_left_most_value = right_most_pntr[0];
|
||||
input_t seq_right_most_value = right_most_pntr[seq_len - 1];
|
||||
|
||||
// Move src and dst pointers
|
||||
src += block_offset + local_offset;
|
||||
dst += block_offset + local_offset;
|
||||
|
||||
// Alpha and beta values for snake activatons. Applies exp by default
|
||||
alpha = alpha + blockIdx.y;
|
||||
input_t alpha_val = expf(alpha[0]);
|
||||
beta = beta + blockIdx.y;
|
||||
input_t beta_val = expf(beta[0]);
|
||||
|
||||
#pragma unroll
|
||||
for (int it = 0; it < FILTER_SIZE; it += 1)
|
||||
{
|
||||
up_filter[it] = up_ftr[it];
|
||||
down_filter[it] = down_ftr[it];
|
||||
}
|
||||
|
||||
// Apply replication padding for upsampling, matching torch impl
|
||||
#pragma unroll
|
||||
for (int it = -HALF_FILTER_SIZE; it < BUFFER_SIZE + HALF_FILTER_SIZE; it += 1)
|
||||
{
|
||||
int element_index = seq_offset + it; // index for element
|
||||
if ((element_index < 0) && (element_index >= -UPSAMPLE_REPLICATION_PAD))
|
||||
{
|
||||
elements[2 * (HALF_FILTER_SIZE + it)] = 2 * seq_left_most_value;
|
||||
}
|
||||
if ((element_index >= seq_len) && (element_index < seq_len + UPSAMPLE_REPLICATION_PAD))
|
||||
{
|
||||
elements[2 * (HALF_FILTER_SIZE + it)] = 2 * seq_right_most_value;
|
||||
}
|
||||
if ((element_index >= 0) && (element_index < seq_len))
|
||||
{
|
||||
elements[2 * (HALF_FILTER_SIZE + it)] = 2 * src[it];
|
||||
}
|
||||
}
|
||||
|
||||
// Apply upsampling strided convolution and write to intermediates. It reserves DOWNSAMPLE_REPLICATION_PAD_LEFT for replication padding of the downsampilng conv later
|
||||
#pragma unroll
|
||||
for (int it = 0; it < (2 * BUFFER_SIZE + 2 * FILTER_SIZE); it += 1)
|
||||
{
|
||||
input_t acc = 0.0;
|
||||
int element_index = intermediate_seq_offset + it; // index for intermediate
|
||||
#pragma unroll
|
||||
for (int f_idx = 0; f_idx < FILTER_SIZE; f_idx += 1)
|
||||
{
|
||||
if ((element_index + f_idx) >= 0)
|
||||
{
|
||||
acc += up_filter[f_idx] * elements[it + f_idx];
|
||||
}
|
||||
}
|
||||
intermediates[it + DOWNSAMPLE_REPLICATION_PAD_LEFT] = acc;
|
||||
}
|
||||
|
||||
// Apply activation function. It reserves DOWNSAMPLE_REPLICATION_PAD_LEFT and DOWNSAMPLE_REPLICATION_PAD_RIGHT for replication padding of the downsampilng conv later
|
||||
double no_div_by_zero = 0.000000001;
|
||||
#pragma unroll
|
||||
for (int it = 0; it < 2 * BUFFER_SIZE + 2 * FILTER_SIZE; it += 1)
|
||||
{
|
||||
intermediates[it + DOWNSAMPLE_REPLICATION_PAD_LEFT] += (1.0 / (beta_val + no_div_by_zero)) * sinf(intermediates[it + DOWNSAMPLE_REPLICATION_PAD_LEFT] * alpha_val) * sinf(intermediates[it + DOWNSAMPLE_REPLICATION_PAD_LEFT] * alpha_val);
|
||||
}
|
||||
|
||||
// Apply replication padding before downsampling conv from intermediates
|
||||
#pragma unroll
|
||||
for (int it = 0; it < DOWNSAMPLE_REPLICATION_PAD_LEFT; it += 1)
|
||||
{
|
||||
intermediates[it] = intermediates[DOWNSAMPLE_REPLICATION_PAD_LEFT];
|
||||
}
|
||||
#pragma unroll
|
||||
for (int it = DOWNSAMPLE_REPLICATION_PAD_LEFT + 2 * BUFFER_SIZE + 2 * FILTER_SIZE; it < DOWNSAMPLE_REPLICATION_PAD_LEFT + 2 * BUFFER_SIZE + 2 * FILTER_SIZE + DOWNSAMPLE_REPLICATION_PAD_RIGHT; it += 1)
|
||||
{
|
||||
intermediates[it] = intermediates[DOWNSAMPLE_REPLICATION_PAD_LEFT + 2 * BUFFER_SIZE + 2 * FILTER_SIZE - 1];
|
||||
}
|
||||
|
||||
// Apply downsample strided convolution (assuming stride=2) from intermediates
|
||||
#pragma unroll
|
||||
for (int it = 0; it < BUFFER_SIZE; it += 1)
|
||||
{
|
||||
input_t acc = 0.0;
|
||||
#pragma unroll
|
||||
for (int f_idx = 0; f_idx < FILTER_SIZE; f_idx += 1)
|
||||
{
|
||||
// Add constant DOWNSAMPLE_REPLICATION_PAD_RIGHT to match torch implementation
|
||||
acc += down_filter[f_idx] * intermediates[it * 2 + f_idx + DOWNSAMPLE_REPLICATION_PAD_RIGHT];
|
||||
}
|
||||
output[it] = acc;
|
||||
}
|
||||
|
||||
// Write output to dst
|
||||
#pragma unroll
|
||||
for (int it = 0; it < BUFFER_SIZE; it += ELEMENTS_PER_LDG_STG)
|
||||
{
|
||||
int element_index = seq_offset + it;
|
||||
if (element_index < seq_len)
|
||||
{
|
||||
dst[it] = output[it];
|
||||
}
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
template <typename input_t, typename output_t, typename acc_t>
|
||||
void dispatch_anti_alias_activation_forward(
|
||||
output_t *dst,
|
||||
const input_t *src,
|
||||
const input_t *up_ftr,
|
||||
const input_t *down_ftr,
|
||||
const input_t *alpha,
|
||||
const input_t *beta,
|
||||
int batch_size,
|
||||
int channels,
|
||||
int seq_len)
|
||||
{
|
||||
if (seq_len == 0)
|
||||
{
|
||||
return;
|
||||
}
|
||||
else
|
||||
{
|
||||
// Use 128 threads per block to maximimize gpu utilization
|
||||
constexpr int threads_per_block = 128;
|
||||
constexpr int seq_len_per_block = 4096;
|
||||
int blocks_per_seq_len = (seq_len + seq_len_per_block - 1) / seq_len_per_block;
|
||||
dim3 blocks(blocks_per_seq_len, channels, batch_size);
|
||||
dim3 threads(threads_per_block, 1, 1);
|
||||
|
||||
anti_alias_activation_forward<input_t, output_t, acc_t>
|
||||
<<<blocks, threads, 0, at::cuda::getCurrentCUDAStream()>>>(dst, src, up_ftr, down_ftr, alpha, beta, batch_size, channels, seq_len);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
extern "C" torch::Tensor fwd_cuda(torch::Tensor const &input, torch::Tensor const &up_filter, torch::Tensor const &down_filter, torch::Tensor const &alpha, torch::Tensor const &beta)
|
||||
{
|
||||
// Input is a 3d tensor with dimensions [batches, channels, seq_len]
|
||||
const int batches = input.size(0);
|
||||
const int channels = input.size(1);
|
||||
const int seq_len = input.size(2);
|
||||
|
||||
// Output
|
||||
auto act_options = input.options().requires_grad(false);
|
||||
|
||||
torch::Tensor anti_alias_activation_results =
|
||||
torch::empty({batches, channels, seq_len}, act_options);
|
||||
|
||||
void *input_ptr = static_cast<void *>(input.data_ptr());
|
||||
void *up_filter_ptr = static_cast<void *>(up_filter.data_ptr());
|
||||
void *down_filter_ptr = static_cast<void *>(down_filter.data_ptr());
|
||||
void *alpha_ptr = static_cast<void *>(alpha.data_ptr());
|
||||
void *beta_ptr = static_cast<void *>(beta.data_ptr());
|
||||
void *anti_alias_activation_results_ptr = static_cast<void *>(anti_alias_activation_results.data_ptr());
|
||||
|
||||
DISPATCH_FLOAT_HALF_AND_BFLOAT(
|
||||
input.scalar_type(),
|
||||
"dispatch anti alias activation_forward",
|
||||
dispatch_anti_alias_activation_forward<scalar_t, scalar_t, float>(
|
||||
reinterpret_cast<scalar_t *>(anti_alias_activation_results_ptr),
|
||||
reinterpret_cast<const scalar_t *>(input_ptr),
|
||||
reinterpret_cast<const scalar_t *>(up_filter_ptr),
|
||||
reinterpret_cast<const scalar_t *>(down_filter_ptr),
|
||||
reinterpret_cast<const scalar_t *>(alpha_ptr),
|
||||
reinterpret_cast<const scalar_t *>(beta_ptr),
|
||||
batches,
|
||||
channels,
|
||||
seq_len););
|
||||
return anti_alias_activation_results;
|
||||
}
|
1
GPT_SoVITS/BigVGAN/alias_free_activation/cuda/build/_
Normal file
1
GPT_SoVITS/BigVGAN/alias_free_activation/cuda/build/_
Normal file
@ -0,0 +1 @@
|
||||
|
29
GPT_SoVITS/BigVGAN/alias_free_activation/cuda/compat.h
Normal file
29
GPT_SoVITS/BigVGAN/alias_free_activation/cuda/compat.h
Normal file
@ -0,0 +1,29 @@
|
||||
/* coding=utf-8
|
||||
* Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved.
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
/*This code is copied fron NVIDIA apex:
|
||||
* https://github.com/NVIDIA/apex
|
||||
* with minor changes. */
|
||||
|
||||
#ifndef TORCH_CHECK
|
||||
#define TORCH_CHECK AT_CHECK
|
||||
#endif
|
||||
|
||||
#ifdef VERSION_GE_1_3
|
||||
#define DATA_PTR data_ptr
|
||||
#else
|
||||
#define DATA_PTR data
|
||||
#endif
|
86
GPT_SoVITS/BigVGAN/alias_free_activation/cuda/load.py
Normal file
86
GPT_SoVITS/BigVGAN/alias_free_activation/cuda/load.py
Normal file
@ -0,0 +1,86 @@
|
||||
# Copyright (c) 2024 NVIDIA CORPORATION.
|
||||
# Licensed under the MIT license.
|
||||
|
||||
import os
|
||||
import pathlib
|
||||
import subprocess
|
||||
|
||||
from torch.utils import cpp_extension
|
||||
|
||||
"""
|
||||
Setting this param to a list has a problem of generating different compilation commands (with diferent order of architectures) and leading to recompilation of fused kernels.
|
||||
Set it to empty stringo avoid recompilation and assign arch flags explicity in extra_cuda_cflags below
|
||||
"""
|
||||
os.environ["TORCH_CUDA_ARCH_LIST"] = ""
|
||||
|
||||
|
||||
def load():
|
||||
# Check if cuda 11 is installed for compute capability 8.0
|
||||
cc_flag = []
|
||||
_, bare_metal_major, _ = _get_cuda_bare_metal_version(cpp_extension.CUDA_HOME)
|
||||
if int(bare_metal_major) >= 11:
|
||||
cc_flag.append("-gencode")
|
||||
cc_flag.append("arch=compute_80,code=sm_80")
|
||||
|
||||
# Build path
|
||||
srcpath = pathlib.Path(__file__).parent.absolute()
|
||||
buildpath = srcpath / "build"
|
||||
_create_build_dir(buildpath)
|
||||
|
||||
# Helper function to build the kernels.
|
||||
def _cpp_extention_load_helper(name, sources, extra_cuda_flags):
|
||||
return cpp_extension.load(
|
||||
name=name,
|
||||
sources=sources,
|
||||
build_directory=buildpath,
|
||||
extra_cflags=[
|
||||
"-O3",
|
||||
],
|
||||
extra_cuda_cflags=[
|
||||
"-O3",
|
||||
"-gencode",
|
||||
"arch=compute_70,code=sm_70",
|
||||
"--use_fast_math",
|
||||
]
|
||||
+ extra_cuda_flags
|
||||
+ cc_flag,
|
||||
verbose=True,
|
||||
)
|
||||
|
||||
extra_cuda_flags = [
|
||||
"-U__CUDA_NO_HALF_OPERATORS__",
|
||||
"-U__CUDA_NO_HALF_CONVERSIONS__",
|
||||
"--expt-relaxed-constexpr",
|
||||
"--expt-extended-lambda",
|
||||
]
|
||||
|
||||
sources = [
|
||||
srcpath / "anti_alias_activation.cpp",
|
||||
srcpath / "anti_alias_activation_cuda.cu",
|
||||
]
|
||||
anti_alias_activation_cuda = _cpp_extention_load_helper(
|
||||
"anti_alias_activation_cuda", sources, extra_cuda_flags
|
||||
)
|
||||
|
||||
return anti_alias_activation_cuda
|
||||
|
||||
|
||||
def _get_cuda_bare_metal_version(cuda_dir):
|
||||
raw_output = subprocess.check_output(
|
||||
[cuda_dir + "/bin/nvcc", "-V"], universal_newlines=True
|
||||
)
|
||||
output = raw_output.split()
|
||||
release_idx = output.index("release") + 1
|
||||
release = output[release_idx].split(".")
|
||||
bare_metal_major = release[0]
|
||||
bare_metal_minor = release[1][0]
|
||||
|
||||
return raw_output, bare_metal_major, bare_metal_minor
|
||||
|
||||
|
||||
def _create_build_dir(buildpath):
|
||||
try:
|
||||
os.mkdir(buildpath)
|
||||
except OSError:
|
||||
if not os.path.isdir(buildpath):
|
||||
print(f"Creation of the build directory {buildpath} failed")
|
92
GPT_SoVITS/BigVGAN/alias_free_activation/cuda/type_shim.h
Normal file
92
GPT_SoVITS/BigVGAN/alias_free_activation/cuda/type_shim.h
Normal file
@ -0,0 +1,92 @@
|
||||
/* coding=utf-8
|
||||
* Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved.
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
#include <ATen/ATen.h>
|
||||
#include "compat.h"
|
||||
|
||||
#define DISPATCH_FLOAT_HALF_AND_BFLOAT(TYPE, NAME, ...) \
|
||||
switch (TYPE) \
|
||||
{ \
|
||||
case at::ScalarType::Float: \
|
||||
{ \
|
||||
using scalar_t = float; \
|
||||
__VA_ARGS__; \
|
||||
break; \
|
||||
} \
|
||||
case at::ScalarType::Half: \
|
||||
{ \
|
||||
using scalar_t = at::Half; \
|
||||
__VA_ARGS__; \
|
||||
break; \
|
||||
} \
|
||||
case at::ScalarType::BFloat16: \
|
||||
{ \
|
||||
using scalar_t = at::BFloat16; \
|
||||
__VA_ARGS__; \
|
||||
break; \
|
||||
} \
|
||||
default: \
|
||||
AT_ERROR(#NAME, " not implemented for '", toString(TYPE), "'"); \
|
||||
}
|
||||
|
||||
#define DISPATCH_FLOAT_HALF_AND_BFLOAT_INOUT_TYPES(TYPEIN, TYPEOUT, NAME, ...) \
|
||||
switch (TYPEIN) \
|
||||
{ \
|
||||
case at::ScalarType::Float: \
|
||||
{ \
|
||||
using scalar_t_in = float; \
|
||||
switch (TYPEOUT) \
|
||||
{ \
|
||||
case at::ScalarType::Float: \
|
||||
{ \
|
||||
using scalar_t_out = float; \
|
||||
__VA_ARGS__; \
|
||||
break; \
|
||||
} \
|
||||
case at::ScalarType::Half: \
|
||||
{ \
|
||||
using scalar_t_out = at::Half; \
|
||||
__VA_ARGS__; \
|
||||
break; \
|
||||
} \
|
||||
case at::ScalarType::BFloat16: \
|
||||
{ \
|
||||
using scalar_t_out = at::BFloat16; \
|
||||
__VA_ARGS__; \
|
||||
break; \
|
||||
} \
|
||||
default: \
|
||||
AT_ERROR(#NAME, " not implemented for '", toString(TYPEOUT), "'"); \
|
||||
} \
|
||||
break; \
|
||||
} \
|
||||
case at::ScalarType::Half: \
|
||||
{ \
|
||||
using scalar_t_in = at::Half; \
|
||||
using scalar_t_out = at::Half; \
|
||||
__VA_ARGS__; \
|
||||
break; \
|
||||
} \
|
||||
case at::ScalarType::BFloat16: \
|
||||
{ \
|
||||
using scalar_t_in = at::BFloat16; \
|
||||
using scalar_t_out = at::BFloat16; \
|
||||
__VA_ARGS__; \
|
||||
break; \
|
||||
} \
|
||||
default: \
|
||||
AT_ERROR(#NAME, " not implemented for '", toString(TYPEIN), "'"); \
|
||||
}
|
@ -0,0 +1,6 @@
|
||||
# Adapted from https://github.com/junjun3518/alias-free-torch under the Apache License 2.0
|
||||
# LICENSE is in incl_licenses directory.
|
||||
|
||||
from .filter import *
|
||||
from .resample import *
|
||||
from .act import *
|
30
GPT_SoVITS/BigVGAN/alias_free_activation/torch/act.py
Normal file
30
GPT_SoVITS/BigVGAN/alias_free_activation/torch/act.py
Normal file
@ -0,0 +1,30 @@
|
||||
# Adapted from https://github.com/junjun3518/alias-free-torch under the Apache License 2.0
|
||||
# LICENSE is in incl_licenses directory.
|
||||
|
||||
import torch.nn as nn
|
||||
from .resample import UpSample1d, DownSample1d
|
||||
|
||||
|
||||
class Activation1d(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
activation,
|
||||
up_ratio: int = 2,
|
||||
down_ratio: int = 2,
|
||||
up_kernel_size: int = 12,
|
||||
down_kernel_size: int = 12,
|
||||
):
|
||||
super().__init__()
|
||||
self.up_ratio = up_ratio
|
||||
self.down_ratio = down_ratio
|
||||
self.act = activation
|
||||
self.upsample = UpSample1d(up_ratio, up_kernel_size)
|
||||
self.downsample = DownSample1d(down_ratio, down_kernel_size)
|
||||
|
||||
# x: [B,C,T]
|
||||
def forward(self, x):
|
||||
x = self.upsample(x)
|
||||
x = self.act(x)
|
||||
x = self.downsample(x)
|
||||
|
||||
return x
|
101
GPT_SoVITS/BigVGAN/alias_free_activation/torch/filter.py
Normal file
101
GPT_SoVITS/BigVGAN/alias_free_activation/torch/filter.py
Normal file
@ -0,0 +1,101 @@
|
||||
# Adapted from https://github.com/junjun3518/alias-free-torch under the Apache License 2.0
|
||||
# LICENSE is in incl_licenses directory.
|
||||
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
import torch.nn.functional as F
|
||||
import math
|
||||
|
||||
if "sinc" in dir(torch):
|
||||
sinc = torch.sinc
|
||||
else:
|
||||
# This code is adopted from adefossez's julius.core.sinc under the MIT License
|
||||
# https://adefossez.github.io/julius/julius/core.html
|
||||
# LICENSE is in incl_licenses directory.
|
||||
def sinc(x: torch.Tensor):
|
||||
"""
|
||||
Implementation of sinc, i.e. sin(pi * x) / (pi * x)
|
||||
__Warning__: Different to julius.sinc, the input is multiplied by `pi`!
|
||||
"""
|
||||
return torch.where(
|
||||
x == 0,
|
||||
torch.tensor(1.0, device=x.device, dtype=x.dtype),
|
||||
torch.sin(math.pi * x) / math.pi / x,
|
||||
)
|
||||
|
||||
|
||||
# This code is adopted from adefossez's julius.lowpass.LowPassFilters under the MIT License
|
||||
# https://adefossez.github.io/julius/julius/lowpass.html
|
||||
# LICENSE is in incl_licenses directory.
|
||||
def kaiser_sinc_filter1d(
|
||||
cutoff, half_width, kernel_size
|
||||
): # return filter [1,1,kernel_size]
|
||||
even = kernel_size % 2 == 0
|
||||
half_size = kernel_size // 2
|
||||
|
||||
# For kaiser window
|
||||
delta_f = 4 * half_width
|
||||
A = 2.285 * (half_size - 1) * math.pi * delta_f + 7.95
|
||||
if A > 50.0:
|
||||
beta = 0.1102 * (A - 8.7)
|
||||
elif A >= 21.0:
|
||||
beta = 0.5842 * (A - 21) ** 0.4 + 0.07886 * (A - 21.0)
|
||||
else:
|
||||
beta = 0.0
|
||||
window = torch.kaiser_window(kernel_size, beta=beta, periodic=False)
|
||||
|
||||
# ratio = 0.5/cutoff -> 2 * cutoff = 1 / ratio
|
||||
if even:
|
||||
time = torch.arange(-half_size, half_size) + 0.5
|
||||
else:
|
||||
time = torch.arange(kernel_size) - half_size
|
||||
if cutoff == 0:
|
||||
filter_ = torch.zeros_like(time)
|
||||
else:
|
||||
filter_ = 2 * cutoff * window * sinc(2 * cutoff * time)
|
||||
"""
|
||||
Normalize filter to have sum = 1, otherwise we will have a small leakage of the constant component in the input signal.
|
||||
"""
|
||||
filter_ /= filter_.sum()
|
||||
filter = filter_.view(1, 1, kernel_size)
|
||||
|
||||
return filter
|
||||
|
||||
|
||||
class LowPassFilter1d(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
cutoff=0.5,
|
||||
half_width=0.6,
|
||||
stride: int = 1,
|
||||
padding: bool = True,
|
||||
padding_mode: str = "replicate",
|
||||
kernel_size: int = 12,
|
||||
):
|
||||
"""
|
||||
kernel_size should be even number for stylegan3 setup, in this implementation, odd number is also possible.
|
||||
"""
|
||||
super().__init__()
|
||||
if cutoff < -0.0:
|
||||
raise ValueError("Minimum cutoff must be larger than zero.")
|
||||
if cutoff > 0.5:
|
||||
raise ValueError("A cutoff above 0.5 does not make sense.")
|
||||
self.kernel_size = kernel_size
|
||||
self.even = kernel_size % 2 == 0
|
||||
self.pad_left = kernel_size // 2 - int(self.even)
|
||||
self.pad_right = kernel_size // 2
|
||||
self.stride = stride
|
||||
self.padding = padding
|
||||
self.padding_mode = padding_mode
|
||||
filter = kaiser_sinc_filter1d(cutoff, half_width, kernel_size)
|
||||
self.register_buffer("filter", filter)
|
||||
|
||||
# Input [B, C, T]
|
||||
def forward(self, x):
|
||||
_, C, _ = x.shape
|
||||
|
||||
if self.padding:
|
||||
x = F.pad(x, (self.pad_left, self.pad_right), mode=self.padding_mode)
|
||||
out = F.conv1d(x, self.filter.expand(C, -1, -1), stride=self.stride, groups=C)
|
||||
|
||||
return out
|
58
GPT_SoVITS/BigVGAN/alias_free_activation/torch/resample.py
Normal file
58
GPT_SoVITS/BigVGAN/alias_free_activation/torch/resample.py
Normal file
@ -0,0 +1,58 @@
|
||||
# Adapted from https://github.com/junjun3518/alias-free-torch under the Apache License 2.0
|
||||
# LICENSE is in incl_licenses directory.
|
||||
|
||||
import torch.nn as nn
|
||||
from torch.nn import functional as F
|
||||
from .filter import LowPassFilter1d
|
||||
from .filter import kaiser_sinc_filter1d
|
||||
|
||||
|
||||
class UpSample1d(nn.Module):
|
||||
def __init__(self, ratio=2, kernel_size=None):
|
||||
super().__init__()
|
||||
self.ratio = ratio
|
||||
self.kernel_size = (
|
||||
int(6 * ratio // 2) * 2 if kernel_size is None else kernel_size
|
||||
)
|
||||
self.stride = ratio
|
||||
self.pad = self.kernel_size // ratio - 1
|
||||
self.pad_left = self.pad * self.stride + (self.kernel_size - self.stride) // 2
|
||||
self.pad_right = (
|
||||
self.pad * self.stride + (self.kernel_size - self.stride + 1) // 2
|
||||
)
|
||||
filter = kaiser_sinc_filter1d(
|
||||
cutoff=0.5 / ratio, half_width=0.6 / ratio, kernel_size=self.kernel_size
|
||||
)
|
||||
self.register_buffer("filter", filter)
|
||||
|
||||
# x: [B, C, T]
|
||||
def forward(self, x):
|
||||
_, C, _ = x.shape
|
||||
|
||||
x = F.pad(x, (self.pad, self.pad), mode="replicate")
|
||||
x = self.ratio * F.conv_transpose1d(
|
||||
x, self.filter.expand(C, -1, -1), stride=self.stride, groups=C
|
||||
)
|
||||
x = x[..., self.pad_left : -self.pad_right]
|
||||
|
||||
return x
|
||||
|
||||
|
||||
class DownSample1d(nn.Module):
|
||||
def __init__(self, ratio=2, kernel_size=None):
|
||||
super().__init__()
|
||||
self.ratio = ratio
|
||||
self.kernel_size = (
|
||||
int(6 * ratio // 2) * 2 if kernel_size is None else kernel_size
|
||||
)
|
||||
self.lowpass = LowPassFilter1d(
|
||||
cutoff=0.5 / ratio,
|
||||
half_width=0.6 / ratio,
|
||||
stride=ratio,
|
||||
kernel_size=self.kernel_size,
|
||||
)
|
||||
|
||||
def forward(self, x):
|
||||
xx = self.lowpass(x)
|
||||
|
||||
return xx
|
493
GPT_SoVITS/BigVGAN/bigvgan.py
Normal file
493
GPT_SoVITS/BigVGAN/bigvgan.py
Normal file
@ -0,0 +1,493 @@
|
||||
# Copyright (c) 2024 NVIDIA CORPORATION.
|
||||
# Licensed under the MIT license.
|
||||
|
||||
# Adapted from https://github.com/jik876/hifi-gan under the MIT license.
|
||||
# LICENSE is in incl_licenses directory.
|
||||
|
||||
import os
|
||||
import json
|
||||
from pathlib import Path
|
||||
from typing import Optional, Union, Dict
|
||||
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
from torch.nn import Conv1d, ConvTranspose1d
|
||||
from torch.nn.utils import weight_norm, remove_weight_norm
|
||||
|
||||
from . import activations
|
||||
from .utils0 import init_weights, get_padding
|
||||
from .alias_free_activation.torch.act import Activation1d as TorchActivation1d
|
||||
from .env import AttrDict
|
||||
|
||||
from huggingface_hub import PyTorchModelHubMixin, hf_hub_download
|
||||
|
||||
|
||||
def load_hparams_from_json(path) -> AttrDict:
|
||||
with open(path) as f:
|
||||
data = f.read()
|
||||
return AttrDict(json.loads(data))
|
||||
|
||||
|
||||
class AMPBlock1(torch.nn.Module):
|
||||
"""
|
||||
AMPBlock applies Snake / SnakeBeta activation functions with trainable parameters that control periodicity, defined for each layer.
|
||||
AMPBlock1 has additional self.convs2 that contains additional Conv1d layers with a fixed dilation=1 followed by each layer in self.convs1
|
||||
|
||||
Args:
|
||||
h (AttrDict): Hyperparameters.
|
||||
channels (int): Number of convolution channels.
|
||||
kernel_size (int): Size of the convolution kernel. Default is 3.
|
||||
dilation (tuple): Dilation rates for the convolutions. Each dilation layer has two convolutions. Default is (1, 3, 5).
|
||||
activation (str): Activation function type. Should be either 'snake' or 'snakebeta'. Default is None.
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
h: AttrDict,
|
||||
channels: int,
|
||||
kernel_size: int = 3,
|
||||
dilation: tuple = (1, 3, 5),
|
||||
activation: str = None,
|
||||
):
|
||||
super().__init__()
|
||||
|
||||
self.h = h
|
||||
|
||||
self.convs1 = nn.ModuleList(
|
||||
[
|
||||
weight_norm(
|
||||
Conv1d(
|
||||
channels,
|
||||
channels,
|
||||
kernel_size,
|
||||
stride=1,
|
||||
dilation=d,
|
||||
padding=get_padding(kernel_size, d),
|
||||
)
|
||||
)
|
||||
for d in dilation
|
||||
]
|
||||
)
|
||||
self.convs1.apply(init_weights)
|
||||
|
||||
self.convs2 = nn.ModuleList(
|
||||
[
|
||||
weight_norm(
|
||||
Conv1d(
|
||||
channels,
|
||||
channels,
|
||||
kernel_size,
|
||||
stride=1,
|
||||
dilation=1,
|
||||
padding=get_padding(kernel_size, 1),
|
||||
)
|
||||
)
|
||||
for _ in range(len(dilation))
|
||||
]
|
||||
)
|
||||
self.convs2.apply(init_weights)
|
||||
|
||||
self.num_layers = len(self.convs1) + len(
|
||||
self.convs2
|
||||
) # Total number of conv layers
|
||||
|
||||
# Select which Activation1d, lazy-load cuda version to ensure backward compatibility
|
||||
if self.h.get("use_cuda_kernel", False):
|
||||
from .alias_free_activation.cuda.activation1d import (
|
||||
Activation1d as CudaActivation1d,
|
||||
)
|
||||
|
||||
Activation1d = CudaActivation1d
|
||||
else:
|
||||
Activation1d = TorchActivation1d
|
||||
|
||||
# Activation functions
|
||||
if activation == "snake":
|
||||
self.activations = nn.ModuleList(
|
||||
[
|
||||
Activation1d(
|
||||
activation=activations.Snake(
|
||||
channels, alpha_logscale=h.snake_logscale
|
||||
)
|
||||
)
|
||||
for _ in range(self.num_layers)
|
||||
]
|
||||
)
|
||||
elif activation == "snakebeta":
|
||||
self.activations = nn.ModuleList(
|
||||
[
|
||||
Activation1d(
|
||||
activation=activations.SnakeBeta(
|
||||
channels, alpha_logscale=h.snake_logscale
|
||||
)
|
||||
)
|
||||
for _ in range(self.num_layers)
|
||||
]
|
||||
)
|
||||
else:
|
||||
raise NotImplementedError(
|
||||
"activation incorrectly specified. check the config file and look for 'activation'."
|
||||
)
|
||||
|
||||
def forward(self, x):
|
||||
acts1, acts2 = self.activations[::2], self.activations[1::2]
|
||||
for c1, c2, a1, a2 in zip(self.convs1, self.convs2, acts1, acts2):
|
||||
xt = a1(x)
|
||||
xt = c1(xt)
|
||||
xt = a2(xt)
|
||||
xt = c2(xt)
|
||||
x = xt + x
|
||||
|
||||
return x
|
||||
|
||||
def remove_weight_norm(self):
|
||||
for l in self.convs1:
|
||||
remove_weight_norm(l)
|
||||
for l in self.convs2:
|
||||
remove_weight_norm(l)
|
||||
|
||||
|
||||
class AMPBlock2(torch.nn.Module):
|
||||
"""
|
||||
AMPBlock applies Snake / SnakeBeta activation functions with trainable parameters that control periodicity, defined for each layer.
|
||||
Unlike AMPBlock1, AMPBlock2 does not contain extra Conv1d layers with fixed dilation=1
|
||||
|
||||
Args:
|
||||
h (AttrDict): Hyperparameters.
|
||||
channels (int): Number of convolution channels.
|
||||
kernel_size (int): Size of the convolution kernel. Default is 3.
|
||||
dilation (tuple): Dilation rates for the convolutions. Each dilation layer has two convolutions. Default is (1, 3, 5).
|
||||
activation (str): Activation function type. Should be either 'snake' or 'snakebeta'. Default is None.
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
h: AttrDict,
|
||||
channels: int,
|
||||
kernel_size: int = 3,
|
||||
dilation: tuple = (1, 3, 5),
|
||||
activation: str = None,
|
||||
):
|
||||
super().__init__()
|
||||
|
||||
self.h = h
|
||||
|
||||
self.convs = nn.ModuleList(
|
||||
[
|
||||
weight_norm(
|
||||
Conv1d(
|
||||
channels,
|
||||
channels,
|
||||
kernel_size,
|
||||
stride=1,
|
||||
dilation=d,
|
||||
padding=get_padding(kernel_size, d),
|
||||
)
|
||||
)
|
||||
for d in dilation
|
||||
]
|
||||
)
|
||||
self.convs.apply(init_weights)
|
||||
|
||||
self.num_layers = len(self.convs) # Total number of conv layers
|
||||
|
||||
# Select which Activation1d, lazy-load cuda version to ensure backward compatibility
|
||||
if self.h.get("use_cuda_kernel", False):
|
||||
from .alias_free_activation.cuda.activation1d import (
|
||||
Activation1d as CudaActivation1d,
|
||||
)
|
||||
|
||||
Activation1d = CudaActivation1d
|
||||
else:
|
||||
Activation1d = TorchActivation1d
|
||||
|
||||
# Activation functions
|
||||
if activation == "snake":
|
||||
self.activations = nn.ModuleList(
|
||||
[
|
||||
Activation1d(
|
||||
activation=activations.Snake(
|
||||
channels, alpha_logscale=h.snake_logscale
|
||||
)
|
||||
)
|
||||
for _ in range(self.num_layers)
|
||||
]
|
||||
)
|
||||
elif activation == "snakebeta":
|
||||
self.activations = nn.ModuleList(
|
||||
[
|
||||
Activation1d(
|
||||
activation=activations.SnakeBeta(
|
||||
channels, alpha_logscale=h.snake_logscale
|
||||
)
|
||||
)
|
||||
for _ in range(self.num_layers)
|
||||
]
|
||||
)
|
||||
else:
|
||||
raise NotImplementedError(
|
||||
"activation incorrectly specified. check the config file and look for 'activation'."
|
||||
)
|
||||
|
||||
def forward(self, x):
|
||||
for c, a in zip(self.convs, self.activations):
|
||||
xt = a(x)
|
||||
xt = c(xt)
|
||||
x = xt + x
|
||||
return x
|
||||
|
||||
def remove_weight_norm(self):
|
||||
for l in self.convs:
|
||||
remove_weight_norm(l)
|
||||
|
||||
|
||||
class BigVGAN(
|
||||
torch.nn.Module,
|
||||
PyTorchModelHubMixin,
|
||||
# library_name="bigvgan",
|
||||
# repo_url="https://github.com/NVIDIA/BigVGAN",
|
||||
# docs_url="https://github.com/NVIDIA/BigVGAN/blob/main/README.md",
|
||||
# pipeline_tag="audio-to-audio",
|
||||
# license="mit",
|
||||
# tags=["neural-vocoder", "audio-generation", "arxiv:2206.04658"],
|
||||
):
|
||||
"""
|
||||
BigVGAN is a neural vocoder model that applies anti-aliased periodic activation for residual blocks (resblocks).
|
||||
New in BigVGAN-v2: it can optionally use optimized CUDA kernels for AMP (anti-aliased multi-periodicity) blocks.
|
||||
|
||||
Args:
|
||||
h (AttrDict): Hyperparameters.
|
||||
use_cuda_kernel (bool): If set to True, loads optimized CUDA kernels for AMP. This should be used for inference only, as training is not supported with CUDA kernels.
|
||||
|
||||
Note:
|
||||
- The `use_cuda_kernel` parameter should be used for inference only, as training with CUDA kernels is not supported.
|
||||
- Ensure that the activation function is correctly specified in the hyperparameters (h.activation).
|
||||
"""
|
||||
|
||||
def __init__(self, h: AttrDict, use_cuda_kernel: bool = False):
|
||||
super().__init__()
|
||||
self.h = h
|
||||
self.h["use_cuda_kernel"] = use_cuda_kernel
|
||||
|
||||
# Select which Activation1d, lazy-load cuda version to ensure backward compatibility
|
||||
if self.h.get("use_cuda_kernel", False):
|
||||
from .alias_free_activation.cuda.activation1d import (
|
||||
Activation1d as CudaActivation1d,
|
||||
)
|
||||
|
||||
Activation1d = CudaActivation1d
|
||||
else:
|
||||
Activation1d = TorchActivation1d
|
||||
|
||||
self.num_kernels = len(h.resblock_kernel_sizes)
|
||||
self.num_upsamples = len(h.upsample_rates)
|
||||
|
||||
# Pre-conv
|
||||
self.conv_pre = weight_norm(
|
||||
Conv1d(h.num_mels, h.upsample_initial_channel, 7, 1, padding=3)
|
||||
)
|
||||
|
||||
# Define which AMPBlock to use. BigVGAN uses AMPBlock1 as default
|
||||
if h.resblock == "1":
|
||||
resblock_class = AMPBlock1
|
||||
elif h.resblock == "2":
|
||||
resblock_class = AMPBlock2
|
||||
else:
|
||||
raise ValueError(
|
||||
f"Incorrect resblock class specified in hyperparameters. Got {h.resblock}"
|
||||
)
|
||||
|
||||
# Transposed conv-based upsamplers. does not apply anti-aliasing
|
||||
self.ups = nn.ModuleList()
|
||||
for i, (u, k) in enumerate(zip(h.upsample_rates, h.upsample_kernel_sizes)):
|
||||
self.ups.append(
|
||||
nn.ModuleList(
|
||||
[
|
||||
weight_norm(
|
||||
ConvTranspose1d(
|
||||
h.upsample_initial_channel // (2**i),
|
||||
h.upsample_initial_channel // (2 ** (i + 1)),
|
||||
k,
|
||||
u,
|
||||
padding=(k - u) // 2,
|
||||
)
|
||||
)
|
||||
]
|
||||
)
|
||||
)
|
||||
|
||||
# Residual blocks using anti-aliased multi-periodicity composition modules (AMP)
|
||||
self.resblocks = nn.ModuleList()
|
||||
for i in range(len(self.ups)):
|
||||
ch = h.upsample_initial_channel // (2 ** (i + 1))
|
||||
for j, (k, d) in enumerate(
|
||||
zip(h.resblock_kernel_sizes, h.resblock_dilation_sizes)
|
||||
):
|
||||
self.resblocks.append(
|
||||
resblock_class(h, ch, k, d, activation=h.activation)
|
||||
)
|
||||
|
||||
# Post-conv
|
||||
activation_post = (
|
||||
activations.Snake(ch, alpha_logscale=h.snake_logscale)
|
||||
if h.activation == "snake"
|
||||
else (
|
||||
activations.SnakeBeta(ch, alpha_logscale=h.snake_logscale)
|
||||
if h.activation == "snakebeta"
|
||||
else None
|
||||
)
|
||||
)
|
||||
if activation_post is None:
|
||||
raise NotImplementedError(
|
||||
"activation incorrectly specified. check the config file and look for 'activation'."
|
||||
)
|
||||
|
||||
self.activation_post = Activation1d(activation=activation_post)
|
||||
|
||||
# Whether to use bias for the final conv_post. Default to True for backward compatibility
|
||||
self.use_bias_at_final = h.get("use_bias_at_final", True)
|
||||
self.conv_post = weight_norm(
|
||||
Conv1d(ch, 1, 7, 1, padding=3, bias=self.use_bias_at_final)
|
||||
)
|
||||
|
||||
# Weight initialization
|
||||
for i in range(len(self.ups)):
|
||||
self.ups[i].apply(init_weights)
|
||||
self.conv_post.apply(init_weights)
|
||||
|
||||
# Final tanh activation. Defaults to True for backward compatibility
|
||||
self.use_tanh_at_final = h.get("use_tanh_at_final", True)
|
||||
|
||||
def forward(self, x):
|
||||
# Pre-conv
|
||||
x = self.conv_pre(x)
|
||||
|
||||
for i in range(self.num_upsamples):
|
||||
# Upsampling
|
||||
for i_up in range(len(self.ups[i])):
|
||||
x = self.ups[i][i_up](x)
|
||||
# AMP blocks
|
||||
xs = None
|
||||
for j in range(self.num_kernels):
|
||||
if xs is None:
|
||||
xs = self.resblocks[i * self.num_kernels + j](x)
|
||||
else:
|
||||
xs += self.resblocks[i * self.num_kernels + j](x)
|
||||
x = xs / self.num_kernels
|
||||
|
||||
# Post-conv
|
||||
x = self.activation_post(x)
|
||||
x = self.conv_post(x)
|
||||
# Final tanh activation
|
||||
if self.use_tanh_at_final:
|
||||
x = torch.tanh(x)
|
||||
else:
|
||||
x = torch.clamp(x, min=-1.0, max=1.0) # Bound the output to [-1, 1]
|
||||
|
||||
return x
|
||||
|
||||
def remove_weight_norm(self):
|
||||
try:
|
||||
# print("Removing weight norm...")
|
||||
for l in self.ups:
|
||||
for l_i in l:
|
||||
remove_weight_norm(l_i)
|
||||
for l in self.resblocks:
|
||||
l.remove_weight_norm()
|
||||
remove_weight_norm(self.conv_pre)
|
||||
remove_weight_norm(self.conv_post)
|
||||
except ValueError:
|
||||
print("[INFO] Model already removed weight norm. Skipping!")
|
||||
pass
|
||||
|
||||
# Additional methods for huggingface_hub support
|
||||
def _save_pretrained(self, save_directory: Path) -> None:
|
||||
"""Save weights and config.json from a Pytorch model to a local directory."""
|
||||
|
||||
model_path = save_directory / "bigvgan_generator.pt"
|
||||
torch.save({"generator": self.state_dict()}, model_path)
|
||||
|
||||
config_path = save_directory / "config.json"
|
||||
with open(config_path, "w") as config_file:
|
||||
json.dump(self.h, config_file, indent=4)
|
||||
|
||||
@classmethod
|
||||
def _from_pretrained(
|
||||
cls,
|
||||
*,
|
||||
model_id: str,
|
||||
revision: str,
|
||||
cache_dir: str,
|
||||
force_download: bool,
|
||||
proxies: Optional[Dict],
|
||||
resume_download: bool,
|
||||
local_files_only: bool,
|
||||
token: Union[str, bool, None],
|
||||
map_location: str = "cpu", # Additional argument
|
||||
strict: bool = False, # Additional argument
|
||||
use_cuda_kernel: bool = False,
|
||||
**model_kwargs,
|
||||
):
|
||||
"""Load Pytorch pretrained weights and return the loaded model."""
|
||||
|
||||
# Download and load hyperparameters (h) used by BigVGAN
|
||||
if os.path.isdir(model_id):
|
||||
# print("Loading config.json from local directory")
|
||||
config_file = os.path.join(model_id, "config.json")
|
||||
else:
|
||||
config_file = hf_hub_download(
|
||||
repo_id=model_id,
|
||||
filename="config.json",
|
||||
revision=revision,
|
||||
cache_dir=cache_dir,
|
||||
force_download=force_download,
|
||||
proxies=proxies,
|
||||
resume_download=resume_download,
|
||||
token=token,
|
||||
local_files_only=local_files_only,
|
||||
)
|
||||
h = load_hparams_from_json(config_file)
|
||||
|
||||
# instantiate BigVGAN using h
|
||||
if use_cuda_kernel:
|
||||
print(
|
||||
f"[WARNING] You have specified use_cuda_kernel=True during BigVGAN.from_pretrained(). Only inference is supported (training is not implemented)!"
|
||||
)
|
||||
print(
|
||||
f"[WARNING] You need nvcc and ninja installed in your system that matches your PyTorch build is using to build the kernel. If not, the model will fail to initialize or generate incorrect waveform!"
|
||||
)
|
||||
print(
|
||||
f"[WARNING] For detail, see the official GitHub repository: https://github.com/NVIDIA/BigVGAN?tab=readme-ov-file#using-custom-cuda-kernel-for-synthesis"
|
||||
)
|
||||
model = cls(h, use_cuda_kernel=use_cuda_kernel)
|
||||
|
||||
# Download and load pretrained generator weight
|
||||
if os.path.isdir(model_id):
|
||||
# print("Loading weights from local directory")
|
||||
model_file = os.path.join(model_id, "bigvgan_generator.pt")
|
||||
else:
|
||||
# print(f"Loading weights from {model_id}")
|
||||
model_file = hf_hub_download(
|
||||
repo_id=model_id,
|
||||
filename="bigvgan_generator.pt",
|
||||
revision=revision,
|
||||
cache_dir=cache_dir,
|
||||
force_download=force_download,
|
||||
proxies=proxies,
|
||||
resume_download=resume_download,
|
||||
token=token,
|
||||
local_files_only=local_files_only,
|
||||
)
|
||||
|
||||
checkpoint_dict = torch.load(model_file, map_location=map_location)
|
||||
|
||||
try:
|
||||
model.load_state_dict(checkpoint_dict["generator"])
|
||||
except RuntimeError:
|
||||
print(
|
||||
f"[INFO] the pretrained checkpoint does not contain weight norm. Loading the checkpoint after removing weight norm!"
|
||||
)
|
||||
model.remove_weight_norm()
|
||||
model.load_state_dict(checkpoint_dict["generator"])
|
||||
|
||||
return model
|
45
GPT_SoVITS/BigVGAN/configs/bigvgan_22khz_80band.json
Normal file
45
GPT_SoVITS/BigVGAN/configs/bigvgan_22khz_80band.json
Normal file
@ -0,0 +1,45 @@
|
||||
{
|
||||
"resblock": "1",
|
||||
"num_gpus": 0,
|
||||
"batch_size": 32,
|
||||
"learning_rate": 0.0001,
|
||||
"adam_b1": 0.8,
|
||||
"adam_b2": 0.99,
|
||||
"lr_decay": 0.9999996,
|
||||
"seed": 1234,
|
||||
|
||||
"upsample_rates": [4,4,2,2,2,2],
|
||||
"upsample_kernel_sizes": [8,8,4,4,4,4],
|
||||
"upsample_initial_channel": 1536,
|
||||
"resblock_kernel_sizes": [3,7,11],
|
||||
"resblock_dilation_sizes": [[1,3,5], [1,3,5], [1,3,5]],
|
||||
|
||||
"activation": "snakebeta",
|
||||
"snake_logscale": true,
|
||||
|
||||
"resolutions": [[1024, 120, 600], [2048, 240, 1200], [512, 50, 240]],
|
||||
"mpd_reshapes": [2, 3, 5, 7, 11],
|
||||
"use_spectral_norm": false,
|
||||
"discriminator_channel_mult": 1,
|
||||
|
||||
"segment_size": 8192,
|
||||
"num_mels": 80,
|
||||
"num_freq": 1025,
|
||||
"n_fft": 1024,
|
||||
"hop_size": 256,
|
||||
"win_size": 1024,
|
||||
|
||||
"sampling_rate": 22050,
|
||||
|
||||
"fmin": 0,
|
||||
"fmax": 8000,
|
||||
"fmax_for_loss": null,
|
||||
|
||||
"num_workers": 4,
|
||||
|
||||
"dist_config": {
|
||||
"dist_backend": "nccl",
|
||||
"dist_url": "tcp://localhost:54321",
|
||||
"world_size": 1
|
||||
}
|
||||
}
|
45
GPT_SoVITS/BigVGAN/configs/bigvgan_24khz_100band.json
Normal file
45
GPT_SoVITS/BigVGAN/configs/bigvgan_24khz_100band.json
Normal file
@ -0,0 +1,45 @@
|
||||
{
|
||||
"resblock": "1",
|
||||
"num_gpus": 0,
|
||||
"batch_size": 32,
|
||||
"learning_rate": 0.0001,
|
||||
"adam_b1": 0.8,
|
||||
"adam_b2": 0.99,
|
||||
"lr_decay": 0.9999996,
|
||||
"seed": 1234,
|
||||
|
||||
"upsample_rates": [4,4,2,2,2,2],
|
||||
"upsample_kernel_sizes": [8,8,4,4,4,4],
|
||||
"upsample_initial_channel": 1536,
|
||||
"resblock_kernel_sizes": [3,7,11],
|
||||
"resblock_dilation_sizes": [[1,3,5], [1,3,5], [1,3,5]],
|
||||
|
||||
"activation": "snakebeta",
|
||||
"snake_logscale": true,
|
||||
|
||||
"resolutions": [[1024, 120, 600], [2048, 240, 1200], [512, 50, 240]],
|
||||
"mpd_reshapes": [2, 3, 5, 7, 11],
|
||||
"use_spectral_norm": false,
|
||||
"discriminator_channel_mult": 1,
|
||||
|
||||
"segment_size": 8192,
|
||||
"num_mels": 100,
|
||||
"num_freq": 1025,
|
||||
"n_fft": 1024,
|
||||
"hop_size": 256,
|
||||
"win_size": 1024,
|
||||
|
||||
"sampling_rate": 24000,
|
||||
|
||||
"fmin": 0,
|
||||
"fmax": 12000,
|
||||
"fmax_for_loss": null,
|
||||
|
||||
"num_workers": 4,
|
||||
|
||||
"dist_config": {
|
||||
"dist_backend": "nccl",
|
||||
"dist_url": "tcp://localhost:54321",
|
||||
"world_size": 1
|
||||
}
|
||||
}
|
45
GPT_SoVITS/BigVGAN/configs/bigvgan_base_22khz_80band.json
Normal file
45
GPT_SoVITS/BigVGAN/configs/bigvgan_base_22khz_80band.json
Normal file
@ -0,0 +1,45 @@
|
||||
{
|
||||
"resblock": "1",
|
||||
"num_gpus": 0,
|
||||
"batch_size": 32,
|
||||
"learning_rate": 0.0001,
|
||||
"adam_b1": 0.8,
|
||||
"adam_b2": 0.99,
|
||||
"lr_decay": 0.9999996,
|
||||
"seed": 1234,
|
||||
|
||||
"upsample_rates": [8,8,2,2],
|
||||
"upsample_kernel_sizes": [16,16,4,4],
|
||||
"upsample_initial_channel": 512,
|
||||
"resblock_kernel_sizes": [3,7,11],
|
||||
"resblock_dilation_sizes": [[1,3,5], [1,3,5], [1,3,5]],
|
||||
|
||||
"activation": "snakebeta",
|
||||
"snake_logscale": true,
|
||||
|
||||
"resolutions": [[1024, 120, 600], [2048, 240, 1200], [512, 50, 240]],
|
||||
"mpd_reshapes": [2, 3, 5, 7, 11],
|
||||
"use_spectral_norm": false,
|
||||
"discriminator_channel_mult": 1,
|
||||
|
||||
"segment_size": 8192,
|
||||
"num_mels": 80,
|
||||
"num_freq": 1025,
|
||||
"n_fft": 1024,
|
||||
"hop_size": 256,
|
||||
"win_size": 1024,
|
||||
|
||||
"sampling_rate": 22050,
|
||||
|
||||
"fmin": 0,
|
||||
"fmax": 8000,
|
||||
"fmax_for_loss": null,
|
||||
|
||||
"num_workers": 4,
|
||||
|
||||
"dist_config": {
|
||||
"dist_backend": "nccl",
|
||||
"dist_url": "tcp://localhost:54321",
|
||||
"world_size": 1
|
||||
}
|
||||
}
|
45
GPT_SoVITS/BigVGAN/configs/bigvgan_base_24khz_100band.json
Normal file
45
GPT_SoVITS/BigVGAN/configs/bigvgan_base_24khz_100band.json
Normal file
@ -0,0 +1,45 @@
|
||||
{
|
||||
"resblock": "1",
|
||||
"num_gpus": 0,
|
||||
"batch_size": 32,
|
||||
"learning_rate": 0.0001,
|
||||
"adam_b1": 0.8,
|
||||
"adam_b2": 0.99,
|
||||
"lr_decay": 0.9999996,
|
||||
"seed": 1234,
|
||||
|
||||
"upsample_rates": [8,8,2,2],
|
||||
"upsample_kernel_sizes": [16,16,4,4],
|
||||
"upsample_initial_channel": 512,
|
||||
"resblock_kernel_sizes": [3,7,11],
|
||||
"resblock_dilation_sizes": [[1,3,5], [1,3,5], [1,3,5]],
|
||||
|
||||
"activation": "snakebeta",
|
||||
"snake_logscale": true,
|
||||
|
||||
"resolutions": [[1024, 120, 600], [2048, 240, 1200], [512, 50, 240]],
|
||||
"mpd_reshapes": [2, 3, 5, 7, 11],
|
||||
"use_spectral_norm": false,
|
||||
"discriminator_channel_mult": 1,
|
||||
|
||||
"segment_size": 8192,
|
||||
"num_mels": 100,
|
||||
"num_freq": 1025,
|
||||
"n_fft": 1024,
|
||||
"hop_size": 256,
|
||||
"win_size": 1024,
|
||||
|
||||
"sampling_rate": 24000,
|
||||
|
||||
"fmin": 0,
|
||||
"fmax": 12000,
|
||||
"fmax_for_loss": null,
|
||||
|
||||
"num_workers": 4,
|
||||
|
||||
"dist_config": {
|
||||
"dist_backend": "nccl",
|
||||
"dist_url": "tcp://localhost:54321",
|
||||
"world_size": 1
|
||||
}
|
||||
}
|
61
GPT_SoVITS/BigVGAN/configs/bigvgan_v2_22khz_80band_256x.json
Normal file
61
GPT_SoVITS/BigVGAN/configs/bigvgan_v2_22khz_80band_256x.json
Normal file
@ -0,0 +1,61 @@
|
||||
{
|
||||
"resblock": "1",
|
||||
"num_gpus": 0,
|
||||
"batch_size": 4,
|
||||
"learning_rate": 0.0001,
|
||||
"adam_b1": 0.8,
|
||||
"adam_b2": 0.99,
|
||||
"lr_decay": 0.9999996,
|
||||
"seed": 1234,
|
||||
|
||||
"upsample_rates": [4,4,2,2,2,2],
|
||||
"upsample_kernel_sizes": [8,8,4,4,4,4],
|
||||
"upsample_initial_channel": 1536,
|
||||
"resblock_kernel_sizes": [3,7,11],
|
||||
"resblock_dilation_sizes": [[1,3,5], [1,3,5], [1,3,5]],
|
||||
|
||||
"use_tanh_at_final": false,
|
||||
"use_bias_at_final": false,
|
||||
|
||||
"activation": "snakebeta",
|
||||
"snake_logscale": true,
|
||||
|
||||
"use_cqtd_instead_of_mrd": true,
|
||||
"cqtd_filters": 128,
|
||||
"cqtd_max_filters": 1024,
|
||||
"cqtd_filters_scale": 1,
|
||||
"cqtd_dilations": [1, 2, 4],
|
||||
"cqtd_hop_lengths": [512, 256, 256],
|
||||
"cqtd_n_octaves": [9, 9, 9],
|
||||
"cqtd_bins_per_octaves": [24, 36, 48],
|
||||
|
||||
"mpd_reshapes": [2, 3, 5, 7, 11],
|
||||
"use_spectral_norm": false,
|
||||
"discriminator_channel_mult": 1,
|
||||
|
||||
"use_multiscale_melloss": true,
|
||||
"lambda_melloss": 15,
|
||||
|
||||
"clip_grad_norm": 500,
|
||||
|
||||
"segment_size": 65536,
|
||||
"num_mels": 80,
|
||||
"num_freq": 1025,
|
||||
"n_fft": 1024,
|
||||
"hop_size": 256,
|
||||
"win_size": 1024,
|
||||
|
||||
"sampling_rate": 22050,
|
||||
|
||||
"fmin": 0,
|
||||
"fmax": null,
|
||||
"fmax_for_loss": null,
|
||||
|
||||
"num_workers": 4,
|
||||
|
||||
"dist_config": {
|
||||
"dist_backend": "nccl",
|
||||
"dist_url": "tcp://localhost:54321",
|
||||
"world_size": 1
|
||||
}
|
||||
}
|
@ -0,0 +1,61 @@
|
||||
{
|
||||
"resblock": "1",
|
||||
"num_gpus": 0,
|
||||
"batch_size": 4,
|
||||
"learning_rate": 0.0001,
|
||||
"adam_b1": 0.8,
|
||||
"adam_b2": 0.99,
|
||||
"lr_decay": 0.9999996,
|
||||
"seed": 1234,
|
||||
|
||||
"upsample_rates": [4,4,2,2,2,2],
|
||||
"upsample_kernel_sizes": [8,8,4,4,4,4],
|
||||
"upsample_initial_channel": 1536,
|
||||
"resblock_kernel_sizes": [3,7,11],
|
||||
"resblock_dilation_sizes": [[1,3,5], [1,3,5], [1,3,5]],
|
||||
|
||||
"use_tanh_at_final": false,
|
||||
"use_bias_at_final": false,
|
||||
|
||||
"activation": "snakebeta",
|
||||
"snake_logscale": true,
|
||||
|
||||
"use_cqtd_instead_of_mrd": true,
|
||||
"cqtd_filters": 128,
|
||||
"cqtd_max_filters": 1024,
|
||||
"cqtd_filters_scale": 1,
|
||||
"cqtd_dilations": [1, 2, 4],
|
||||
"cqtd_hop_lengths": [512, 256, 256],
|
||||
"cqtd_n_octaves": [9, 9, 9],
|
||||
"cqtd_bins_per_octaves": [24, 36, 48],
|
||||
|
||||
"mpd_reshapes": [2, 3, 5, 7, 11],
|
||||
"use_spectral_norm": false,
|
||||
"discriminator_channel_mult": 1,
|
||||
|
||||
"use_multiscale_melloss": true,
|
||||
"lambda_melloss": 15,
|
||||
|
||||
"clip_grad_norm": 500,
|
||||
|
||||
"segment_size": 65536,
|
||||
"num_mels": 80,
|
||||
"num_freq": 1025,
|
||||
"n_fft": 1024,
|
||||
"hop_size": 256,
|
||||
"win_size": 1024,
|
||||
|
||||
"sampling_rate": 22050,
|
||||
|
||||
"fmin": 0,
|
||||
"fmax": 8000,
|
||||
"fmax_for_loss": null,
|
||||
|
||||
"num_workers": 4,
|
||||
|
||||
"dist_config": {
|
||||
"dist_backend": "nccl",
|
||||
"dist_url": "tcp://localhost:54321",
|
||||
"world_size": 1
|
||||
}
|
||||
}
|
@ -0,0 +1,61 @@
|
||||
{
|
||||
"resblock": "1",
|
||||
"num_gpus": 0,
|
||||
"batch_size": 4,
|
||||
"learning_rate": 0.0001,
|
||||
"adam_b1": 0.8,
|
||||
"adam_b2": 0.99,
|
||||
"lr_decay": 0.9999996,
|
||||
"seed": 1234,
|
||||
|
||||
"upsample_rates": [4,4,2,2,2,2],
|
||||
"upsample_kernel_sizes": [8,8,4,4,4,4],
|
||||
"upsample_initial_channel": 1536,
|
||||
"resblock_kernel_sizes": [3,7,11],
|
||||
"resblock_dilation_sizes": [[1,3,5], [1,3,5], [1,3,5]],
|
||||
|
||||
"use_tanh_at_final": false,
|
||||
"use_bias_at_final": false,
|
||||
|
||||
"activation": "snakebeta",
|
||||
"snake_logscale": true,
|
||||
|
||||
"use_cqtd_instead_of_mrd": true,
|
||||
"cqtd_filters": 128,
|
||||
"cqtd_max_filters": 1024,
|
||||
"cqtd_filters_scale": 1,
|
||||
"cqtd_dilations": [1, 2, 4],
|
||||
"cqtd_hop_lengths": [512, 256, 256],
|
||||
"cqtd_n_octaves": [9, 9, 9],
|
||||
"cqtd_bins_per_octaves": [24, 36, 48],
|
||||
|
||||
"mpd_reshapes": [2, 3, 5, 7, 11],
|
||||
"use_spectral_norm": false,
|
||||
"discriminator_channel_mult": 1,
|
||||
|
||||
"use_multiscale_melloss": true,
|
||||
"lambda_melloss": 15,
|
||||
|
||||
"clip_grad_norm": 500,
|
||||
|
||||
"segment_size": 65536,
|
||||
"num_mels": 100,
|
||||
"num_freq": 1025,
|
||||
"n_fft": 1024,
|
||||
"hop_size": 256,
|
||||
"win_size": 1024,
|
||||
|
||||
"sampling_rate": 24000,
|
||||
|
||||
"fmin": 0,
|
||||
"fmax": null,
|
||||
"fmax_for_loss": null,
|
||||
|
||||
"num_workers": 4,
|
||||
|
||||
"dist_config": {
|
||||
"dist_backend": "nccl",
|
||||
"dist_url": "tcp://localhost:54321",
|
||||
"world_size": 1
|
||||
}
|
||||
}
|
@ -0,0 +1,61 @@
|
||||
{
|
||||
"resblock": "1",
|
||||
"num_gpus": 0,
|
||||
"batch_size": 4,
|
||||
"learning_rate": 0.0001,
|
||||
"adam_b1": 0.8,
|
||||
"adam_b2": 0.99,
|
||||
"lr_decay": 0.9999996,
|
||||
"seed": 1234,
|
||||
|
||||
"upsample_rates": [4,4,2,2,2,2],
|
||||
"upsample_kernel_sizes": [8,8,4,4,4,4],
|
||||
"upsample_initial_channel": 1536,
|
||||
"resblock_kernel_sizes": [3,7,11],
|
||||
"resblock_dilation_sizes": [[1,3,5], [1,3,5], [1,3,5]],
|
||||
|
||||
"use_tanh_at_final": false,
|
||||
"use_bias_at_final": false,
|
||||
|
||||
"activation": "snakebeta",
|
||||
"snake_logscale": true,
|
||||
|
||||
"use_cqtd_instead_of_mrd": true,
|
||||
"cqtd_filters": 128,
|
||||
"cqtd_max_filters": 1024,
|
||||
"cqtd_filters_scale": 1,
|
||||
"cqtd_dilations": [1, 2, 4],
|
||||
"cqtd_hop_lengths": [512, 256, 256],
|
||||
"cqtd_n_octaves": [9, 9, 9],
|
||||
"cqtd_bins_per_octaves": [24, 36, 48],
|
||||
|
||||
"mpd_reshapes": [2, 3, 5, 7, 11],
|
||||
"use_spectral_norm": false,
|
||||
"discriminator_channel_mult": 1,
|
||||
|
||||
"use_multiscale_melloss": true,
|
||||
"lambda_melloss": 15,
|
||||
|
||||
"clip_grad_norm": 500,
|
||||
|
||||
"segment_size": 65536,
|
||||
"num_mels": 128,
|
||||
"num_freq": 1025,
|
||||
"n_fft": 1024,
|
||||
"hop_size": 256,
|
||||
"win_size": 1024,
|
||||
|
||||
"sampling_rate": 44100,
|
||||
|
||||
"fmin": 0,
|
||||
"fmax": null,
|
||||
"fmax_for_loss": null,
|
||||
|
||||
"num_workers": 4,
|
||||
|
||||
"dist_config": {
|
||||
"dist_backend": "nccl",
|
||||
"dist_url": "tcp://localhost:54321",
|
||||
"world_size": 1
|
||||
}
|
||||
}
|
@ -0,0 +1,61 @@
|
||||
{
|
||||
"resblock": "1",
|
||||
"num_gpus": 0,
|
||||
"batch_size": 4,
|
||||
"learning_rate": 0.0001,
|
||||
"adam_b1": 0.8,
|
||||
"adam_b2": 0.99,
|
||||
"lr_decay": 0.9999996,
|
||||
"seed": 1234,
|
||||
|
||||
"upsample_rates": [8,4,2,2,2,2],
|
||||
"upsample_kernel_sizes": [16,8,4,4,4,4],
|
||||
"upsample_initial_channel": 1536,
|
||||
"resblock_kernel_sizes": [3,7,11],
|
||||
"resblock_dilation_sizes": [[1,3,5], [1,3,5], [1,3,5]],
|
||||
|
||||
"use_tanh_at_final": false,
|
||||
"use_bias_at_final": false,
|
||||
|
||||
"activation": "snakebeta",
|
||||
"snake_logscale": true,
|
||||
|
||||
"use_cqtd_instead_of_mrd": true,
|
||||
"cqtd_filters": 128,
|
||||
"cqtd_max_filters": 1024,
|
||||
"cqtd_filters_scale": 1,
|
||||
"cqtd_dilations": [1, 2, 4],
|
||||
"cqtd_hop_lengths": [512, 256, 256],
|
||||
"cqtd_n_octaves": [9, 9, 9],
|
||||
"cqtd_bins_per_octaves": [24, 36, 48],
|
||||
|
||||
"mpd_reshapes": [2, 3, 5, 7, 11],
|
||||
"use_spectral_norm": false,
|
||||
"discriminator_channel_mult": 1,
|
||||
|
||||
"use_multiscale_melloss": true,
|
||||
"lambda_melloss": 15,
|
||||
|
||||
"clip_grad_norm": 500,
|
||||
|
||||
"segment_size": 65536,
|
||||
"num_mels": 128,
|
||||
"num_freq": 2049,
|
||||
"n_fft": 2048,
|
||||
"hop_size": 512,
|
||||
"win_size": 2048,
|
||||
|
||||
"sampling_rate": 44100,
|
||||
|
||||
"fmin": 0,
|
||||
"fmax": null,
|
||||
"fmax_for_loss": null,
|
||||
|
||||
"num_workers": 4,
|
||||
|
||||
"dist_config": {
|
||||
"dist_backend": "nccl",
|
||||
"dist_url": "tcp://localhost:54321",
|
||||
"world_size": 1
|
||||
}
|
||||
}
|
651
GPT_SoVITS/BigVGAN/discriminators.py
Normal file
651
GPT_SoVITS/BigVGAN/discriminators.py
Normal file
@ -0,0 +1,651 @@
|
||||
# Copyright (c) 2024 NVIDIA CORPORATION.
|
||||
# Licensed under the MIT license.
|
||||
|
||||
# Adapted from https://github.com/jik876/hifi-gan under the MIT license.
|
||||
# LICENSE is in incl_licenses directory.
|
||||
|
||||
|
||||
import torch
|
||||
import torch.nn.functional as F
|
||||
import torch.nn as nn
|
||||
from torch.nn import Conv2d
|
||||
from torch.nn.utils import weight_norm, spectral_norm
|
||||
from torchaudio.transforms import Spectrogram, Resample
|
||||
|
||||
from env import AttrDict
|
||||
from utils import get_padding
|
||||
import typing
|
||||
from typing import Optional, List, Union, Dict, Tuple
|
||||
|
||||
|
||||
class DiscriminatorP(torch.nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
h: AttrDict,
|
||||
period: List[int],
|
||||
kernel_size: int = 5,
|
||||
stride: int = 3,
|
||||
use_spectral_norm: bool = False,
|
||||
):
|
||||
super().__init__()
|
||||
self.period = period
|
||||
self.d_mult = h.discriminator_channel_mult
|
||||
norm_f = weight_norm if not use_spectral_norm else spectral_norm
|
||||
|
||||
self.convs = nn.ModuleList(
|
||||
[
|
||||
norm_f(
|
||||
Conv2d(
|
||||
1,
|
||||
int(32 * self.d_mult),
|
||||
(kernel_size, 1),
|
||||
(stride, 1),
|
||||
padding=(get_padding(5, 1), 0),
|
||||
)
|
||||
),
|
||||
norm_f(
|
||||
Conv2d(
|
||||
int(32 * self.d_mult),
|
||||
int(128 * self.d_mult),
|
||||
(kernel_size, 1),
|
||||
(stride, 1),
|
||||
padding=(get_padding(5, 1), 0),
|
||||
)
|
||||
),
|
||||
norm_f(
|
||||
Conv2d(
|
||||
int(128 * self.d_mult),
|
||||
int(512 * self.d_mult),
|
||||
(kernel_size, 1),
|
||||
(stride, 1),
|
||||
padding=(get_padding(5, 1), 0),
|
||||
)
|
||||
),
|
||||
norm_f(
|
||||
Conv2d(
|
||||
int(512 * self.d_mult),
|
||||
int(1024 * self.d_mult),
|
||||
(kernel_size, 1),
|
||||
(stride, 1),
|
||||
padding=(get_padding(5, 1), 0),
|
||||
)
|
||||
),
|
||||
norm_f(
|
||||
Conv2d(
|
||||
int(1024 * self.d_mult),
|
||||
int(1024 * self.d_mult),
|
||||
(kernel_size, 1),
|
||||
1,
|
||||
padding=(2, 0),
|
||||
)
|
||||
),
|
||||
]
|
||||
)
|
||||
self.conv_post = norm_f(
|
||||
Conv2d(int(1024 * self.d_mult), 1, (3, 1), 1, padding=(1, 0))
|
||||
)
|
||||
|
||||
def forward(self, x: torch.Tensor) -> Tuple[torch.Tensor, List[torch.Tensor]]:
|
||||
fmap = []
|
||||
|
||||
# 1d to 2d
|
||||
b, c, t = x.shape
|
||||
if t % self.period != 0: # pad first
|
||||
n_pad = self.period - (t % self.period)
|
||||
x = F.pad(x, (0, n_pad), "reflect")
|
||||
t = t + n_pad
|
||||
x = x.view(b, c, t // self.period, self.period)
|
||||
|
||||
for l in self.convs:
|
||||
x = l(x)
|
||||
x = F.leaky_relu(x, 0.1)
|
||||
fmap.append(x)
|
||||
x = self.conv_post(x)
|
||||
fmap.append(x)
|
||||
x = torch.flatten(x, 1, -1)
|
||||
|
||||
return x, fmap
|
||||
|
||||
|
||||
class MultiPeriodDiscriminator(torch.nn.Module):
|
||||
def __init__(self, h: AttrDict):
|
||||
super().__init__()
|
||||
self.mpd_reshapes = h.mpd_reshapes
|
||||
print(f"mpd_reshapes: {self.mpd_reshapes}")
|
||||
self.discriminators = nn.ModuleList(
|
||||
[
|
||||
DiscriminatorP(h, rs, use_spectral_norm=h.use_spectral_norm)
|
||||
for rs in self.mpd_reshapes
|
||||
]
|
||||
)
|
||||
|
||||
def forward(self, y: torch.Tensor, y_hat: torch.Tensor) -> Tuple[
|
||||
List[torch.Tensor],
|
||||
List[torch.Tensor],
|
||||
List[List[torch.Tensor]],
|
||||
List[List[torch.Tensor]],
|
||||
]:
|
||||
y_d_rs = []
|
||||
y_d_gs = []
|
||||
fmap_rs = []
|
||||
fmap_gs = []
|
||||
for i, d in enumerate(self.discriminators):
|
||||
y_d_r, fmap_r = d(y)
|
||||
y_d_g, fmap_g = d(y_hat)
|
||||
y_d_rs.append(y_d_r)
|
||||
fmap_rs.append(fmap_r)
|
||||
y_d_gs.append(y_d_g)
|
||||
fmap_gs.append(fmap_g)
|
||||
|
||||
return y_d_rs, y_d_gs, fmap_rs, fmap_gs
|
||||
|
||||
|
||||
class DiscriminatorR(nn.Module):
|
||||
def __init__(self, cfg: AttrDict, resolution: List[List[int]]):
|
||||
super().__init__()
|
||||
|
||||
self.resolution = resolution
|
||||
assert (
|
||||
len(self.resolution) == 3
|
||||
), f"MRD layer requires list with len=3, got {self.resolution}"
|
||||
self.lrelu_slope = 0.1
|
||||
|
||||
norm_f = weight_norm if cfg.use_spectral_norm == False else spectral_norm
|
||||
if hasattr(cfg, "mrd_use_spectral_norm"):
|
||||
print(
|
||||
f"[INFO] overriding MRD use_spectral_norm as {cfg.mrd_use_spectral_norm}"
|
||||
)
|
||||
norm_f = (
|
||||
weight_norm if cfg.mrd_use_spectral_norm == False else spectral_norm
|
||||
)
|
||||
self.d_mult = cfg.discriminator_channel_mult
|
||||
if hasattr(cfg, "mrd_channel_mult"):
|
||||
print(f"[INFO] overriding mrd channel multiplier as {cfg.mrd_channel_mult}")
|
||||
self.d_mult = cfg.mrd_channel_mult
|
||||
|
||||
self.convs = nn.ModuleList(
|
||||
[
|
||||
norm_f(nn.Conv2d(1, int(32 * self.d_mult), (3, 9), padding=(1, 4))),
|
||||
norm_f(
|
||||
nn.Conv2d(
|
||||
int(32 * self.d_mult),
|
||||
int(32 * self.d_mult),
|
||||
(3, 9),
|
||||
stride=(1, 2),
|
||||
padding=(1, 4),
|
||||
)
|
||||
),
|
||||
norm_f(
|
||||
nn.Conv2d(
|
||||
int(32 * self.d_mult),
|
||||
int(32 * self.d_mult),
|
||||
(3, 9),
|
||||
stride=(1, 2),
|
||||
padding=(1, 4),
|
||||
)
|
||||
),
|
||||
norm_f(
|
||||
nn.Conv2d(
|
||||
int(32 * self.d_mult),
|
||||
int(32 * self.d_mult),
|
||||
(3, 9),
|
||||
stride=(1, 2),
|
||||
padding=(1, 4),
|
||||
)
|
||||
),
|
||||
norm_f(
|
||||
nn.Conv2d(
|
||||
int(32 * self.d_mult),
|
||||
int(32 * self.d_mult),
|
||||
(3, 3),
|
||||
padding=(1, 1),
|
||||
)
|
||||
),
|
||||
]
|
||||
)
|
||||
self.conv_post = norm_f(
|
||||
nn.Conv2d(int(32 * self.d_mult), 1, (3, 3), padding=(1, 1))
|
||||
)
|
||||
|
||||
def forward(self, x: torch.Tensor) -> Tuple[torch.Tensor, List[torch.Tensor]]:
|
||||
fmap = []
|
||||
|
||||
x = self.spectrogram(x)
|
||||
x = x.unsqueeze(1)
|
||||
for l in self.convs:
|
||||
x = l(x)
|
||||
x = F.leaky_relu(x, self.lrelu_slope)
|
||||
fmap.append(x)
|
||||
x = self.conv_post(x)
|
||||
fmap.append(x)
|
||||
x = torch.flatten(x, 1, -1)
|
||||
|
||||
return x, fmap
|
||||
|
||||
def spectrogram(self, x: torch.Tensor) -> torch.Tensor:
|
||||
n_fft, hop_length, win_length = self.resolution
|
||||
x = F.pad(
|
||||
x,
|
||||
(int((n_fft - hop_length) / 2), int((n_fft - hop_length) / 2)),
|
||||
mode="reflect",
|
||||
)
|
||||
x = x.squeeze(1)
|
||||
x = torch.stft(
|
||||
x,
|
||||
n_fft=n_fft,
|
||||
hop_length=hop_length,
|
||||
win_length=win_length,
|
||||
center=False,
|
||||
return_complex=True,
|
||||
)
|
||||
x = torch.view_as_real(x) # [B, F, TT, 2]
|
||||
mag = torch.norm(x, p=2, dim=-1) # [B, F, TT]
|
||||
|
||||
return mag
|
||||
|
||||
|
||||
class MultiResolutionDiscriminator(nn.Module):
|
||||
def __init__(self, cfg, debug=False):
|
||||
super().__init__()
|
||||
self.resolutions = cfg.resolutions
|
||||
assert (
|
||||
len(self.resolutions) == 3
|
||||
), f"MRD requires list of list with len=3, each element having a list with len=3. Got {self.resolutions}"
|
||||
self.discriminators = nn.ModuleList(
|
||||
[DiscriminatorR(cfg, resolution) for resolution in self.resolutions]
|
||||
)
|
||||
|
||||
def forward(self, y: torch.Tensor, y_hat: torch.Tensor) -> Tuple[
|
||||
List[torch.Tensor],
|
||||
List[torch.Tensor],
|
||||
List[List[torch.Tensor]],
|
||||
List[List[torch.Tensor]],
|
||||
]:
|
||||
y_d_rs = []
|
||||
y_d_gs = []
|
||||
fmap_rs = []
|
||||
fmap_gs = []
|
||||
|
||||
for i, d in enumerate(self.discriminators):
|
||||
y_d_r, fmap_r = d(x=y)
|
||||
y_d_g, fmap_g = d(x=y_hat)
|
||||
y_d_rs.append(y_d_r)
|
||||
fmap_rs.append(fmap_r)
|
||||
y_d_gs.append(y_d_g)
|
||||
fmap_gs.append(fmap_g)
|
||||
|
||||
return y_d_rs, y_d_gs, fmap_rs, fmap_gs
|
||||
|
||||
|
||||
# Method based on descript-audio-codec: https://github.com/descriptinc/descript-audio-codec
|
||||
# Modified code adapted from https://github.com/gemelo-ai/vocos under the MIT license.
|
||||
# LICENSE is in incl_licenses directory.
|
||||
class DiscriminatorB(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
window_length: int,
|
||||
channels: int = 32,
|
||||
hop_factor: float = 0.25,
|
||||
bands: Tuple[Tuple[float, float], ...] = (
|
||||
(0.0, 0.1),
|
||||
(0.1, 0.25),
|
||||
(0.25, 0.5),
|
||||
(0.5, 0.75),
|
||||
(0.75, 1.0),
|
||||
),
|
||||
):
|
||||
super().__init__()
|
||||
self.window_length = window_length
|
||||
self.hop_factor = hop_factor
|
||||
self.spec_fn = Spectrogram(
|
||||
n_fft=window_length,
|
||||
hop_length=int(window_length * hop_factor),
|
||||
win_length=window_length,
|
||||
power=None,
|
||||
)
|
||||
n_fft = window_length // 2 + 1
|
||||
bands = [(int(b[0] * n_fft), int(b[1] * n_fft)) for b in bands]
|
||||
self.bands = bands
|
||||
convs = lambda: nn.ModuleList(
|
||||
[
|
||||
weight_norm(nn.Conv2d(2, channels, (3, 9), (1, 1), padding=(1, 4))),
|
||||
weight_norm(
|
||||
nn.Conv2d(channels, channels, (3, 9), (1, 2), padding=(1, 4))
|
||||
),
|
||||
weight_norm(
|
||||
nn.Conv2d(channels, channels, (3, 9), (1, 2), padding=(1, 4))
|
||||
),
|
||||
weight_norm(
|
||||
nn.Conv2d(channels, channels, (3, 9), (1, 2), padding=(1, 4))
|
||||
),
|
||||
weight_norm(
|
||||
nn.Conv2d(channels, channels, (3, 3), (1, 1), padding=(1, 1))
|
||||
),
|
||||
]
|
||||
)
|
||||
self.band_convs = nn.ModuleList([convs() for _ in range(len(self.bands))])
|
||||
|
||||
self.conv_post = weight_norm(
|
||||
nn.Conv2d(channels, 1, (3, 3), (1, 1), padding=(1, 1))
|
||||
)
|
||||
|
||||
def spectrogram(self, x: torch.Tensor) -> List[torch.Tensor]:
|
||||
# Remove DC offset
|
||||
x = x - x.mean(dim=-1, keepdims=True)
|
||||
# Peak normalize the volume of input audio
|
||||
x = 0.8 * x / (x.abs().max(dim=-1, keepdim=True)[0] + 1e-9)
|
||||
x = self.spec_fn(x)
|
||||
x = torch.view_as_real(x)
|
||||
x = x.permute(0, 3, 2, 1) # [B, F, T, C] -> [B, C, T, F]
|
||||
# Split into bands
|
||||
x_bands = [x[..., b[0] : b[1]] for b in self.bands]
|
||||
return x_bands
|
||||
|
||||
def forward(self, x: torch.Tensor) -> Tuple[torch.Tensor, List[torch.Tensor]]:
|
||||
x_bands = self.spectrogram(x.squeeze(1))
|
||||
fmap = []
|
||||
x = []
|
||||
|
||||
for band, stack in zip(x_bands, self.band_convs):
|
||||
for i, layer in enumerate(stack):
|
||||
band = layer(band)
|
||||
band = torch.nn.functional.leaky_relu(band, 0.1)
|
||||
if i > 0:
|
||||
fmap.append(band)
|
||||
x.append(band)
|
||||
|
||||
x = torch.cat(x, dim=-1)
|
||||
x = self.conv_post(x)
|
||||
fmap.append(x)
|
||||
|
||||
return x, fmap
|
||||
|
||||
|
||||
# Method based on descript-audio-codec: https://github.com/descriptinc/descript-audio-codec
|
||||
# Modified code adapted from https://github.com/gemelo-ai/vocos under the MIT license.
|
||||
# LICENSE is in incl_licenses directory.
|
||||
class MultiBandDiscriminator(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
h,
|
||||
):
|
||||
"""
|
||||
Multi-band multi-scale STFT discriminator, with the architecture based on https://github.com/descriptinc/descript-audio-codec.
|
||||
and the modified code adapted from https://github.com/gemelo-ai/vocos.
|
||||
"""
|
||||
super().__init__()
|
||||
# fft_sizes (list[int]): Tuple of window lengths for FFT. Defaults to [2048, 1024, 512] if not set in h.
|
||||
self.fft_sizes = h.get("mbd_fft_sizes", [2048, 1024, 512])
|
||||
self.discriminators = nn.ModuleList(
|
||||
[DiscriminatorB(window_length=w) for w in self.fft_sizes]
|
||||
)
|
||||
|
||||
def forward(self, y: torch.Tensor, y_hat: torch.Tensor) -> Tuple[
|
||||
List[torch.Tensor],
|
||||
List[torch.Tensor],
|
||||
List[List[torch.Tensor]],
|
||||
List[List[torch.Tensor]],
|
||||
]:
|
||||
|
||||
y_d_rs = []
|
||||
y_d_gs = []
|
||||
fmap_rs = []
|
||||
fmap_gs = []
|
||||
|
||||
for d in self.discriminators:
|
||||
y_d_r, fmap_r = d(x=y)
|
||||
y_d_g, fmap_g = d(x=y_hat)
|
||||
y_d_rs.append(y_d_r)
|
||||
fmap_rs.append(fmap_r)
|
||||
y_d_gs.append(y_d_g)
|
||||
fmap_gs.append(fmap_g)
|
||||
|
||||
return y_d_rs, y_d_gs, fmap_rs, fmap_gs
|
||||
|
||||
|
||||
# Adapted from https://github.com/open-mmlab/Amphion/blob/main/models/vocoders/gan/discriminator/mssbcqtd.py under the MIT license.
|
||||
# LICENSE is in incl_licenses directory.
|
||||
class DiscriminatorCQT(nn.Module):
|
||||
def __init__(self, cfg: AttrDict, hop_length: int, n_octaves:int, bins_per_octave: int):
|
||||
super().__init__()
|
||||
self.cfg = cfg
|
||||
|
||||
self.filters = cfg["cqtd_filters"]
|
||||
self.max_filters = cfg["cqtd_max_filters"]
|
||||
self.filters_scale = cfg["cqtd_filters_scale"]
|
||||
self.kernel_size = (3, 9)
|
||||
self.dilations = cfg["cqtd_dilations"]
|
||||
self.stride = (1, 2)
|
||||
|
||||
self.in_channels = cfg["cqtd_in_channels"]
|
||||
self.out_channels = cfg["cqtd_out_channels"]
|
||||
self.fs = cfg["sampling_rate"]
|
||||
self.hop_length = hop_length
|
||||
self.n_octaves = n_octaves
|
||||
self.bins_per_octave = bins_per_octave
|
||||
|
||||
# Lazy-load
|
||||
from nnAudio import features
|
||||
|
||||
self.cqt_transform = features.cqt.CQT2010v2(
|
||||
sr=self.fs * 2,
|
||||
hop_length=self.hop_length,
|
||||
n_bins=self.bins_per_octave * self.n_octaves,
|
||||
bins_per_octave=self.bins_per_octave,
|
||||
output_format="Complex",
|
||||
pad_mode="constant",
|
||||
)
|
||||
|
||||
self.conv_pres = nn.ModuleList()
|
||||
for _ in range(self.n_octaves):
|
||||
self.conv_pres.append(
|
||||
nn.Conv2d(
|
||||
self.in_channels * 2,
|
||||
self.in_channels * 2,
|
||||
kernel_size=self.kernel_size,
|
||||
padding=self.get_2d_padding(self.kernel_size),
|
||||
)
|
||||
)
|
||||
|
||||
self.convs = nn.ModuleList()
|
||||
|
||||
self.convs.append(
|
||||
nn.Conv2d(
|
||||
self.in_channels * 2,
|
||||
self.filters,
|
||||
kernel_size=self.kernel_size,
|
||||
padding=self.get_2d_padding(self.kernel_size),
|
||||
)
|
||||
)
|
||||
|
||||
in_chs = min(self.filters_scale * self.filters, self.max_filters)
|
||||
for i, dilation in enumerate(self.dilations):
|
||||
out_chs = min(
|
||||
(self.filters_scale ** (i + 1)) * self.filters, self.max_filters
|
||||
)
|
||||
self.convs.append(
|
||||
weight_norm(
|
||||
nn.Conv2d(
|
||||
in_chs,
|
||||
out_chs,
|
||||
kernel_size=self.kernel_size,
|
||||
stride=self.stride,
|
||||
dilation=(dilation, 1),
|
||||
padding=self.get_2d_padding(self.kernel_size, (dilation, 1)),
|
||||
)
|
||||
)
|
||||
)
|
||||
in_chs = out_chs
|
||||
out_chs = min(
|
||||
(self.filters_scale ** (len(self.dilations) + 1)) * self.filters,
|
||||
self.max_filters,
|
||||
)
|
||||
self.convs.append(
|
||||
weight_norm(
|
||||
nn.Conv2d(
|
||||
in_chs,
|
||||
out_chs,
|
||||
kernel_size=(self.kernel_size[0], self.kernel_size[0]),
|
||||
padding=self.get_2d_padding(
|
||||
(self.kernel_size[0], self.kernel_size[0])
|
||||
),
|
||||
)
|
||||
)
|
||||
)
|
||||
|
||||
self.conv_post = weight_norm(
|
||||
nn.Conv2d(
|
||||
out_chs,
|
||||
self.out_channels,
|
||||
kernel_size=(self.kernel_size[0], self.kernel_size[0]),
|
||||
padding=self.get_2d_padding((self.kernel_size[0], self.kernel_size[0])),
|
||||
)
|
||||
)
|
||||
|
||||
self.activation = torch.nn.LeakyReLU(negative_slope=0.1)
|
||||
self.resample = Resample(orig_freq=self.fs, new_freq=self.fs * 2)
|
||||
|
||||
self.cqtd_normalize_volume = self.cfg.get("cqtd_normalize_volume", False)
|
||||
if self.cqtd_normalize_volume:
|
||||
print(
|
||||
f"[INFO] cqtd_normalize_volume set to True. Will apply DC offset removal & peak volume normalization in CQTD!"
|
||||
)
|
||||
|
||||
def get_2d_padding(
|
||||
self,
|
||||
kernel_size: typing.Tuple[int, int],
|
||||
dilation: typing.Tuple[int, int] = (1, 1),
|
||||
):
|
||||
return (
|
||||
((kernel_size[0] - 1) * dilation[0]) // 2,
|
||||
((kernel_size[1] - 1) * dilation[1]) // 2,
|
||||
)
|
||||
|
||||
def forward(self, x: torch.tensor) -> Tuple[torch.Tensor, List[torch.Tensor]]:
|
||||
fmap = []
|
||||
|
||||
if self.cqtd_normalize_volume:
|
||||
# Remove DC offset
|
||||
x = x - x.mean(dim=-1, keepdims=True)
|
||||
# Peak normalize the volume of input audio
|
||||
x = 0.8 * x / (x.abs().max(dim=-1, keepdim=True)[0] + 1e-9)
|
||||
|
||||
x = self.resample(x)
|
||||
|
||||
z = self.cqt_transform(x)
|
||||
|
||||
z_amplitude = z[:, :, :, 0].unsqueeze(1)
|
||||
z_phase = z[:, :, :, 1].unsqueeze(1)
|
||||
|
||||
z = torch.cat([z_amplitude, z_phase], dim=1)
|
||||
z = torch.permute(z, (0, 1, 3, 2)) # [B, C, W, T] -> [B, C, T, W]
|
||||
|
||||
latent_z = []
|
||||
for i in range(self.n_octaves):
|
||||
latent_z.append(
|
||||
self.conv_pres[i](
|
||||
z[
|
||||
:,
|
||||
:,
|
||||
:,
|
||||
i * self.bins_per_octave : (i + 1) * self.bins_per_octave,
|
||||
]
|
||||
)
|
||||
)
|
||||
latent_z = torch.cat(latent_z, dim=-1)
|
||||
|
||||
for i, l in enumerate(self.convs):
|
||||
latent_z = l(latent_z)
|
||||
|
||||
latent_z = self.activation(latent_z)
|
||||
fmap.append(latent_z)
|
||||
|
||||
latent_z = self.conv_post(latent_z)
|
||||
|
||||
return latent_z, fmap
|
||||
|
||||
|
||||
class MultiScaleSubbandCQTDiscriminator(nn.Module):
|
||||
def __init__(self, cfg: AttrDict):
|
||||
super().__init__()
|
||||
|
||||
self.cfg = cfg
|
||||
# Using get with defaults
|
||||
self.cfg["cqtd_filters"] = self.cfg.get("cqtd_filters", 32)
|
||||
self.cfg["cqtd_max_filters"] = self.cfg.get("cqtd_max_filters", 1024)
|
||||
self.cfg["cqtd_filters_scale"] = self.cfg.get("cqtd_filters_scale", 1)
|
||||
self.cfg["cqtd_dilations"] = self.cfg.get("cqtd_dilations", [1, 2, 4])
|
||||
self.cfg["cqtd_in_channels"] = self.cfg.get("cqtd_in_channels", 1)
|
||||
self.cfg["cqtd_out_channels"] = self.cfg.get("cqtd_out_channels", 1)
|
||||
# Multi-scale params to loop over
|
||||
self.cfg["cqtd_hop_lengths"] = self.cfg.get("cqtd_hop_lengths", [512, 256, 256])
|
||||
self.cfg["cqtd_n_octaves"] = self.cfg.get("cqtd_n_octaves", [9, 9, 9])
|
||||
self.cfg["cqtd_bins_per_octaves"] = self.cfg.get(
|
||||
"cqtd_bins_per_octaves", [24, 36, 48]
|
||||
)
|
||||
|
||||
self.discriminators = nn.ModuleList(
|
||||
[
|
||||
DiscriminatorCQT(
|
||||
self.cfg,
|
||||
hop_length=self.cfg["cqtd_hop_lengths"][i],
|
||||
n_octaves=self.cfg["cqtd_n_octaves"][i],
|
||||
bins_per_octave=self.cfg["cqtd_bins_per_octaves"][i],
|
||||
)
|
||||
for i in range(len(self.cfg["cqtd_hop_lengths"]))
|
||||
]
|
||||
)
|
||||
|
||||
def forward(self, y: torch.Tensor, y_hat: torch.Tensor) -> Tuple[
|
||||
List[torch.Tensor],
|
||||
List[torch.Tensor],
|
||||
List[List[torch.Tensor]],
|
||||
List[List[torch.Tensor]],
|
||||
]:
|
||||
|
||||
y_d_rs = []
|
||||
y_d_gs = []
|
||||
fmap_rs = []
|
||||
fmap_gs = []
|
||||
|
||||
for disc in self.discriminators:
|
||||
y_d_r, fmap_r = disc(y)
|
||||
y_d_g, fmap_g = disc(y_hat)
|
||||
y_d_rs.append(y_d_r)
|
||||
fmap_rs.append(fmap_r)
|
||||
y_d_gs.append(y_d_g)
|
||||
fmap_gs.append(fmap_g)
|
||||
|
||||
return y_d_rs, y_d_gs, fmap_rs, fmap_gs
|
||||
|
||||
|
||||
class CombinedDiscriminator(nn.Module):
|
||||
"""
|
||||
Wrapper of chaining multiple discrimiantor architectures.
|
||||
Example: combine mbd and cqtd as a single class
|
||||
"""
|
||||
|
||||
def __init__(self, list_discriminator: List[nn.Module]):
|
||||
super().__init__()
|
||||
self.discrimiantor = nn.ModuleList(list_discriminator)
|
||||
|
||||
def forward(self, y: torch.Tensor, y_hat: torch.Tensor) -> Tuple[
|
||||
List[torch.Tensor],
|
||||
List[torch.Tensor],
|
||||
List[List[torch.Tensor]],
|
||||
List[List[torch.Tensor]],
|
||||
]:
|
||||
|
||||
y_d_rs = []
|
||||
y_d_gs = []
|
||||
fmap_rs = []
|
||||
fmap_gs = []
|
||||
|
||||
for disc in self.discrimiantor:
|
||||
y_d_r, y_d_g, fmap_r, fmap_g = disc(y, y_hat)
|
||||
y_d_rs.extend(y_d_r)
|
||||
fmap_rs.extend(fmap_r)
|
||||
y_d_gs.extend(y_d_g)
|
||||
fmap_gs.extend(fmap_g)
|
||||
|
||||
return y_d_rs, y_d_gs, fmap_rs, fmap_gs
|
18
GPT_SoVITS/BigVGAN/env.py
Normal file
18
GPT_SoVITS/BigVGAN/env.py
Normal file
@ -0,0 +1,18 @@
|
||||
# Adapted from https://github.com/jik876/hifi-gan under the MIT license.
|
||||
# LICENSE is in incl_licenses directory.
|
||||
|
||||
import os
|
||||
import shutil
|
||||
|
||||
|
||||
class AttrDict(dict):
|
||||
def __init__(self, *args, **kwargs):
|
||||
super(AttrDict, self).__init__(*args, **kwargs)
|
||||
self.__dict__ = self
|
||||
|
||||
|
||||
def build_env(config, config_name, path):
|
||||
t_path = os.path.join(path, config_name)
|
||||
if config != t_path:
|
||||
os.makedirs(path, exist_ok=True)
|
||||
shutil.copyfile(config, os.path.join(path, config_name))
|
21
GPT_SoVITS/BigVGAN/incl_licenses/LICENSE_1
Normal file
21
GPT_SoVITS/BigVGAN/incl_licenses/LICENSE_1
Normal file
@ -0,0 +1,21 @@
|
||||
MIT License
|
||||
|
||||
Copyright (c) 2020 Jungil Kong
|
||||
|
||||
Permission is hereby granted, free of charge, to any person obtaining a copy
|
||||
of this software and associated documentation files (the "Software"), to deal
|
||||
in the Software without restriction, including without limitation the rights
|
||||
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
||||
copies of the Software, and to permit persons to whom the Software is
|
||||
furnished to do so, subject to the following conditions:
|
||||
|
||||
The above copyright notice and this permission notice shall be included in all
|
||||
copies or substantial portions of the Software.
|
||||
|
||||
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
||||
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
||||
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
||||
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
||||
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
||||
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
||||
SOFTWARE.
|
21
GPT_SoVITS/BigVGAN/incl_licenses/LICENSE_2
Normal file
21
GPT_SoVITS/BigVGAN/incl_licenses/LICENSE_2
Normal file
@ -0,0 +1,21 @@
|
||||
MIT License
|
||||
|
||||
Copyright (c) 2020 Edward Dixon
|
||||
|
||||
Permission is hereby granted, free of charge, to any person obtaining a copy
|
||||
of this software and associated documentation files (the "Software"), to deal
|
||||
in the Software without restriction, including without limitation the rights
|
||||
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
||||
copies of the Software, and to permit persons to whom the Software is
|
||||
furnished to do so, subject to the following conditions:
|
||||
|
||||
The above copyright notice and this permission notice shall be included in all
|
||||
copies or substantial portions of the Software.
|
||||
|
||||
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
||||
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
||||
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
||||
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
||||
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
||||
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
||||
SOFTWARE.
|
201
GPT_SoVITS/BigVGAN/incl_licenses/LICENSE_3
Normal file
201
GPT_SoVITS/BigVGAN/incl_licenses/LICENSE_3
Normal file
@ -0,0 +1,201 @@
|
||||
Apache License
|
||||
Version 2.0, January 2004
|
||||
http://www.apache.org/licenses/
|
||||
|
||||
TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
|
||||
|
||||
1. Definitions.
|
||||
|
||||
"License" shall mean the terms and conditions for use, reproduction,
|
||||
and distribution as defined by Sections 1 through 9 of this document.
|
||||
|
||||
"Licensor" shall mean the copyright owner or entity authorized by
|
||||
the copyright owner that is granting the License.
|
||||
|
||||
"Legal Entity" shall mean the union of the acting entity and all
|
||||
other entities that control, are controlled by, or are under common
|
||||
control with that entity. For the purposes of this definition,
|
||||
"control" means (i) the power, direct or indirect, to cause the
|
||||
direction or management of such entity, whether by contract or
|
||||
otherwise, or (ii) ownership of fifty percent (50%) or more of the
|
||||
outstanding shares, or (iii) beneficial ownership of such entity.
|
||||
|
||||
"You" (or "Your") shall mean an individual or Legal Entity
|
||||
exercising permissions granted by this License.
|
||||
|
||||
"Source" form shall mean the preferred form for making modifications,
|
||||
including but not limited to software source code, documentation
|
||||
source, and configuration files.
|
||||
|
||||
"Object" form shall mean any form resulting from mechanical
|
||||
transformation or translation of a Source form, including but
|
||||
not limited to compiled object code, generated documentation,
|
||||
and conversions to other media types.
|
||||
|
||||
"Work" shall mean the work of authorship, whether in Source or
|
||||
Object form, made available under the License, as indicated by a
|
||||
copyright notice that is included in or attached to the work
|
||||
(an example is provided in the Appendix below).
|
||||
|
||||
"Derivative Works" shall mean any work, whether in Source or Object
|
||||
form, that is based on (or derived from) the Work and for which the
|
||||
editorial revisions, annotations, elaborations, or other modifications
|
||||
represent, as a whole, an original work of authorship. For the purposes
|
||||
of this License, Derivative Works shall not include works that remain
|
||||
separable from, or merely link (or bind by name) to the interfaces of,
|
||||
the Work and Derivative Works thereof.
|
||||
|
||||
"Contribution" shall mean any work of authorship, including
|
||||
the original version of the Work and any modifications or additions
|
||||
to that Work or Derivative Works thereof, that is intentionally
|
||||
submitted to Licensor for inclusion in the Work by the copyright owner
|
||||
or by an individual or Legal Entity authorized to submit on behalf of
|
||||
the copyright owner. For the purposes of this definition, "submitted"
|
||||
means any form of electronic, verbal, or written communication sent
|
||||
to the Licensor or its representatives, including but not limited to
|
||||
communication on electronic mailing lists, source code control systems,
|
||||
and issue tracking systems that are managed by, or on behalf of, the
|
||||
Licensor for the purpose of discussing and improving the Work, but
|
||||
excluding communication that is conspicuously marked or otherwise
|
||||
designated in writing by the copyright owner as "Not a Contribution."
|
||||
|
||||
"Contributor" shall mean Licensor and any individual or Legal Entity
|
||||
on behalf of whom a Contribution has been received by Licensor and
|
||||
subsequently incorporated within the Work.
|
||||
|
||||
2. Grant of Copyright License. Subject to the terms and conditions of
|
||||
this License, each Contributor hereby grants to You a perpetual,
|
||||
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
|
||||
copyright license to reproduce, prepare Derivative Works of,
|
||||
publicly display, publicly perform, sublicense, and distribute the
|
||||
Work and such Derivative Works in Source or Object form.
|
||||
|
||||
3. Grant of Patent License. Subject to the terms and conditions of
|
||||
this License, each Contributor hereby grants to You a perpetual,
|
||||
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
|
||||
(except as stated in this section) patent license to make, have made,
|
||||
use, offer to sell, sell, import, and otherwise transfer the Work,
|
||||
where such license applies only to those patent claims licensable
|
||||
by such Contributor that are necessarily infringed by their
|
||||
Contribution(s) alone or by combination of their Contribution(s)
|
||||
with the Work to which such Contribution(s) was submitted. If You
|
||||
institute patent litigation against any entity (including a
|
||||
cross-claim or counterclaim in a lawsuit) alleging that the Work
|
||||
or a Contribution incorporated within the Work constitutes direct
|
||||
or contributory patent infringement, then any patent licenses
|
||||
granted to You under this License for that Work shall terminate
|
||||
as of the date such litigation is filed.
|
||||
|
||||
4. Redistribution. You may reproduce and distribute copies of the
|
||||
Work or Derivative Works thereof in any medium, with or without
|
||||
modifications, and in Source or Object form, provided that You
|
||||
meet the following conditions:
|
||||
|
||||
(a) You must give any other recipients of the Work or
|
||||
Derivative Works a copy of this License; and
|
||||
|
||||
(b) You must cause any modified files to carry prominent notices
|
||||
stating that You changed the files; and
|
||||
|
||||
(c) You must retain, in the Source form of any Derivative Works
|
||||
that You distribute, all copyright, patent, trademark, and
|
||||
attribution notices from the Source form of the Work,
|
||||
excluding those notices that do not pertain to any part of
|
||||
the Derivative Works; and
|
||||
|
||||
(d) If the Work includes a "NOTICE" text file as part of its
|
||||
distribution, then any Derivative Works that You distribute must
|
||||
include a readable copy of the attribution notices contained
|
||||
within such NOTICE file, excluding those notices that do not
|
||||
pertain to any part of the Derivative Works, in at least one
|
||||
of the following places: within a NOTICE text file distributed
|
||||
as part of the Derivative Works; within the Source form or
|
||||
documentation, if provided along with the Derivative Works; or,
|
||||
within a display generated by the Derivative Works, if and
|
||||
wherever such third-party notices normally appear. The contents
|
||||
of the NOTICE file are for informational purposes only and
|
||||
do not modify the License. You may add Your own attribution
|
||||
notices within Derivative Works that You distribute, alongside
|
||||
or as an addendum to the NOTICE text from the Work, provided
|
||||
that such additional attribution notices cannot be construed
|
||||
as modifying the License.
|
||||
|
||||
You may add Your own copyright statement to Your modifications and
|
||||
may provide additional or different license terms and conditions
|
||||
for use, reproduction, or distribution of Your modifications, or
|
||||
for any such Derivative Works as a whole, provided Your use,
|
||||
reproduction, and distribution of the Work otherwise complies with
|
||||
the conditions stated in this License.
|
||||
|
||||
5. Submission of Contributions. Unless You explicitly state otherwise,
|
||||
any Contribution intentionally submitted for inclusion in the Work
|
||||
by You to the Licensor shall be under the terms and conditions of
|
||||
this License, without any additional terms or conditions.
|
||||
Notwithstanding the above, nothing herein shall supersede or modify
|
||||
the terms of any separate license agreement you may have executed
|
||||
with Licensor regarding such Contributions.
|
||||
|
||||
6. Trademarks. This License does not grant permission to use the trade
|
||||
names, trademarks, service marks, or product names of the Licensor,
|
||||
except as required for reasonable and customary use in describing the
|
||||
origin of the Work and reproducing the content of the NOTICE file.
|
||||
|
||||
7. Disclaimer of Warranty. Unless required by applicable law or
|
||||
agreed to in writing, Licensor provides the Work (and each
|
||||
Contributor provides its Contributions) on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
|
||||
implied, including, without limitation, any warranties or conditions
|
||||
of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
|
||||
PARTICULAR PURPOSE. You are solely responsible for determining the
|
||||
appropriateness of using or redistributing the Work and assume any
|
||||
risks associated with Your exercise of permissions under this License.
|
||||
|
||||
8. Limitation of Liability. In no event and under no legal theory,
|
||||
whether in tort (including negligence), contract, or otherwise,
|
||||
unless required by applicable law (such as deliberate and grossly
|
||||
negligent acts) or agreed to in writing, shall any Contributor be
|
||||
liable to You for damages, including any direct, indirect, special,
|
||||
incidental, or consequential damages of any character arising as a
|
||||
result of this License or out of the use or inability to use the
|
||||
Work (including but not limited to damages for loss of goodwill,
|
||||
work stoppage, computer failure or malfunction, or any and all
|
||||
other commercial damages or losses), even if such Contributor
|
||||
has been advised of the possibility of such damages.
|
||||
|
||||
9. Accepting Warranty or Additional Liability. While redistributing
|
||||
the Work or Derivative Works thereof, You may choose to offer,
|
||||
and charge a fee for, acceptance of support, warranty, indemnity,
|
||||
or other liability obligations and/or rights consistent with this
|
||||
License. However, in accepting such obligations, You may act only
|
||||
on Your own behalf and on Your sole responsibility, not on behalf
|
||||
of any other Contributor, and only if You agree to indemnify,
|
||||
defend, and hold each Contributor harmless for any liability
|
||||
incurred by, or claims asserted against, such Contributor by reason
|
||||
of your accepting any such warranty or additional liability.
|
||||
|
||||
END OF TERMS AND CONDITIONS
|
||||
|
||||
APPENDIX: How to apply the Apache License to your work.
|
||||
|
||||
To apply the Apache License to your work, attach the following
|
||||
boilerplate notice, with the fields enclosed by brackets "[]"
|
||||
replaced with your own identifying information. (Don't include
|
||||
the brackets!) The text should be enclosed in the appropriate
|
||||
comment syntax for the file format. We also recommend that a
|
||||
file or class name and description of purpose be included on the
|
||||
same "printed page" as the copyright notice for easier
|
||||
identification within third-party archives.
|
||||
|
||||
Copyright [yyyy] [name of copyright owner]
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License.
|
29
GPT_SoVITS/BigVGAN/incl_licenses/LICENSE_4
Normal file
29
GPT_SoVITS/BigVGAN/incl_licenses/LICENSE_4
Normal file
@ -0,0 +1,29 @@
|
||||
BSD 3-Clause License
|
||||
|
||||
Copyright (c) 2019, Seungwon Park 박승원
|
||||
All rights reserved.
|
||||
|
||||
Redistribution and use in source and binary forms, with or without
|
||||
modification, are permitted provided that the following conditions are met:
|
||||
|
||||
1. Redistributions of source code must retain the above copyright notice, this
|
||||
list of conditions and the following disclaimer.
|
||||
|
||||
2. Redistributions in binary form must reproduce the above copyright notice,
|
||||
this list of conditions and the following disclaimer in the documentation
|
||||
and/or other materials provided with the distribution.
|
||||
|
||||
3. Neither the name of the copyright holder nor the names of its
|
||||
contributors may be used to endorse or promote products derived from
|
||||
this software without specific prior written permission.
|
||||
|
||||
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
|
||||
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
||||
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
|
||||
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
|
||||
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
||||
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
|
||||
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
|
||||
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
|
||||
OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
||||
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
16
GPT_SoVITS/BigVGAN/incl_licenses/LICENSE_5
Normal file
16
GPT_SoVITS/BigVGAN/incl_licenses/LICENSE_5
Normal file
@ -0,0 +1,16 @@
|
||||
Copyright 2020 Alexandre Défossez
|
||||
|
||||
Permission is hereby granted, free of charge, to any person obtaining a copy of this software and
|
||||
associated documentation files (the "Software"), to deal in the Software without restriction,
|
||||
including without limitation the rights to use, copy, modify, merge, publish, distribute,
|
||||
sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is
|
||||
furnished to do so, subject to the following conditions:
|
||||
|
||||
The above copyright notice and this permission notice shall be included in all copies or
|
||||
substantial portions of the Software.
|
||||
|
||||
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT
|
||||
NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
|
||||
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM,
|
||||
DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
||||
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
|
21
GPT_SoVITS/BigVGAN/incl_licenses/LICENSE_6
Normal file
21
GPT_SoVITS/BigVGAN/incl_licenses/LICENSE_6
Normal file
@ -0,0 +1,21 @@
|
||||
MIT License
|
||||
|
||||
Copyright (c) 2023-present, Descript
|
||||
|
||||
Permission is hereby granted, free of charge, to any person obtaining a copy
|
||||
of this software and associated documentation files (the "Software"), to deal
|
||||
in the Software without restriction, including without limitation the rights
|
||||
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
||||
copies of the Software, and to permit persons to whom the Software is
|
||||
furnished to do so, subject to the following conditions:
|
||||
|
||||
The above copyright notice and this permission notice shall be included in all
|
||||
copies or substantial portions of the Software.
|
||||
|
||||
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
||||
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
||||
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
||||
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
||||
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
||||
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
||||
SOFTWARE.
|
21
GPT_SoVITS/BigVGAN/incl_licenses/LICENSE_7
Normal file
21
GPT_SoVITS/BigVGAN/incl_licenses/LICENSE_7
Normal file
@ -0,0 +1,21 @@
|
||||
MIT License
|
||||
|
||||
Copyright (c) 2023 Charactr Inc.
|
||||
|
||||
Permission is hereby granted, free of charge, to any person obtaining a copy
|
||||
of this software and associated documentation files (the "Software"), to deal
|
||||
in the Software without restriction, including without limitation the rights
|
||||
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
||||
copies of the Software, and to permit persons to whom the Software is
|
||||
furnished to do so, subject to the following conditions:
|
||||
|
||||
The above copyright notice and this permission notice shall be included in all
|
||||
copies or substantial portions of the Software.
|
||||
|
||||
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
||||
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
||||
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
||||
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
||||
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
||||
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
||||
SOFTWARE.
|
21
GPT_SoVITS/BigVGAN/incl_licenses/LICENSE_8
Normal file
21
GPT_SoVITS/BigVGAN/incl_licenses/LICENSE_8
Normal file
@ -0,0 +1,21 @@
|
||||
MIT License
|
||||
|
||||
Copyright (c) 2023 Amphion
|
||||
|
||||
Permission is hereby granted, free of charge, to any person obtaining a copy
|
||||
of this software and associated documentation files (the "Software"), to deal
|
||||
in the Software without restriction, including without limitation the rights
|
||||
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
||||
copies of the Software, and to permit persons to whom the Software is
|
||||
furnished to do so, subject to the following conditions:
|
||||
|
||||
The above copyright notice and this permission notice shall be included in all
|
||||
copies or substantial portions of the Software.
|
||||
|
||||
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
||||
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
||||
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
||||
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
||||
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
||||
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
||||
SOFTWARE.
|
89
GPT_SoVITS/BigVGAN/inference.py
Normal file
89
GPT_SoVITS/BigVGAN/inference.py
Normal file
@ -0,0 +1,89 @@
|
||||
# Adapted from https://github.com/jik876/hifi-gan under the MIT license.
|
||||
# LICENSE is in incl_licenses directory.
|
||||
|
||||
from __future__ import absolute_import, division, print_function, unicode_literals
|
||||
|
||||
import os
|
||||
import argparse
|
||||
import json
|
||||
import torch
|
||||
import librosa
|
||||
from utils import load_checkpoint
|
||||
from meldataset import get_mel_spectrogram
|
||||
from scipy.io.wavfile import write
|
||||
from env import AttrDict
|
||||
from meldataset import MAX_WAV_VALUE
|
||||
from bigvgan import BigVGAN as Generator
|
||||
|
||||
h = None
|
||||
device = None
|
||||
torch.backends.cudnn.benchmark = False
|
||||
|
||||
|
||||
def inference(a, h):
|
||||
generator = Generator(h, use_cuda_kernel=a.use_cuda_kernel).to(device)
|
||||
|
||||
state_dict_g = load_checkpoint(a.checkpoint_file, device)
|
||||
generator.load_state_dict(state_dict_g["generator"])
|
||||
|
||||
filelist = os.listdir(a.input_wavs_dir)
|
||||
|
||||
os.makedirs(a.output_dir, exist_ok=True)
|
||||
|
||||
generator.eval()
|
||||
generator.remove_weight_norm()
|
||||
with torch.no_grad():
|
||||
for i, filname in enumerate(filelist):
|
||||
# Load the ground truth audio and resample if necessary
|
||||
wav, sr = librosa.load(
|
||||
os.path.join(a.input_wavs_dir, filname), sr=h.sampling_rate, mono=True
|
||||
)
|
||||
wav = torch.FloatTensor(wav).to(device)
|
||||
# Compute mel spectrogram from the ground truth audio
|
||||
x = get_mel_spectrogram(wav.unsqueeze(0), generator.h)
|
||||
|
||||
y_g_hat = generator(x)
|
||||
|
||||
audio = y_g_hat.squeeze()
|
||||
audio = audio * MAX_WAV_VALUE
|
||||
audio = audio.cpu().numpy().astype("int16")
|
||||
|
||||
output_file = os.path.join(
|
||||
a.output_dir, os.path.splitext(filname)[0] + "_generated.wav"
|
||||
)
|
||||
write(output_file, h.sampling_rate, audio)
|
||||
print(output_file)
|
||||
|
||||
|
||||
def main():
|
||||
print("Initializing Inference Process..")
|
||||
|
||||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument("--input_wavs_dir", default="test_files")
|
||||
parser.add_argument("--output_dir", default="generated_files")
|
||||
parser.add_argument("--checkpoint_file", required=True)
|
||||
parser.add_argument("--use_cuda_kernel", action="store_true", default=False)
|
||||
|
||||
a = parser.parse_args()
|
||||
|
||||
config_file = os.path.join(os.path.split(a.checkpoint_file)[0], "config.json")
|
||||
with open(config_file) as f:
|
||||
data = f.read()
|
||||
|
||||
global h
|
||||
json_config = json.loads(data)
|
||||
h = AttrDict(json_config)
|
||||
|
||||
torch.manual_seed(h.seed)
|
||||
global device
|
||||
if torch.cuda.is_available():
|
||||
torch.cuda.manual_seed(h.seed)
|
||||
device = torch.device("cuda")
|
||||
else:
|
||||
device = torch.device("cpu")
|
||||
|
||||
inference(a, h)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
102
GPT_SoVITS/BigVGAN/inference_e2e.py
Normal file
102
GPT_SoVITS/BigVGAN/inference_e2e.py
Normal file
@ -0,0 +1,102 @@
|
||||
# Adapted from https://github.com/jik876/hifi-gan under the MIT license.
|
||||
# LICENSE is in incl_licenses directory.
|
||||
|
||||
from __future__ import absolute_import, division, print_function, unicode_literals
|
||||
|
||||
import glob
|
||||
import os
|
||||
import numpy as np
|
||||
import argparse
|
||||
import json
|
||||
import torch
|
||||
from scipy.io.wavfile import write
|
||||
from env import AttrDict
|
||||
from meldataset import MAX_WAV_VALUE
|
||||
from bigvgan import BigVGAN as Generator
|
||||
|
||||
h = None
|
||||
device = None
|
||||
torch.backends.cudnn.benchmark = False
|
||||
|
||||
|
||||
def load_checkpoint(filepath, device):
|
||||
assert os.path.isfile(filepath)
|
||||
print(f"Loading '{filepath}'")
|
||||
checkpoint_dict = torch.load(filepath, map_location=device)
|
||||
print("Complete.")
|
||||
return checkpoint_dict
|
||||
|
||||
|
||||
def scan_checkpoint(cp_dir, prefix):
|
||||
pattern = os.path.join(cp_dir, prefix + "*")
|
||||
cp_list = glob.glob(pattern)
|
||||
if len(cp_list) == 0:
|
||||
return ""
|
||||
return sorted(cp_list)[-1]
|
||||
|
||||
|
||||
def inference(a, h):
|
||||
generator = Generator(h, use_cuda_kernel=a.use_cuda_kernel).to(device)
|
||||
|
||||
state_dict_g = load_checkpoint(a.checkpoint_file, device)
|
||||
generator.load_state_dict(state_dict_g["generator"])
|
||||
|
||||
filelist = os.listdir(a.input_mels_dir)
|
||||
|
||||
os.makedirs(a.output_dir, exist_ok=True)
|
||||
|
||||
generator.eval()
|
||||
generator.remove_weight_norm()
|
||||
with torch.no_grad():
|
||||
for i, filname in enumerate(filelist):
|
||||
# Load the mel spectrogram in .npy format
|
||||
x = np.load(os.path.join(a.input_mels_dir, filname))
|
||||
x = torch.FloatTensor(x).to(device)
|
||||
if len(x.shape) == 2:
|
||||
x = x.unsqueeze(0)
|
||||
|
||||
y_g_hat = generator(x)
|
||||
|
||||
audio = y_g_hat.squeeze()
|
||||
audio = audio * MAX_WAV_VALUE
|
||||
audio = audio.cpu().numpy().astype("int16")
|
||||
|
||||
output_file = os.path.join(
|
||||
a.output_dir, os.path.splitext(filname)[0] + "_generated_e2e.wav"
|
||||
)
|
||||
write(output_file, h.sampling_rate, audio)
|
||||
print(output_file)
|
||||
|
||||
|
||||
def main():
|
||||
print("Initializing Inference Process..")
|
||||
|
||||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument("--input_mels_dir", default="test_mel_files")
|
||||
parser.add_argument("--output_dir", default="generated_files_from_mel")
|
||||
parser.add_argument("--checkpoint_file", required=True)
|
||||
parser.add_argument("--use_cuda_kernel", action="store_true", default=False)
|
||||
|
||||
a = parser.parse_args()
|
||||
|
||||
config_file = os.path.join(os.path.split(a.checkpoint_file)[0], "config.json")
|
||||
with open(config_file) as f:
|
||||
data = f.read()
|
||||
|
||||
global h
|
||||
json_config = json.loads(data)
|
||||
h = AttrDict(json_config)
|
||||
|
||||
torch.manual_seed(h.seed)
|
||||
global device
|
||||
if torch.cuda.is_available():
|
||||
torch.cuda.manual_seed(h.seed)
|
||||
device = torch.device("cuda")
|
||||
else:
|
||||
device = torch.device("cpu")
|
||||
|
||||
inference(a, h)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
254
GPT_SoVITS/BigVGAN/loss.py
Normal file
254
GPT_SoVITS/BigVGAN/loss.py
Normal file
@ -0,0 +1,254 @@
|
||||
# Copyright (c) 2024 NVIDIA CORPORATION.
|
||||
# Licensed under the MIT license.
|
||||
|
||||
# Adapted from https://github.com/jik876/hifi-gan under the MIT license.
|
||||
# LICENSE is in incl_licenses directory.
|
||||
|
||||
|
||||
import torch
|
||||
import torch.nn.functional as F
|
||||
import torch.nn as nn
|
||||
from librosa.filters import mel as librosa_mel_fn
|
||||
from scipy import signal
|
||||
|
||||
import typing
|
||||
from typing import Optional, List, Union, Dict, Tuple
|
||||
from collections import namedtuple
|
||||
import math
|
||||
import functools
|
||||
|
||||
|
||||
# Adapted from https://github.com/descriptinc/descript-audio-codec/blob/main/dac/nn/loss.py under the MIT license.
|
||||
# LICENSE is in incl_licenses directory.
|
||||
class MultiScaleMelSpectrogramLoss(nn.Module):
|
||||
"""Compute distance between mel spectrograms. Can be used
|
||||
in a multi-scale way.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
n_mels : List[int]
|
||||
Number of mels per STFT, by default [5, 10, 20, 40, 80, 160, 320],
|
||||
window_lengths : List[int], optional
|
||||
Length of each window of each STFT, by default [32, 64, 128, 256, 512, 1024, 2048]
|
||||
loss_fn : typing.Callable, optional
|
||||
How to compare each loss, by default nn.L1Loss()
|
||||
clamp_eps : float, optional
|
||||
Clamp on the log magnitude, below, by default 1e-5
|
||||
mag_weight : float, optional
|
||||
Weight of raw magnitude portion of loss, by default 0.0 (no ampliciation on mag part)
|
||||
log_weight : float, optional
|
||||
Weight of log magnitude portion of loss, by default 1.0
|
||||
pow : float, optional
|
||||
Power to raise magnitude to before taking log, by default 1.0
|
||||
weight : float, optional
|
||||
Weight of this loss, by default 1.0
|
||||
match_stride : bool, optional
|
||||
Whether to match the stride of convolutional layers, by default False
|
||||
|
||||
Implementation copied from: https://github.com/descriptinc/lyrebird-audiotools/blob/961786aa1a9d628cca0c0486e5885a457fe70c1a/audiotools/metrics/spectral.py
|
||||
Additional code copied and modified from https://github.com/descriptinc/audiotools/blob/master/audiotools/core/audio_signal.py
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
sampling_rate: int,
|
||||
n_mels: List[int] = [5, 10, 20, 40, 80, 160, 320],
|
||||
window_lengths: List[int] = [32, 64, 128, 256, 512, 1024, 2048],
|
||||
loss_fn: typing.Callable = nn.L1Loss(),
|
||||
clamp_eps: float = 1e-5,
|
||||
mag_weight: float = 0.0,
|
||||
log_weight: float = 1.0,
|
||||
pow: float = 1.0,
|
||||
weight: float = 1.0,
|
||||
match_stride: bool = False,
|
||||
mel_fmin: List[float] = [0, 0, 0, 0, 0, 0, 0],
|
||||
mel_fmax: List[float] = [None, None, None, None, None, None, None],
|
||||
window_type: str = "hann",
|
||||
):
|
||||
super().__init__()
|
||||
self.sampling_rate = sampling_rate
|
||||
|
||||
STFTParams = namedtuple(
|
||||
"STFTParams",
|
||||
["window_length", "hop_length", "window_type", "match_stride"],
|
||||
)
|
||||
|
||||
self.stft_params = [
|
||||
STFTParams(
|
||||
window_length=w,
|
||||
hop_length=w // 4,
|
||||
match_stride=match_stride,
|
||||
window_type=window_type,
|
||||
)
|
||||
for w in window_lengths
|
||||
]
|
||||
self.n_mels = n_mels
|
||||
self.loss_fn = loss_fn
|
||||
self.clamp_eps = clamp_eps
|
||||
self.log_weight = log_weight
|
||||
self.mag_weight = mag_weight
|
||||
self.weight = weight
|
||||
self.mel_fmin = mel_fmin
|
||||
self.mel_fmax = mel_fmax
|
||||
self.pow = pow
|
||||
|
||||
@staticmethod
|
||||
@functools.lru_cache(None)
|
||||
def get_window(
|
||||
window_type,
|
||||
window_length,
|
||||
):
|
||||
return signal.get_window(window_type, window_length)
|
||||
|
||||
@staticmethod
|
||||
@functools.lru_cache(None)
|
||||
def get_mel_filters(sr, n_fft, n_mels, fmin, fmax):
|
||||
return librosa_mel_fn(sr=sr, n_fft=n_fft, n_mels=n_mels, fmin=fmin, fmax=fmax)
|
||||
|
||||
def mel_spectrogram(
|
||||
self,
|
||||
wav,
|
||||
n_mels,
|
||||
fmin,
|
||||
fmax,
|
||||
window_length,
|
||||
hop_length,
|
||||
match_stride,
|
||||
window_type,
|
||||
):
|
||||
"""
|
||||
Mirrors AudioSignal.mel_spectrogram used by BigVGAN-v2 training from:
|
||||
https://github.com/descriptinc/audiotools/blob/master/audiotools/core/audio_signal.py
|
||||
"""
|
||||
B, C, T = wav.shape
|
||||
|
||||
if match_stride:
|
||||
assert (
|
||||
hop_length == window_length // 4
|
||||
), "For match_stride, hop must equal n_fft // 4"
|
||||
right_pad = math.ceil(T / hop_length) * hop_length - T
|
||||
pad = (window_length - hop_length) // 2
|
||||
else:
|
||||
right_pad = 0
|
||||
pad = 0
|
||||
|
||||
wav = torch.nn.functional.pad(wav, (pad, pad + right_pad), mode="reflect")
|
||||
|
||||
window = self.get_window(window_type, window_length)
|
||||
window = torch.from_numpy(window).to(wav.device).float()
|
||||
|
||||
stft = torch.stft(
|
||||
wav.reshape(-1, T),
|
||||
n_fft=window_length,
|
||||
hop_length=hop_length,
|
||||
window=window,
|
||||
return_complex=True,
|
||||
center=True,
|
||||
)
|
||||
_, nf, nt = stft.shape
|
||||
stft = stft.reshape(B, C, nf, nt)
|
||||
if match_stride:
|
||||
"""
|
||||
Drop first two and last two frames, which are added, because of padding. Now num_frames * hop_length = num_samples.
|
||||
"""
|
||||
stft = stft[..., 2:-2]
|
||||
magnitude = torch.abs(stft)
|
||||
|
||||
nf = magnitude.shape[2]
|
||||
mel_basis = self.get_mel_filters(
|
||||
self.sampling_rate, 2 * (nf - 1), n_mels, fmin, fmax
|
||||
)
|
||||
mel_basis = torch.from_numpy(mel_basis).to(wav.device)
|
||||
mel_spectrogram = magnitude.transpose(2, -1) @ mel_basis.T
|
||||
mel_spectrogram = mel_spectrogram.transpose(-1, 2)
|
||||
|
||||
return mel_spectrogram
|
||||
|
||||
def forward(self, x: torch.Tensor, y: torch.Tensor) -> torch.Tensor:
|
||||
"""Computes mel loss between an estimate and a reference
|
||||
signal.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
x : torch.Tensor
|
||||
Estimate signal
|
||||
y : torch.Tensor
|
||||
Reference signal
|
||||
|
||||
Returns
|
||||
-------
|
||||
torch.Tensor
|
||||
Mel loss.
|
||||
"""
|
||||
|
||||
loss = 0.0
|
||||
for n_mels, fmin, fmax, s in zip(
|
||||
self.n_mels, self.mel_fmin, self.mel_fmax, self.stft_params
|
||||
):
|
||||
kwargs = {
|
||||
"n_mels": n_mels,
|
||||
"fmin": fmin,
|
||||
"fmax": fmax,
|
||||
"window_length": s.window_length,
|
||||
"hop_length": s.hop_length,
|
||||
"match_stride": s.match_stride,
|
||||
"window_type": s.window_type,
|
||||
}
|
||||
|
||||
x_mels = self.mel_spectrogram(x, **kwargs)
|
||||
y_mels = self.mel_spectrogram(y, **kwargs)
|
||||
x_logmels = torch.log(
|
||||
x_mels.clamp(min=self.clamp_eps).pow(self.pow)
|
||||
) / torch.log(torch.tensor(10.0))
|
||||
y_logmels = torch.log(
|
||||
y_mels.clamp(min=self.clamp_eps).pow(self.pow)
|
||||
) / torch.log(torch.tensor(10.0))
|
||||
|
||||
loss += self.log_weight * self.loss_fn(x_logmels, y_logmels)
|
||||
loss += self.mag_weight * self.loss_fn(x_logmels, y_logmels)
|
||||
|
||||
return loss
|
||||
|
||||
|
||||
# Loss functions
|
||||
def feature_loss(
|
||||
fmap_r: List[List[torch.Tensor]], fmap_g: List[List[torch.Tensor]]
|
||||
) -> torch.Tensor:
|
||||
|
||||
loss = 0
|
||||
for dr, dg in zip(fmap_r, fmap_g):
|
||||
for rl, gl in zip(dr, dg):
|
||||
loss += torch.mean(torch.abs(rl - gl))
|
||||
|
||||
return loss * 2 # This equates to lambda=2.0 for the feature matching loss
|
||||
|
||||
|
||||
def discriminator_loss(
|
||||
disc_real_outputs: List[torch.Tensor], disc_generated_outputs: List[torch.Tensor]
|
||||
) -> Tuple[torch.Tensor, List[torch.Tensor], List[torch.Tensor]]:
|
||||
|
||||
loss = 0
|
||||
r_losses = []
|
||||
g_losses = []
|
||||
for dr, dg in zip(disc_real_outputs, disc_generated_outputs):
|
||||
r_loss = torch.mean((1 - dr) ** 2)
|
||||
g_loss = torch.mean(dg**2)
|
||||
loss += r_loss + g_loss
|
||||
r_losses.append(r_loss.item())
|
||||
g_losses.append(g_loss.item())
|
||||
|
||||
return loss, r_losses, g_losses
|
||||
|
||||
|
||||
def generator_loss(
|
||||
disc_outputs: List[torch.Tensor],
|
||||
) -> Tuple[torch.Tensor, List[torch.Tensor]]:
|
||||
|
||||
loss = 0
|
||||
gen_losses = []
|
||||
for dg in disc_outputs:
|
||||
l = torch.mean((1 - dg) ** 2)
|
||||
gen_losses.append(l)
|
||||
loss += l
|
||||
|
||||
return loss, gen_losses
|
396
GPT_SoVITS/BigVGAN/meldataset.py
Normal file
396
GPT_SoVITS/BigVGAN/meldataset.py
Normal file
@ -0,0 +1,396 @@
|
||||
# Copyright (c) 2024 NVIDIA CORPORATION.
|
||||
# Licensed under the MIT license.
|
||||
|
||||
# Adapted from https://github.com/jik876/hifi-gan under the MIT license.
|
||||
# LICENSE is in incl_licenses directory.
|
||||
|
||||
import math
|
||||
import os
|
||||
import random
|
||||
import torch
|
||||
import torch.utils.data
|
||||
import numpy as np
|
||||
import librosa
|
||||
from librosa.filters import mel as librosa_mel_fn
|
||||
import pathlib
|
||||
from tqdm import tqdm
|
||||
from typing import List, Tuple, Optional
|
||||
from .env import AttrDict
|
||||
|
||||
MAX_WAV_VALUE = 32767.0 # NOTE: 32768.0 -1 to prevent int16 overflow (results in popping sound in corner cases)
|
||||
|
||||
|
||||
def dynamic_range_compression(x, C=1, clip_val=1e-5):
|
||||
return np.log(np.clip(x, a_min=clip_val, a_max=None) * C)
|
||||
|
||||
|
||||
def dynamic_range_decompression(x, C=1):
|
||||
return np.exp(x) / C
|
||||
|
||||
|
||||
def dynamic_range_compression_torch(x, C=1, clip_val=1e-5):
|
||||
return torch.log(torch.clamp(x, min=clip_val) * C)
|
||||
|
||||
|
||||
def dynamic_range_decompression_torch(x, C=1):
|
||||
return torch.exp(x) / C
|
||||
|
||||
|
||||
def spectral_normalize_torch(magnitudes):
|
||||
return dynamic_range_compression_torch(magnitudes)
|
||||
|
||||
|
||||
def spectral_de_normalize_torch(magnitudes):
|
||||
return dynamic_range_decompression_torch(magnitudes)
|
||||
|
||||
|
||||
mel_basis_cache = {}
|
||||
hann_window_cache = {}
|
||||
|
||||
|
||||
def mel_spectrogram(
|
||||
y: torch.Tensor,
|
||||
n_fft: int,
|
||||
num_mels: int,
|
||||
sampling_rate: int,
|
||||
hop_size: int,
|
||||
win_size: int,
|
||||
fmin: int,
|
||||
fmax: int = None,
|
||||
center: bool = False,
|
||||
) -> torch.Tensor:
|
||||
"""
|
||||
Calculate the mel spectrogram of an input signal.
|
||||
This function uses slaney norm for the librosa mel filterbank (using librosa.filters.mel) and uses Hann window for STFT (using torch.stft).
|
||||
|
||||
Args:
|
||||
y (torch.Tensor): Input signal.
|
||||
n_fft (int): FFT size.
|
||||
num_mels (int): Number of mel bins.
|
||||
sampling_rate (int): Sampling rate of the input signal.
|
||||
hop_size (int): Hop size for STFT.
|
||||
win_size (int): Window size for STFT.
|
||||
fmin (int): Minimum frequency for mel filterbank.
|
||||
fmax (int): Maximum frequency for mel filterbank. If None, defaults to half the sampling rate (fmax = sr / 2.0) inside librosa_mel_fn
|
||||
center (bool): Whether to pad the input to center the frames. Default is False.
|
||||
|
||||
Returns:
|
||||
torch.Tensor: Mel spectrogram.
|
||||
"""
|
||||
if torch.min(y) < -1.0:
|
||||
print(f"[WARNING] Min value of input waveform signal is {torch.min(y)}")
|
||||
if torch.max(y) > 1.0:
|
||||
print(f"[WARNING] Max value of input waveform signal is {torch.max(y)}")
|
||||
|
||||
device = y.device
|
||||
key = f"{n_fft}_{num_mels}_{sampling_rate}_{hop_size}_{win_size}_{fmin}_{fmax}_{device}"
|
||||
|
||||
if key not in mel_basis_cache:
|
||||
mel = librosa_mel_fn(
|
||||
sr=sampling_rate, n_fft=n_fft, n_mels=num_mels, fmin=fmin, fmax=fmax
|
||||
)
|
||||
mel_basis_cache[key] = torch.from_numpy(mel).float().to(device)
|
||||
hann_window_cache[key] = torch.hann_window(win_size).to(device)
|
||||
|
||||
mel_basis = mel_basis_cache[key]
|
||||
hann_window = hann_window_cache[key]
|
||||
|
||||
padding = (n_fft - hop_size) // 2
|
||||
y = torch.nn.functional.pad(
|
||||
y.unsqueeze(1), (padding, padding), mode="reflect"
|
||||
).squeeze(1)
|
||||
|
||||
spec = torch.stft(
|
||||
y,
|
||||
n_fft,
|
||||
hop_length=hop_size,
|
||||
win_length=win_size,
|
||||
window=hann_window,
|
||||
center=center,
|
||||
pad_mode="reflect",
|
||||
normalized=False,
|
||||
onesided=True,
|
||||
return_complex=True,
|
||||
)
|
||||
spec = torch.sqrt(torch.view_as_real(spec).pow(2).sum(-1) + 1e-9)
|
||||
|
||||
mel_spec = torch.matmul(mel_basis, spec)
|
||||
mel_spec = spectral_normalize_torch(mel_spec)
|
||||
|
||||
return mel_spec
|
||||
|
||||
|
||||
def get_mel_spectrogram(wav, h):
|
||||
"""
|
||||
Generate mel spectrogram from a waveform using given hyperparameters.
|
||||
|
||||
Args:
|
||||
wav (torch.Tensor): Input waveform.
|
||||
h: Hyperparameters object with attributes n_fft, num_mels, sampling_rate, hop_size, win_size, fmin, fmax.
|
||||
|
||||
Returns:
|
||||
torch.Tensor: Mel spectrogram.
|
||||
"""
|
||||
return mel_spectrogram(
|
||||
wav,
|
||||
h.n_fft,
|
||||
h.num_mels,
|
||||
h.sampling_rate,
|
||||
h.hop_size,
|
||||
h.win_size,
|
||||
h.fmin,
|
||||
h.fmax,
|
||||
)
|
||||
|
||||
|
||||
def get_dataset_filelist(a):
|
||||
training_files = []
|
||||
validation_files = []
|
||||
list_unseen_validation_files = []
|
||||
|
||||
with open(a.input_training_file, "r", encoding="utf-8") as fi:
|
||||
training_files = [
|
||||
os.path.join(a.input_wavs_dir, x.split("|")[0] + ".wav")
|
||||
for x in fi.read().split("\n")
|
||||
if len(x) > 0
|
||||
]
|
||||
print(f"first training file: {training_files[0]}")
|
||||
|
||||
with open(a.input_validation_file, "r", encoding="utf-8") as fi:
|
||||
validation_files = [
|
||||
os.path.join(a.input_wavs_dir, x.split("|")[0] + ".wav")
|
||||
for x in fi.read().split("\n")
|
||||
if len(x) > 0
|
||||
]
|
||||
print(f"first validation file: {validation_files[0]}")
|
||||
|
||||
for i in range(len(a.list_input_unseen_validation_file)):
|
||||
with open(a.list_input_unseen_validation_file[i], "r", encoding="utf-8") as fi:
|
||||
unseen_validation_files = [
|
||||
os.path.join(a.list_input_unseen_wavs_dir[i], x.split("|")[0] + ".wav")
|
||||
for x in fi.read().split("\n")
|
||||
if len(x) > 0
|
||||
]
|
||||
print(
|
||||
f"first unseen {i}th validation fileset: {unseen_validation_files[0]}"
|
||||
)
|
||||
list_unseen_validation_files.append(unseen_validation_files)
|
||||
|
||||
return training_files, validation_files, list_unseen_validation_files
|
||||
|
||||
|
||||
class MelDataset(torch.utils.data.Dataset):
|
||||
def __init__(
|
||||
self,
|
||||
training_files: List[str],
|
||||
hparams: AttrDict,
|
||||
segment_size: int,
|
||||
n_fft: int,
|
||||
num_mels: int,
|
||||
hop_size: int,
|
||||
win_size: int,
|
||||
sampling_rate: int,
|
||||
fmin: int,
|
||||
fmax: Optional[int],
|
||||
split: bool = True,
|
||||
shuffle: bool = True,
|
||||
device: str = None,
|
||||
fmax_loss: Optional[int] = None,
|
||||
fine_tuning: bool = False,
|
||||
base_mels_path: str = None,
|
||||
is_seen: bool = True,
|
||||
):
|
||||
self.audio_files = training_files
|
||||
random.seed(1234)
|
||||
if shuffle:
|
||||
random.shuffle(self.audio_files)
|
||||
self.hparams = hparams
|
||||
self.is_seen = is_seen
|
||||
if self.is_seen:
|
||||
self.name = pathlib.Path(self.audio_files[0]).parts[0]
|
||||
else:
|
||||
self.name = "-".join(pathlib.Path(self.audio_files[0]).parts[:2]).strip("/")
|
||||
|
||||
self.segment_size = segment_size
|
||||
self.sampling_rate = sampling_rate
|
||||
self.split = split
|
||||
self.n_fft = n_fft
|
||||
self.num_mels = num_mels
|
||||
self.hop_size = hop_size
|
||||
self.win_size = win_size
|
||||
self.fmin = fmin
|
||||
self.fmax = fmax
|
||||
self.fmax_loss = fmax_loss
|
||||
self.device = device
|
||||
self.fine_tuning = fine_tuning
|
||||
self.base_mels_path = base_mels_path
|
||||
|
||||
print("[INFO] checking dataset integrity...")
|
||||
for i in tqdm(range(len(self.audio_files))):
|
||||
assert os.path.exists(
|
||||
self.audio_files[i]
|
||||
), f"{self.audio_files[i]} not found"
|
||||
|
||||
def __getitem__(
|
||||
self, index: int
|
||||
) -> Tuple[torch.Tensor, torch.Tensor, str, torch.Tensor]:
|
||||
try:
|
||||
filename = self.audio_files[index]
|
||||
|
||||
# Use librosa.load that ensures loading waveform into mono with [-1, 1] float values
|
||||
# Audio is ndarray with shape [T_time]. Disable auto-resampling here to minimize overhead
|
||||
# The on-the-fly resampling during training will be done only for the obtained random chunk
|
||||
audio, source_sampling_rate = librosa.load(filename, sr=None, mono=True)
|
||||
|
||||
# Main logic that uses <mel, audio> pair for training BigVGAN
|
||||
if not self.fine_tuning:
|
||||
if self.split: # Training step
|
||||
# Obtain randomized audio chunk
|
||||
if source_sampling_rate != self.sampling_rate:
|
||||
# Adjust segment size to crop if the source sr is different
|
||||
target_segment_size = math.ceil(
|
||||
self.segment_size
|
||||
* (source_sampling_rate / self.sampling_rate)
|
||||
)
|
||||
else:
|
||||
target_segment_size = self.segment_size
|
||||
|
||||
# Compute upper bound index for the random chunk
|
||||
random_chunk_upper_bound = max(
|
||||
0, audio.shape[0] - target_segment_size
|
||||
)
|
||||
|
||||
# Crop or pad audio to obtain random chunk with target_segment_size
|
||||
if audio.shape[0] >= target_segment_size:
|
||||
audio_start = random.randint(0, random_chunk_upper_bound)
|
||||
audio = audio[audio_start : audio_start + target_segment_size]
|
||||
else:
|
||||
audio = np.pad(
|
||||
audio,
|
||||
(0, target_segment_size - audio.shape[0]),
|
||||
mode="constant",
|
||||
)
|
||||
|
||||
# Resample audio chunk to self.sampling rate
|
||||
if source_sampling_rate != self.sampling_rate:
|
||||
audio = librosa.resample(
|
||||
audio,
|
||||
orig_sr=source_sampling_rate,
|
||||
target_sr=self.sampling_rate,
|
||||
)
|
||||
if audio.shape[0] > self.segment_size:
|
||||
# trim last elements to match self.segment_size (e.g., 16385 for 44khz downsampled to 24khz -> 16384)
|
||||
audio = audio[: self.segment_size]
|
||||
|
||||
else: # Validation step
|
||||
# Resample full audio clip to target sampling rate
|
||||
if source_sampling_rate != self.sampling_rate:
|
||||
audio = librosa.resample(
|
||||
audio,
|
||||
orig_sr=source_sampling_rate,
|
||||
target_sr=self.sampling_rate,
|
||||
)
|
||||
# Trim last elements to match audio length to self.hop_size * n for evaluation
|
||||
if (audio.shape[0] % self.hop_size) != 0:
|
||||
audio = audio[: -(audio.shape[0] % self.hop_size)]
|
||||
|
||||
# BigVGAN is trained using volume-normalized waveform
|
||||
audio = librosa.util.normalize(audio) * 0.95
|
||||
|
||||
# Cast ndarray to torch tensor
|
||||
audio = torch.FloatTensor(audio)
|
||||
audio = audio.unsqueeze(0) # [B(1), self.segment_size]
|
||||
|
||||
# Compute mel spectrogram corresponding to audio
|
||||
mel = mel_spectrogram(
|
||||
audio,
|
||||
self.n_fft,
|
||||
self.num_mels,
|
||||
self.sampling_rate,
|
||||
self.hop_size,
|
||||
self.win_size,
|
||||
self.fmin,
|
||||
self.fmax,
|
||||
center=False,
|
||||
) # [B(1), self.num_mels, self.segment_size // self.hop_size]
|
||||
|
||||
# Fine-tuning logic that uses pre-computed mel. Example: Using TTS model-generated mel as input
|
||||
else:
|
||||
# For fine-tuning, assert that the waveform is in the defined sampling_rate
|
||||
# Fine-tuning won't support on-the-fly resampling to be fool-proof (the dataset should have been prepared properly)
|
||||
assert (
|
||||
source_sampling_rate == self.sampling_rate
|
||||
), f"For fine_tuning, waveform must be in the spcified sampling rate {self.sampling_rate}, got {source_sampling_rate}"
|
||||
|
||||
# Cast ndarray to torch tensor
|
||||
audio = torch.FloatTensor(audio)
|
||||
audio = audio.unsqueeze(0) # [B(1), T_time]
|
||||
|
||||
# Load pre-computed mel from disk
|
||||
mel = np.load(
|
||||
os.path.join(
|
||||
self.base_mels_path,
|
||||
os.path.splitext(os.path.split(filename)[-1])[0] + ".npy",
|
||||
)
|
||||
)
|
||||
mel = torch.from_numpy(mel)
|
||||
|
||||
if len(mel.shape) < 3:
|
||||
mel = mel.unsqueeze(0) # ensure [B, C, T]
|
||||
|
||||
if self.split:
|
||||
frames_per_seg = math.ceil(self.segment_size / self.hop_size)
|
||||
|
||||
if audio.size(1) >= self.segment_size:
|
||||
mel_start = random.randint(0, mel.size(2) - frames_per_seg - 1)
|
||||
mel = mel[:, :, mel_start : mel_start + frames_per_seg]
|
||||
audio = audio[
|
||||
:,
|
||||
mel_start
|
||||
* self.hop_size : (mel_start + frames_per_seg)
|
||||
* self.hop_size,
|
||||
]
|
||||
|
||||
# Pad pre-computed mel and audio to match length to ensuring fine-tuning without error.
|
||||
# NOTE: this may introduce a single-frame misalignment of the <pre-computed mel, audio>
|
||||
# To remove possible misalignment, it is recommended to prepare the <pre-computed mel, audio> pair where the audio length is the integer multiple of self.hop_size
|
||||
mel = torch.nn.functional.pad(
|
||||
mel, (0, frames_per_seg - mel.size(2)), "constant"
|
||||
)
|
||||
audio = torch.nn.functional.pad(
|
||||
audio, (0, self.segment_size - audio.size(1)), "constant"
|
||||
)
|
||||
|
||||
# Compute mel_loss used by spectral regression objective. Uses self.fmax_loss instead (usually None)
|
||||
mel_loss = mel_spectrogram(
|
||||
audio,
|
||||
self.n_fft,
|
||||
self.num_mels,
|
||||
self.sampling_rate,
|
||||
self.hop_size,
|
||||
self.win_size,
|
||||
self.fmin,
|
||||
self.fmax_loss,
|
||||
center=False,
|
||||
) # [B(1), self.num_mels, self.segment_size // self.hop_size]
|
||||
|
||||
# Shape sanity checks
|
||||
assert (
|
||||
audio.shape[1] == mel.shape[2] * self.hop_size
|
||||
and audio.shape[1] == mel_loss.shape[2] * self.hop_size
|
||||
), f"Audio length must be mel frame length * hop_size. Got audio shape {audio.shape} mel shape {mel.shape} mel_loss shape {mel_loss.shape}"
|
||||
|
||||
return (mel.squeeze(), audio.squeeze(0), filename, mel_loss.squeeze())
|
||||
|
||||
# If it encounters error during loading the data, skip this sample and load random other sample to the batch
|
||||
except Exception as e:
|
||||
if self.fine_tuning:
|
||||
raise e # Terminate training if it is fine-tuning. The dataset should have been prepared properly.
|
||||
else:
|
||||
print(
|
||||
f"[WARNING] Failed to load waveform, skipping! filename: {filename} Error: {e}"
|
||||
)
|
||||
return self[random.randrange(len(self))]
|
||||
|
||||
def __len__(self):
|
||||
return len(self.audio_files)
|
1
GPT_SoVITS/BigVGAN/nv-modelcard++/.gitkeep
Normal file
1
GPT_SoVITS/BigVGAN/nv-modelcard++/.gitkeep
Normal file
@ -0,0 +1 @@
|
||||
|
4
GPT_SoVITS/BigVGAN/nv-modelcard++/bias.md
Normal file
4
GPT_SoVITS/BigVGAN/nv-modelcard++/bias.md
Normal file
@ -0,0 +1,4 @@
|
||||
| Field | Response |
|
||||
| :--------------------------------------------------------------------------------------------------------- | :--------------------------------------------------- |
|
||||
| Participation considerations from adversely impacted groups protected classes in model design and testing: | None |
|
||||
| Measures taken to mitigate against unwanted bias: | No measures taken to mitigate against unwanted bias. |
|
13
GPT_SoVITS/BigVGAN/nv-modelcard++/explainability.md
Normal file
13
GPT_SoVITS/BigVGAN/nv-modelcard++/explainability.md
Normal file
@ -0,0 +1,13 @@
|
||||
| Field | Response |
|
||||
| :---------------------------------------------------------------------------------------------------- | :--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
|
||||
| Intended Application & Domain: | Generating waveform from mel spectrogram. |
|
||||
| Model Type: | Convolutional Neural Network (CNN) |
|
||||
| Intended Users: | This model is intended for developers to synthesize and generate waveforms from the AI-generated mel spectrograms. |
|
||||
| Output: | Audio Waveform |
|
||||
| Describe how the model works: | Model generates audio waveform corresponding to the input mel spectrogram. |
|
||||
| Name the adversely impacted groups this has been tested to deliver comparable outcomes regardless of: | Not Applicable |
|
||||
| Technical Limitations: | This may not perform well on synthetically-generated mel spectrograms that deviate significantly from the profile of mel spectrograms on which this was trained. |
|
||||
| Verified to have met prescribed NVIDIA quality standards: | Yes |
|
||||
| Performance Metrics: | Perceptual Evaluation of Speech Quality (PESQ), Virtual Speech Quality Objective Listener (VISQOL), Multi-resolution STFT (MRSTFT), Mel cepstral distortion (MCD), Periodicity RMSE, Voice/Unvoiced F1 Score (V/UV F1) |
|
||||
| Potential Known Risks: | This model may generate low-quality or distorted soundwaves. |
|
||||
| Licensing: | https://github.com/NVIDIA/BigVGAN/blob/main/LICENSE |
|
126
GPT_SoVITS/BigVGAN/nv-modelcard++/overview.md
Normal file
126
GPT_SoVITS/BigVGAN/nv-modelcard++/overview.md
Normal file
@ -0,0 +1,126 @@
|
||||
# Model Overview
|
||||
|
||||
## Description:
|
||||
|
||||
BigVGAN is a generative AI model specialized in synthesizing audio waveforms using Mel spectrogram as inputs.
|
||||
|
||||
<center><img src="https://user-images.githubusercontent.com/15963413/218609148-881e39df-33af-4af9-ab95-1427c4ebf062.png" width="800"></center>
|
||||
|
||||
BigVGAN is a fully convolutional architecture with several upsampling blocks using transposed convolution followed by multiple residual dilated convolution layers.
|
||||
|
||||
BigVGAN consists of a novel module, called anti-aliased multi-periodicity composition (AMP), which is specifically designed for generating waveforms. AMP is specialized in synthesizing high-frequency and periodic soundwaves drawing inspiration from audio signal processing principles.
|
||||
|
||||
It applies a periodic activation function, called Snake, which provides an inductive bias to the architecture in generating periodic soundwaves. It also applies anti-aliasing filters to reduce undesired artifacts in the generated waveforms. <br>
|
||||
|
||||
This model is ready for commercial use.<br>
|
||||
|
||||
## References(s):
|
||||
|
||||
- [BigVGAN: A Universal Neural Vocoder with Large-Scale Training](https://arxiv.org/abs/2206.04658) <br>
|
||||
- [Project Page](https://research.nvidia.com/labs/adlr/projects/bigvgan/) <br>
|
||||
- [Audio Demo](https://bigvgan-demo.github.io/) <br>
|
||||
|
||||
## Model Architecture:
|
||||
|
||||
**Architecture Type:** Convolution Neural Network (CNN) <br>
|
||||
**Network Architecture:** You can see the details of this model on this link: https://github.com/NVIDIA/BigVGAN and the related paper can be found here: https://arxiv.org/abs/2206.04658<br>
|
||||
**Model Version:** 2.0 <br>
|
||||
|
||||
## Input:
|
||||
|
||||
**Input Type:** Audio <br>
|
||||
**Input Format:** Mel Spectrogram <br>
|
||||
**Input Parameters:** None <br>
|
||||
**Other Properties Related to Input:** The input mel spectrogram has shape `[batch, channels, frames]`, where `channels` refers to the number of mel bands defined by the model and `frames` refers to the temporal length. The model supports arbitrary long `frames` that fits into the GPU memory.
|
||||
|
||||
## Output:
|
||||
|
||||
**Input Type:** Audio <br>
|
||||
**Output Format:** Audio Waveform <br>
|
||||
**Output Parameters:** None <br>
|
||||
**Other Properties Related to Output:** The output audio waveform has shape `[batch, 1, time]`, where `1` refers to the mono audio channels and `time` refers to the temporal length. `time` is defined as a fixed integer multiple of input `frames`, which is an upsampling ratio of the model (`time = upsampling ratio * frames`). The output audio waveform consitutes float values with a range of `[-1, 1]`.
|
||||
|
||||
## Software Integration:
|
||||
|
||||
**Runtime Engine(s):** PyTorch
|
||||
|
||||
**Supported Hardware Microarchitecture Compatibility:** NVIDIA Ampere, NVIDIA Hopper, NVIDIA Lovelace, NVIDIA Turing, NVIDIA Volta <br>
|
||||
|
||||
## Preferred/Supported Operating System(s):
|
||||
|
||||
Linux
|
||||
|
||||
## Model Version(s):
|
||||
|
||||
v2.0
|
||||
|
||||
## Training, Testing, and Evaluation Datasets:
|
||||
|
||||
### Training Dataset:
|
||||
|
||||
The dataset contains diverse audio types, including speech in multiple languages, environmental sounds, and instruments.
|
||||
|
||||
**Links:**
|
||||
|
||||
- [AAM: Artificial Audio Multitracks Dataset](https://zenodo.org/records/5794629)
|
||||
- [AudioCaps](https://audiocaps.github.io/)
|
||||
- [AudioSet](https://research.google.com/audioset/index.html)
|
||||
- [common-accent](https://huggingface.co/datasets/DTU54DL/common-accent)
|
||||
- [Crowd Sourced Emotional Multimodal Actors Dataset (CREMA-D)](https://ieeexplore.ieee.org/document/6849440)
|
||||
- [DCASE2017 Challenge, Task 4: Large-scale weakly supervised sound event detection for smart cars](https://dcase.community/challenge2017/task-large-scale-sound-event-detection)
|
||||
- [FSDnoisy18k](https://zenodo.org/records/2529934)
|
||||
- [Free Universal Sound Separation Dataset](https://zenodo.org/records/3694384)
|
||||
- [Greatest Hits dataset](https://andrewowens.com/vis/)
|
||||
- [GTZAN](https://ieeexplore.ieee.org/document/1021072)
|
||||
- [JL corpus](https://www.kaggle.com/datasets/tli725/jl-corpus)
|
||||
- [Medley-solos-DB: a cross-collection dataset for musical instrument recognition](https://zenodo.org/records/3464194)
|
||||
- [MUSAN: A Music, Speech, and Noise Corpus](https://www.openslr.org/17/)
|
||||
- [MusicBench](https://huggingface.co/datasets/amaai-lab/MusicBench)
|
||||
- [MusicCaps](https://www.kaggle.com/datasets/googleai/musiccaps)
|
||||
- [MusicNet](https://www.kaggle.com/datasets/imsparsh/musicnet-dataset)
|
||||
- [NSynth](https://magenta.tensorflow.org/datasets/nsynth)
|
||||
- [OnAir-Music-Dataset](https://github.com/sevagh/OnAir-Music-Dataset)
|
||||
- [Audio Piano Triads Dataset](https://zenodo.org/records/4740877)
|
||||
- [Pitch Audio Dataset (Surge synthesizer)](https://zenodo.org/records/4677097)
|
||||
- [SONYC Urban Sound Tagging (SONYC-UST): a multilabel dataset from an urban acoustic sensor network](https://zenodo.org/records/3966543)
|
||||
- [VocalSound: A Dataset for Improving Human Vocal Sounds Recognition](https://arxiv.org/abs/2205.03433)
|
||||
- [WavText5K](https://github.com/microsoft/WavText5K)
|
||||
- [CSS10: A Collection of Single Speaker Speech Datasets for 10 Languages](https://github.com/Kyubyong/css10)
|
||||
- [Hi-Fi Multi-Speaker English TTS Dataset (Hi-Fi TTS)](https://www.openslr.org/109/)
|
||||
- [IIIT-H Indic Speech Databases](http://festvox.org/databases/iiit_voices/)
|
||||
- [Libri-Light: A Benchmark for ASR with Limited or No Supervision](https://arxiv.org/abs/1912.07875)
|
||||
- [LibriTTS: A Corpus Derived from LibriSpeech for Text-to-Speech](https://www.openslr.org/60)
|
||||
- [LibriTTS-R: A Restored Multi-Speaker Text-to-Speech Corpus](https://www.openslr.org/141/)
|
||||
- [The SIWIS French Speech Synthesis Database](https://datashare.ed.ac.uk/handle/10283/2353)
|
||||
- [Crowdsourced high-quality Colombian Spanish speech data set](https://openslr.org/72/)
|
||||
- [TTS-Portuguese Corpus](https://github.com/Edresson/TTS-Portuguese-Corpus)
|
||||
- [CSTR VCTK Corpus: English Multi-speaker Corpus for CSTR Voice Cloning Toolkit](https://datashare.ed.ac.uk/handle/10283/3443)
|
||||
|
||||
\*\* Data Collection Method by dataset <br>
|
||||
|
||||
- Human <br>
|
||||
|
||||
\*\* Labeling Method by dataset (for those with labels) <br>
|
||||
|
||||
- Hybrid: Automated, Human, Unknown <br>
|
||||
|
||||
### Evaluating Dataset:
|
||||
|
||||
Properties: The audio generation quality of BigVGAN is evaluated using `dev` splits of the [LibriTTS dataset](https://www.openslr.org/60/) and [Hi-Fi TTS dataset](https://www.openslr.org/109/). The datasets include speech in English language with equal balance of genders.
|
||||
|
||||
\*\* Data Collection Method by dataset <br>
|
||||
|
||||
- Human <br>
|
||||
|
||||
\*\* Labeling Method by dataset <br>
|
||||
|
||||
- Automated <br>
|
||||
|
||||
## Inference:
|
||||
|
||||
**Engine:** PyTorch <br>
|
||||
**Test Hardware:** NVIDIA A100 GPU <br>
|
||||
|
||||
## Ethical Considerations:
|
||||
|
||||
NVIDIA believes Trustworthy AI is a shared responsibility and we have established policies and practices to enable development for a wide array of AI applications. When downloaded or used in accordance with our terms of service, developers should work with their internal model team to ensure this model meets requirements for the relevant industry and use case and addresses unforeseen product misuse. For more detailed information on ethical considerations for this model, please see the Model Card++ Explainability, Bias, Safety & Security, and Privacy Subcards. Please report security vulnerabilities or NVIDIA AI Concerns [here](https://www.nvidia.com/en-us/support/submit-security-vulnerability/).
|
14
GPT_SoVITS/BigVGAN/nv-modelcard++/privacy.md
Normal file
14
GPT_SoVITS/BigVGAN/nv-modelcard++/privacy.md
Normal file
@ -0,0 +1,14 @@
|
||||
| Field | Response |
|
||||
| :------------------------------------------------------------------------------------------------------------------------------------- | :--------------------------------------------- |
|
||||
| Generatable or reverse engineerable personal information? | None |
|
||||
| Protected class data used to create this model? | None |
|
||||
| Was consent obtained for any personal data used? | Not Applicable (No Personal Data) |
|
||||
| How often is dataset reviewed? | Before Release |
|
||||
| Is a mechanism in place to honor data subject right of access or deletion of personal data? | Not Applicable |
|
||||
| If personal collected for the development of the model, was it collected directly by NVIDIA? | Not Applicable |
|
||||
| If personal collected for the development of the model by NVIDIA, do you maintain or have access to disclosures made to data subjects? | Not Applicable |
|
||||
| If personal collected for the development of this AI model, was it minimized to only what was required? | Not Applicable |
|
||||
| Is data in dataset traceable? | Yes |
|
||||
| Is there provenance for all datasets used in training? | Yes |
|
||||
| Does data labeling (annotation, metadata) comply with privacy laws? | Yes |
|
||||
| Is data compliant with data subject requests for data correction or removal, if such a request was made? | No, not possible with externally-sourced data. |
|
6
GPT_SoVITS/BigVGAN/nv-modelcard++/safety.md
Normal file
6
GPT_SoVITS/BigVGAN/nv-modelcard++/safety.md
Normal file
@ -0,0 +1,6 @@
|
||||
| Field | Response |
|
||||
| :---------------------------------------------- | :---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
|
||||
| Model Application(s): | Synethic Audio Generation |
|
||||
| Describe the life critical impact (if present). | Not Applicable |
|
||||
| Use Case Restrictions: | None |
|
||||
| Model and dataset restrictions: | The Principle of least privilege (PoLP) is applied limiting access for dataset generation and model development. Restrictions enforce dataset access during training, and dataset license constraints adhered to. |
|
13
GPT_SoVITS/BigVGAN/requirements.txt
Normal file
13
GPT_SoVITS/BigVGAN/requirements.txt
Normal file
@ -0,0 +1,13 @@
|
||||
torch
|
||||
numpy
|
||||
librosa>=0.8.1
|
||||
scipy
|
||||
tensorboard
|
||||
soundfile
|
||||
matplotlib
|
||||
pesq
|
||||
auraloss
|
||||
tqdm
|
||||
nnAudio
|
||||
ninja
|
||||
huggingface_hub>=0.23.4
|
65
GPT_SoVITS/BigVGAN/tests/test_activation.py
Normal file
65
GPT_SoVITS/BigVGAN/tests/test_activation.py
Normal file
@ -0,0 +1,65 @@
|
||||
# Copyright (c) 2024 NVIDIA CORPORATION.
|
||||
# Licensed under the MIT license.
|
||||
|
||||
import os
|
||||
import sys
|
||||
# to import modules from parent_dir
|
||||
parent_dir = os.path.abspath(os.path.join(os.path.dirname(__file__), ".."))
|
||||
sys.path.append(parent_dir)
|
||||
|
||||
import torch
|
||||
from alias_free_activation.cuda import activation1d
|
||||
from activations import Snake
|
||||
|
||||
|
||||
def test_load_fused_kernels():
|
||||
try:
|
||||
print("[Success] load_fused_kernels")
|
||||
except ImportError as e:
|
||||
print("[Fail] load_fused_kernels")
|
||||
raise e
|
||||
|
||||
|
||||
def test_anti_alias_activation():
|
||||
data = torch.rand((10, 10, 200), device="cuda")
|
||||
|
||||
# Check activations.Snake cuda vs. torch
|
||||
fused_anti_alias_activation = activation1d.Activation1d(
|
||||
activation=Snake(10), fused=True
|
||||
).cuda()
|
||||
fused_activation_output = fused_anti_alias_activation(data)
|
||||
|
||||
torch_anti_alias_activation = activation1d.Activation1d(
|
||||
activation=Snake(10), fused=False
|
||||
).cuda()
|
||||
torch_activation_output = torch_anti_alias_activation(data)
|
||||
|
||||
test_result = (fused_activation_output - torch_activation_output).abs()
|
||||
|
||||
while test_result.dim() != 1:
|
||||
test_result = test_result.mean(dim=-1)
|
||||
|
||||
diff = test_result.mean(dim=-1)
|
||||
|
||||
if diff <= 1e-3:
|
||||
print(
|
||||
f"\n[Success] test_fused_anti_alias_activation"
|
||||
f"\n > mean_difference={diff}"
|
||||
f"\n > fused_values={fused_activation_output[-1][-1][:].tolist()}"
|
||||
f"\n > torch_values={torch_activation_output[-1][-1][:].tolist()}"
|
||||
)
|
||||
else:
|
||||
print(
|
||||
f"\n[Fail] test_fused_anti_alias_activation"
|
||||
f"\n > mean_difference={diff}, "
|
||||
f"\n > fused_values={fused_activation_output[-1][-1][:].tolist()}, "
|
||||
f"\n > torch_values={torch_activation_output[-1][-1][:].tolist()}"
|
||||
)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
from alias_free_activation.cuda import load
|
||||
|
||||
load.load()
|
||||
test_load_fused_kernels()
|
||||
test_anti_alias_activation()
|
66
GPT_SoVITS/BigVGAN/tests/test_activation_snake_beta.py
Normal file
66
GPT_SoVITS/BigVGAN/tests/test_activation_snake_beta.py
Normal file
@ -0,0 +1,66 @@
|
||||
# Copyright (c) 2024 NVIDIA CORPORATION.
|
||||
# Licensed under the MIT license.
|
||||
|
||||
import os
|
||||
import sys
|
||||
# to import modules from parent_dir
|
||||
parent_dir = os.path.abspath(os.path.join(os.path.dirname(__file__), ".."))
|
||||
sys.path.append(parent_dir)
|
||||
|
||||
import torch
|
||||
from alias_free_activation.cuda import activation1d
|
||||
from activations import SnakeBeta
|
||||
|
||||
|
||||
def test_load_fused_kernels():
|
||||
try:
|
||||
print("[Success] load_fused_kernels")
|
||||
except ImportError as e:
|
||||
print("[Fail] load_fused_kernels")
|
||||
raise e
|
||||
|
||||
|
||||
def test_anti_alias_activation():
|
||||
data = torch.rand((10, 10, 200), device="cuda")
|
||||
|
||||
# Check activations, Snake CUDA vs. Torch
|
||||
fused_anti_alias_activation = activation1d.Activation1d(
|
||||
activation=SnakeBeta(10), fused=True
|
||||
).cuda()
|
||||
fused_activation_output = fused_anti_alias_activation(data)
|
||||
|
||||
torch_anti_alias_activation = activation1d.Activation1d(
|
||||
activation=SnakeBeta(10), fused=False
|
||||
).cuda()
|
||||
torch_activation_output = torch_anti_alias_activation(data)
|
||||
|
||||
test_result = (fused_activation_output - torch_activation_output).abs()
|
||||
|
||||
while test_result.dim() != 1:
|
||||
test_result = test_result.mean(dim=-1)
|
||||
|
||||
diff = test_result.mean(dim=-1)
|
||||
|
||||
if diff <= 1e-3:
|
||||
print(
|
||||
f"\n[Success] test_fused_anti_alias_activation"
|
||||
f"\n > mean_difference={diff}"
|
||||
f"\n > fused_values={fused_activation_output[-1][-1][:].tolist()}"
|
||||
f"\n > torch_values={torch_activation_output[-1][-1][:].tolist()}"
|
||||
)
|
||||
else:
|
||||
print(
|
||||
f"\n[Fail] test_fused_anti_alias_activation"
|
||||
f"\n > mean_difference={diff}, "
|
||||
f"\n > fused_values={fused_activation_output[-1][-1][:].tolist()}, "
|
||||
f"\n > torch_values={torch_activation_output[-1][-1][:].tolist()}"
|
||||
)
|
||||
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
from alias_free_activation.cuda import load
|
||||
|
||||
load.load()
|
||||
test_load_fused_kernels()
|
||||
test_anti_alias_activation()
|
221
GPT_SoVITS/BigVGAN/tests/test_cuda_vs_torch_model.py
Normal file
221
GPT_SoVITS/BigVGAN/tests/test_cuda_vs_torch_model.py
Normal file
@ -0,0 +1,221 @@
|
||||
# Copyright (c) 2024 NVIDIA CORPORATION.
|
||||
# Licensed under the MIT license.
|
||||
|
||||
import os
|
||||
import sys
|
||||
|
||||
# to import modules from parent_dir
|
||||
parent_dir = os.path.abspath(os.path.join(os.path.dirname(__file__), ".."))
|
||||
sys.path.append(parent_dir)
|
||||
|
||||
import torch
|
||||
import json
|
||||
from env import AttrDict
|
||||
from bigvgan import BigVGAN
|
||||
from time import time
|
||||
from tqdm import tqdm
|
||||
from meldataset import mel_spectrogram, MAX_WAV_VALUE
|
||||
from scipy.io.wavfile import write
|
||||
import numpy as np
|
||||
|
||||
import argparse
|
||||
|
||||
torch.backends.cudnn.benchmark = True
|
||||
|
||||
# For easier debugging
|
||||
torch.set_printoptions(linewidth=200, threshold=10_000)
|
||||
|
||||
|
||||
def generate_soundwave(duration=5.0, sr=24000):
|
||||
t = np.linspace(0, duration, int(sr * duration), False, dtype=np.float32)
|
||||
|
||||
modulation = np.sin(2 * np.pi * t / duration)
|
||||
|
||||
min_freq = 220
|
||||
max_freq = 1760
|
||||
frequencies = min_freq + (max_freq - min_freq) * (modulation + 1) / 2
|
||||
soundwave = np.sin(2 * np.pi * frequencies * t)
|
||||
|
||||
soundwave = soundwave / np.max(np.abs(soundwave)) * 0.95
|
||||
|
||||
return soundwave, sr
|
||||
|
||||
|
||||
def get_mel(x, h):
|
||||
return mel_spectrogram(
|
||||
x, h.n_fft, h.num_mels, h.sampling_rate, h.hop_size, h.win_size, h.fmin, h.fmax
|
||||
)
|
||||
|
||||
|
||||
def load_checkpoint(filepath, device):
|
||||
assert os.path.isfile(filepath)
|
||||
print(f"Loading '{filepath}'")
|
||||
checkpoint_dict = torch.load(filepath, map_location=device)
|
||||
print("Complete.")
|
||||
return checkpoint_dict
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
parser = argparse.ArgumentParser(
|
||||
description="Test script to check CUDA kernel correctness."
|
||||
)
|
||||
parser.add_argument(
|
||||
"--checkpoint_file",
|
||||
type=str,
|
||||
required=True,
|
||||
help="Path to the checkpoint file. Assumes config.json exists in the directory.",
|
||||
)
|
||||
|
||||
args = parser.parse_args()
|
||||
|
||||
config_file = os.path.join(os.path.split(args.checkpoint_file)[0], "config.json")
|
||||
with open(config_file) as f:
|
||||
config = f.read()
|
||||
json_config = json.loads(config)
|
||||
h = AttrDict({**json_config})
|
||||
|
||||
print("loading plain Pytorch BigVGAN")
|
||||
generator_original = BigVGAN(h).to("cuda")
|
||||
print("loading CUDA kernel BigVGAN with auto-build")
|
||||
generator_cuda_kernel = BigVGAN(h, use_cuda_kernel=True).to("cuda")
|
||||
|
||||
state_dict_g = load_checkpoint(args.checkpoint_file, "cuda")
|
||||
generator_original.load_state_dict(state_dict_g["generator"])
|
||||
generator_cuda_kernel.load_state_dict(state_dict_g["generator"])
|
||||
|
||||
generator_original.remove_weight_norm()
|
||||
generator_original.eval()
|
||||
generator_cuda_kernel.remove_weight_norm()
|
||||
generator_cuda_kernel.eval()
|
||||
|
||||
# define number of samples and length of mel frame to benchmark
|
||||
num_sample = 10
|
||||
num_mel_frame = 16384
|
||||
|
||||
# CUDA kernel correctness check
|
||||
diff = 0.0
|
||||
for i in tqdm(range(num_sample)):
|
||||
# Random mel
|
||||
data = torch.rand((1, h.num_mels, num_mel_frame), device="cuda")
|
||||
|
||||
with torch.inference_mode():
|
||||
audio_original = generator_original(data)
|
||||
|
||||
with torch.inference_mode():
|
||||
audio_cuda_kernel = generator_cuda_kernel(data)
|
||||
|
||||
# Both outputs should be (almost) the same
|
||||
test_result = (audio_original - audio_cuda_kernel).abs()
|
||||
diff += test_result.mean(dim=-1).item()
|
||||
|
||||
diff /= num_sample
|
||||
if (
|
||||
diff <= 2e-3
|
||||
): # We can expect a small difference (~1e-3) which does not affect perceptual quality
|
||||
print(
|
||||
f"\n[Success] test CUDA fused vs. plain torch BigVGAN inference"
|
||||
f"\n > mean_difference={diff}"
|
||||
f"\n > fused_values={audio_cuda_kernel[-1][-1][-30:].tolist()}"
|
||||
f"\n > torch_values={audio_original[-1][-1][-30:].tolist()}"
|
||||
)
|
||||
else:
|
||||
print(
|
||||
f"\n[Fail] test CUDA fused vs. plain torch BigVGAN inference"
|
||||
f"\n > mean_difference={diff}"
|
||||
f"\n > fused_values={audio_cuda_kernel[-1][-1][-30:].tolist()}, "
|
||||
f"\n > torch_values={audio_original[-1][-1][-30:].tolist()}"
|
||||
)
|
||||
|
||||
del data, audio_original, audio_cuda_kernel
|
||||
|
||||
# Variables for tracking total time and VRAM usage
|
||||
toc_total_original = 0
|
||||
toc_total_cuda_kernel = 0
|
||||
vram_used_original_total = 0
|
||||
vram_used_cuda_kernel_total = 0
|
||||
audio_length_total = 0
|
||||
|
||||
# Measure Original inference in isolation
|
||||
for i in tqdm(range(num_sample)):
|
||||
torch.cuda.reset_peak_memory_stats(device="cuda")
|
||||
data = torch.rand((1, h.num_mels, num_mel_frame), device="cuda")
|
||||
torch.cuda.synchronize()
|
||||
tic = time()
|
||||
with torch.inference_mode():
|
||||
audio_original = generator_original(data)
|
||||
torch.cuda.synchronize()
|
||||
toc = time() - tic
|
||||
toc_total_original += toc
|
||||
|
||||
vram_used_original_total += torch.cuda.max_memory_allocated(device="cuda")
|
||||
|
||||
del data, audio_original
|
||||
torch.cuda.empty_cache()
|
||||
|
||||
# Measure CUDA kernel inference in isolation
|
||||
for i in tqdm(range(num_sample)):
|
||||
torch.cuda.reset_peak_memory_stats(device="cuda")
|
||||
data = torch.rand((1, h.num_mels, num_mel_frame), device="cuda")
|
||||
torch.cuda.synchronize()
|
||||
tic = time()
|
||||
with torch.inference_mode():
|
||||
audio_cuda_kernel = generator_cuda_kernel(data)
|
||||
torch.cuda.synchronize()
|
||||
toc = time() - tic
|
||||
toc_total_cuda_kernel += toc
|
||||
|
||||
audio_length_total += audio_cuda_kernel.shape[-1]
|
||||
|
||||
vram_used_cuda_kernel_total += torch.cuda.max_memory_allocated(device="cuda")
|
||||
|
||||
del data, audio_cuda_kernel
|
||||
torch.cuda.empty_cache()
|
||||
|
||||
# Calculate metrics
|
||||
audio_second = audio_length_total / h.sampling_rate
|
||||
khz_original = audio_length_total / toc_total_original / 1000
|
||||
khz_cuda_kernel = audio_length_total / toc_total_cuda_kernel / 1000
|
||||
vram_used_original_gb = vram_used_original_total / num_sample / (1024 ** 3)
|
||||
vram_used_cuda_kernel_gb = vram_used_cuda_kernel_total / num_sample / (1024 ** 3)
|
||||
|
||||
# Print results
|
||||
print(
|
||||
f"Original BigVGAN: took {toc_total_original:.2f} seconds to generate {audio_second:.2f} seconds of audio, {khz_original:.1f}kHz, {audio_second / toc_total_original:.1f} faster than realtime, VRAM used {vram_used_original_gb:.1f} GB"
|
||||
)
|
||||
print(
|
||||
f"CUDA kernel BigVGAN: took {toc_total_cuda_kernel:.2f} seconds to generate {audio_second:.2f} seconds of audio, {khz_cuda_kernel:.1f}kHz, {audio_second / toc_total_cuda_kernel:.1f} faster than realtime, VRAM used {vram_used_cuda_kernel_gb:.1f} GB"
|
||||
)
|
||||
print(f"speedup of CUDA kernel: {khz_cuda_kernel / khz_original}")
|
||||
print(f"VRAM saving of CUDA kernel: {vram_used_original_gb / vram_used_cuda_kernel_gb}")
|
||||
|
||||
# Use artificial sine waves for inference test
|
||||
audio_real, sr = generate_soundwave(duration=5.0, sr=h.sampling_rate)
|
||||
audio_real = torch.tensor(audio_real).to("cuda")
|
||||
# Compute mel spectrogram from the ground truth audio
|
||||
x = get_mel(audio_real.unsqueeze(0), h)
|
||||
|
||||
with torch.inference_mode():
|
||||
y_g_hat_original = generator_original(x)
|
||||
y_g_hat_cuda_kernel = generator_cuda_kernel(x)
|
||||
|
||||
audio_real = audio_real.squeeze()
|
||||
audio_real = audio_real * MAX_WAV_VALUE
|
||||
audio_real = audio_real.cpu().numpy().astype("int16")
|
||||
|
||||
audio_original = y_g_hat_original.squeeze()
|
||||
audio_original = audio_original * MAX_WAV_VALUE
|
||||
audio_original = audio_original.cpu().numpy().astype("int16")
|
||||
|
||||
audio_cuda_kernel = y_g_hat_cuda_kernel.squeeze()
|
||||
audio_cuda_kernel = audio_cuda_kernel * MAX_WAV_VALUE
|
||||
audio_cuda_kernel = audio_cuda_kernel.cpu().numpy().astype("int16")
|
||||
|
||||
os.makedirs("tmp", exist_ok=True)
|
||||
output_file_real = os.path.join("tmp", "audio_real.wav")
|
||||
output_file_original = os.path.join("tmp", "audio_generated_original.wav")
|
||||
output_file_cuda_kernel = os.path.join("tmp", "audio_generated_cuda_kernel.wav")
|
||||
write(output_file_real, h.sampling_rate, audio_real)
|
||||
write(output_file_original, h.sampling_rate, audio_original)
|
||||
write(output_file_cuda_kernel, h.sampling_rate, audio_cuda_kernel)
|
||||
print("Example generated audios of original vs. fused CUDA kernel written to tmp!")
|
||||
print("Done")
|
777
GPT_SoVITS/BigVGAN/train.py
Normal file
777
GPT_SoVITS/BigVGAN/train.py
Normal file
@ -0,0 +1,777 @@
|
||||
# Copyright (c) 2024 NVIDIA CORPORATION.
|
||||
# Licensed under the MIT license.
|
||||
|
||||
# Adapted from https://github.com/jik876/hifi-gan under the MIT license.
|
||||
# LICENSE is in incl_licenses directory.
|
||||
|
||||
|
||||
import warnings
|
||||
|
||||
warnings.simplefilter(action="ignore", category=FutureWarning)
|
||||
import itertools
|
||||
import os
|
||||
import time
|
||||
import argparse
|
||||
import json
|
||||
import torch
|
||||
import torch.nn.functional as F
|
||||
from torch.utils.tensorboard import SummaryWriter
|
||||
from torch.utils.data import DistributedSampler, DataLoader
|
||||
import torch.multiprocessing as mp
|
||||
from torch.distributed import init_process_group
|
||||
from torch.nn.parallel import DistributedDataParallel
|
||||
from env import AttrDict, build_env
|
||||
from meldataset import MelDataset, mel_spectrogram, get_dataset_filelist, MAX_WAV_VALUE
|
||||
|
||||
from bigvgan import BigVGAN
|
||||
from discriminators import (
|
||||
MultiPeriodDiscriminator,
|
||||
MultiResolutionDiscriminator,
|
||||
MultiBandDiscriminator,
|
||||
MultiScaleSubbandCQTDiscriminator,
|
||||
)
|
||||
from loss import (
|
||||
feature_loss,
|
||||
generator_loss,
|
||||
discriminator_loss,
|
||||
MultiScaleMelSpectrogramLoss,
|
||||
)
|
||||
|
||||
from utils import (
|
||||
plot_spectrogram,
|
||||
plot_spectrogram_clipped,
|
||||
scan_checkpoint,
|
||||
load_checkpoint,
|
||||
save_checkpoint,
|
||||
save_audio,
|
||||
)
|
||||
import torchaudio as ta
|
||||
from pesq import pesq
|
||||
from tqdm import tqdm
|
||||
import auraloss
|
||||
|
||||
torch.backends.cudnn.benchmark = False
|
||||
|
||||
|
||||
def train(rank, a, h):
|
||||
if h.num_gpus > 1:
|
||||
# initialize distributed
|
||||
init_process_group(
|
||||
backend=h.dist_config["dist_backend"],
|
||||
init_method=h.dist_config["dist_url"],
|
||||
world_size=h.dist_config["world_size"] * h.num_gpus,
|
||||
rank=rank,
|
||||
)
|
||||
|
||||
# Set seed and device
|
||||
torch.cuda.manual_seed(h.seed)
|
||||
torch.cuda.set_device(rank)
|
||||
device = torch.device(f"cuda:{rank:d}")
|
||||
|
||||
# Define BigVGAN generator
|
||||
generator = BigVGAN(h).to(device)
|
||||
|
||||
# Define discriminators. MPD is used by default
|
||||
mpd = MultiPeriodDiscriminator(h).to(device)
|
||||
|
||||
# Define additional discriminators. BigVGAN-v1 uses UnivNet's MRD as default
|
||||
# New in BigVGAN-v2: option to switch to new discriminators: MultiBandDiscriminator / MultiScaleSubbandCQTDiscriminator
|
||||
if h.get("use_mbd_instead_of_mrd", False): # Switch to MBD
|
||||
print(
|
||||
"[INFO] using MultiBandDiscriminator of BigVGAN-v2 instead of MultiResolutionDiscriminator"
|
||||
)
|
||||
# Variable name is kept as "mrd" for backward compatibility & minimal code change
|
||||
mrd = MultiBandDiscriminator(h).to(device)
|
||||
elif h.get("use_cqtd_instead_of_mrd", False): # Switch to CQTD
|
||||
print(
|
||||
"[INFO] using MultiScaleSubbandCQTDiscriminator of BigVGAN-v2 instead of MultiResolutionDiscriminator"
|
||||
)
|
||||
mrd = MultiScaleSubbandCQTDiscriminator(h).to(device)
|
||||
else: # Fallback to original MRD in BigVGAN-v1
|
||||
mrd = MultiResolutionDiscriminator(h).to(device)
|
||||
|
||||
# New in BigVGAN-v2: option to switch to multi-scale L1 mel loss
|
||||
if h.get("use_multiscale_melloss", False):
|
||||
print(
|
||||
"[INFO] using multi-scale Mel l1 loss of BigVGAN-v2 instead of the original single-scale loss"
|
||||
)
|
||||
fn_mel_loss_multiscale = MultiScaleMelSpectrogramLoss(
|
||||
sampling_rate=h.sampling_rate
|
||||
) # NOTE: accepts waveform as input
|
||||
else:
|
||||
fn_mel_loss_singlescale = F.l1_loss
|
||||
|
||||
# Print the model & number of parameters, and create or scan the latest checkpoint from checkpoints directory
|
||||
if rank == 0:
|
||||
print(generator)
|
||||
print(mpd)
|
||||
print(mrd)
|
||||
print(f"Generator params: {sum(p.numel() for p in generator.parameters())}")
|
||||
print(f"Discriminator mpd params: {sum(p.numel() for p in mpd.parameters())}")
|
||||
print(f"Discriminator mrd params: {sum(p.numel() for p in mrd.parameters())}")
|
||||
os.makedirs(a.checkpoint_path, exist_ok=True)
|
||||
print(f"Checkpoints directory: {a.checkpoint_path}")
|
||||
|
||||
if os.path.isdir(a.checkpoint_path):
|
||||
# New in v2.1: If the step prefix pattern-based checkpoints are not found, also check for renamed files in Hugging Face Hub to resume training
|
||||
cp_g = scan_checkpoint(
|
||||
a.checkpoint_path, prefix="g_", renamed_file="bigvgan_generator.pt"
|
||||
)
|
||||
cp_do = scan_checkpoint(
|
||||
a.checkpoint_path,
|
||||
prefix="do_",
|
||||
renamed_file="bigvgan_discriminator_optimizer.pt",
|
||||
)
|
||||
|
||||
# Load the latest checkpoint if exists
|
||||
steps = 0
|
||||
if cp_g is None or cp_do is None:
|
||||
state_dict_do = None
|
||||
last_epoch = -1
|
||||
else:
|
||||
state_dict_g = load_checkpoint(cp_g, device)
|
||||
state_dict_do = load_checkpoint(cp_do, device)
|
||||
generator.load_state_dict(state_dict_g["generator"])
|
||||
mpd.load_state_dict(state_dict_do["mpd"])
|
||||
mrd.load_state_dict(state_dict_do["mrd"])
|
||||
steps = state_dict_do["steps"] + 1
|
||||
last_epoch = state_dict_do["epoch"]
|
||||
|
||||
# Initialize DDP, optimizers, and schedulers
|
||||
if h.num_gpus > 1:
|
||||
generator = DistributedDataParallel(generator, device_ids=[rank]).to(device)
|
||||
mpd = DistributedDataParallel(mpd, device_ids=[rank]).to(device)
|
||||
mrd = DistributedDataParallel(mrd, device_ids=[rank]).to(device)
|
||||
|
||||
optim_g = torch.optim.AdamW(
|
||||
generator.parameters(), h.learning_rate, betas=[h.adam_b1, h.adam_b2]
|
||||
)
|
||||
optim_d = torch.optim.AdamW(
|
||||
itertools.chain(mrd.parameters(), mpd.parameters()),
|
||||
h.learning_rate,
|
||||
betas=[h.adam_b1, h.adam_b2],
|
||||
)
|
||||
|
||||
if state_dict_do is not None:
|
||||
optim_g.load_state_dict(state_dict_do["optim_g"])
|
||||
optim_d.load_state_dict(state_dict_do["optim_d"])
|
||||
|
||||
scheduler_g = torch.optim.lr_scheduler.ExponentialLR(
|
||||
optim_g, gamma=h.lr_decay, last_epoch=last_epoch
|
||||
)
|
||||
scheduler_d = torch.optim.lr_scheduler.ExponentialLR(
|
||||
optim_d, gamma=h.lr_decay, last_epoch=last_epoch
|
||||
)
|
||||
|
||||
# Define training and validation datasets
|
||||
|
||||
"""
|
||||
unseen_validation_filelist will contain sample filepaths outside the seen training & validation dataset
|
||||
Example: trained on LibriTTS, validate on VCTK
|
||||
"""
|
||||
training_filelist, validation_filelist, list_unseen_validation_filelist = (
|
||||
get_dataset_filelist(a)
|
||||
)
|
||||
|
||||
trainset = MelDataset(
|
||||
training_filelist,
|
||||
h,
|
||||
h.segment_size,
|
||||
h.n_fft,
|
||||
h.num_mels,
|
||||
h.hop_size,
|
||||
h.win_size,
|
||||
h.sampling_rate,
|
||||
h.fmin,
|
||||
h.fmax,
|
||||
shuffle=False if h.num_gpus > 1 else True,
|
||||
fmax_loss=h.fmax_for_loss,
|
||||
device=device,
|
||||
fine_tuning=a.fine_tuning,
|
||||
base_mels_path=a.input_mels_dir,
|
||||
is_seen=True,
|
||||
)
|
||||
|
||||
train_sampler = DistributedSampler(trainset) if h.num_gpus > 1 else None
|
||||
|
||||
train_loader = DataLoader(
|
||||
trainset,
|
||||
num_workers=h.num_workers,
|
||||
shuffle=False,
|
||||
sampler=train_sampler,
|
||||
batch_size=h.batch_size,
|
||||
pin_memory=True,
|
||||
drop_last=True,
|
||||
)
|
||||
|
||||
if rank == 0:
|
||||
validset = MelDataset(
|
||||
validation_filelist,
|
||||
h,
|
||||
h.segment_size,
|
||||
h.n_fft,
|
||||
h.num_mels,
|
||||
h.hop_size,
|
||||
h.win_size,
|
||||
h.sampling_rate,
|
||||
h.fmin,
|
||||
h.fmax,
|
||||
False,
|
||||
False,
|
||||
fmax_loss=h.fmax_for_loss,
|
||||
device=device,
|
||||
fine_tuning=a.fine_tuning,
|
||||
base_mels_path=a.input_mels_dir,
|
||||
is_seen=True,
|
||||
)
|
||||
validation_loader = DataLoader(
|
||||
validset,
|
||||
num_workers=1,
|
||||
shuffle=False,
|
||||
sampler=None,
|
||||
batch_size=1,
|
||||
pin_memory=True,
|
||||
drop_last=True,
|
||||
)
|
||||
|
||||
list_unseen_validset = []
|
||||
list_unseen_validation_loader = []
|
||||
for i in range(len(list_unseen_validation_filelist)):
|
||||
unseen_validset = MelDataset(
|
||||
list_unseen_validation_filelist[i],
|
||||
h,
|
||||
h.segment_size,
|
||||
h.n_fft,
|
||||
h.num_mels,
|
||||
h.hop_size,
|
||||
h.win_size,
|
||||
h.sampling_rate,
|
||||
h.fmin,
|
||||
h.fmax,
|
||||
False,
|
||||
False,
|
||||
fmax_loss=h.fmax_for_loss,
|
||||
device=device,
|
||||
fine_tuning=a.fine_tuning,
|
||||
base_mels_path=a.input_mels_dir,
|
||||
is_seen=False,
|
||||
)
|
||||
unseen_validation_loader = DataLoader(
|
||||
unseen_validset,
|
||||
num_workers=1,
|
||||
shuffle=False,
|
||||
sampler=None,
|
||||
batch_size=1,
|
||||
pin_memory=True,
|
||||
drop_last=True,
|
||||
)
|
||||
list_unseen_validset.append(unseen_validset)
|
||||
list_unseen_validation_loader.append(unseen_validation_loader)
|
||||
|
||||
# Tensorboard logger
|
||||
sw = SummaryWriter(os.path.join(a.checkpoint_path, "logs"))
|
||||
if a.save_audio: # Also save audio to disk if --save_audio is set to True
|
||||
os.makedirs(os.path.join(a.checkpoint_path, "samples"), exist_ok=True)
|
||||
|
||||
"""
|
||||
Validation loop, "mode" parameter is automatically defined as (seen or unseen)_(name of the dataset).
|
||||
If the name of the dataset contains "nonspeech", it skips PESQ calculation to prevent errors
|
||||
"""
|
||||
|
||||
def validate(rank, a, h, loader, mode="seen"):
|
||||
assert rank == 0, "validate should only run on rank=0"
|
||||
generator.eval()
|
||||
torch.cuda.empty_cache()
|
||||
|
||||
val_err_tot = 0
|
||||
val_pesq_tot = 0
|
||||
val_mrstft_tot = 0
|
||||
|
||||
# Modules for evaluation metrics
|
||||
pesq_resampler = ta.transforms.Resample(h.sampling_rate, 16000).cuda()
|
||||
loss_mrstft = auraloss.freq.MultiResolutionSTFTLoss(device="cuda")
|
||||
|
||||
if a.save_audio: # Also save audio to disk if --save_audio is set to True
|
||||
os.makedirs(
|
||||
os.path.join(a.checkpoint_path, "samples", f"gt_{mode}"),
|
||||
exist_ok=True,
|
||||
)
|
||||
os.makedirs(
|
||||
os.path.join(a.checkpoint_path, "samples", f"{mode}_{steps:08d}"),
|
||||
exist_ok=True,
|
||||
)
|
||||
|
||||
with torch.no_grad():
|
||||
print(f"step {steps} {mode} speaker validation...")
|
||||
|
||||
# Loop over validation set and compute metrics
|
||||
for j, batch in enumerate(tqdm(loader)):
|
||||
x, y, _, y_mel = batch
|
||||
y = y.to(device)
|
||||
if hasattr(generator, "module"):
|
||||
y_g_hat = generator.module(x.to(device))
|
||||
else:
|
||||
y_g_hat = generator(x.to(device))
|
||||
y_mel = y_mel.to(device, non_blocking=True)
|
||||
y_g_hat_mel = mel_spectrogram(
|
||||
y_g_hat.squeeze(1),
|
||||
h.n_fft,
|
||||
h.num_mels,
|
||||
h.sampling_rate,
|
||||
h.hop_size,
|
||||
h.win_size,
|
||||
h.fmin,
|
||||
h.fmax_for_loss,
|
||||
)
|
||||
min_t = min(y_mel.size(-1), y_g_hat_mel.size(-1))
|
||||
val_err_tot += F.l1_loss(y_mel[...,:min_t], y_g_hat_mel[...,:min_t]).item()
|
||||
|
||||
# PESQ calculation. only evaluate PESQ if it's speech signal (nonspeech PESQ will error out)
|
||||
if (
|
||||
not "nonspeech" in mode
|
||||
): # Skips if the name of dataset (in mode string) contains "nonspeech"
|
||||
|
||||
# Resample to 16000 for pesq
|
||||
y_16k = pesq_resampler(y)
|
||||
y_g_hat_16k = pesq_resampler(y_g_hat.squeeze(1))
|
||||
y_int_16k = (y_16k[0] * MAX_WAV_VALUE).short().cpu().numpy()
|
||||
y_g_hat_int_16k = (
|
||||
(y_g_hat_16k[0] * MAX_WAV_VALUE).short().cpu().numpy()
|
||||
)
|
||||
val_pesq_tot += pesq(16000, y_int_16k, y_g_hat_int_16k, "wb")
|
||||
|
||||
# MRSTFT calculation
|
||||
min_t = min(y.size(-1), y_g_hat.size(-1))
|
||||
val_mrstft_tot += loss_mrstft(y_g_hat[...,:min_t], y[...,:min_t]).item()
|
||||
|
||||
# Log audio and figures to Tensorboard
|
||||
if j % a.eval_subsample == 0: # Subsample every nth from validation set
|
||||
if steps >= 0:
|
||||
sw.add_audio(f"gt_{mode}/y_{j}", y[0], steps, h.sampling_rate)
|
||||
if (
|
||||
a.save_audio
|
||||
): # Also save audio to disk if --save_audio is set to True
|
||||
save_audio(
|
||||
y[0],
|
||||
os.path.join(
|
||||
a.checkpoint_path,
|
||||
"samples",
|
||||
f"gt_{mode}",
|
||||
f"{j:04d}.wav",
|
||||
),
|
||||
h.sampling_rate,
|
||||
)
|
||||
sw.add_figure(
|
||||
f"gt_{mode}/y_spec_{j}",
|
||||
plot_spectrogram(x[0]),
|
||||
steps,
|
||||
)
|
||||
|
||||
sw.add_audio(
|
||||
f"generated_{mode}/y_hat_{j}",
|
||||
y_g_hat[0],
|
||||
steps,
|
||||
h.sampling_rate,
|
||||
)
|
||||
if (
|
||||
a.save_audio
|
||||
): # Also save audio to disk if --save_audio is set to True
|
||||
save_audio(
|
||||
y_g_hat[0, 0],
|
||||
os.path.join(
|
||||
a.checkpoint_path,
|
||||
"samples",
|
||||
f"{mode}_{steps:08d}",
|
||||
f"{j:04d}.wav",
|
||||
),
|
||||
h.sampling_rate,
|
||||
)
|
||||
# Spectrogram of synthesized audio
|
||||
y_hat_spec = mel_spectrogram(
|
||||
y_g_hat.squeeze(1),
|
||||
h.n_fft,
|
||||
h.num_mels,
|
||||
h.sampling_rate,
|
||||
h.hop_size,
|
||||
h.win_size,
|
||||
h.fmin,
|
||||
h.fmax,
|
||||
)
|
||||
sw.add_figure(
|
||||
f"generated_{mode}/y_hat_spec_{j}",
|
||||
plot_spectrogram(y_hat_spec.squeeze(0).cpu().numpy()),
|
||||
steps,
|
||||
)
|
||||
|
||||
"""
|
||||
Visualization of spectrogram difference between GT and synthesized audio, difference higher than 1 is clipped for better visualization.
|
||||
"""
|
||||
spec_delta = torch.clamp(
|
||||
torch.abs(x[0] - y_hat_spec.squeeze(0).cpu()),
|
||||
min=1e-6,
|
||||
max=1.0,
|
||||
)
|
||||
sw.add_figure(
|
||||
f"delta_dclip1_{mode}/spec_{j}",
|
||||
plot_spectrogram_clipped(spec_delta.numpy(), clip_max=1.0),
|
||||
steps,
|
||||
)
|
||||
|
||||
val_err = val_err_tot / (j + 1)
|
||||
val_pesq = val_pesq_tot / (j + 1)
|
||||
val_mrstft = val_mrstft_tot / (j + 1)
|
||||
# Log evaluation metrics to Tensorboard
|
||||
sw.add_scalar(f"validation_{mode}/mel_spec_error", val_err, steps)
|
||||
sw.add_scalar(f"validation_{mode}/pesq", val_pesq, steps)
|
||||
sw.add_scalar(f"validation_{mode}/mrstft", val_mrstft, steps)
|
||||
|
||||
generator.train()
|
||||
|
||||
# If the checkpoint is loaded, start with validation loop
|
||||
if steps != 0 and rank == 0 and not a.debug:
|
||||
if not a.skip_seen:
|
||||
validate(
|
||||
rank,
|
||||
a,
|
||||
h,
|
||||
validation_loader,
|
||||
mode=f"seen_{train_loader.dataset.name}",
|
||||
)
|
||||
for i in range(len(list_unseen_validation_loader)):
|
||||
validate(
|
||||
rank,
|
||||
a,
|
||||
h,
|
||||
list_unseen_validation_loader[i],
|
||||
mode=f"unseen_{list_unseen_validation_loader[i].dataset.name}",
|
||||
)
|
||||
# Exit the script if --evaluate is set to True
|
||||
if a.evaluate:
|
||||
exit()
|
||||
|
||||
# Main training loop
|
||||
generator.train()
|
||||
mpd.train()
|
||||
mrd.train()
|
||||
for epoch in range(max(0, last_epoch), a.training_epochs):
|
||||
if rank == 0:
|
||||
start = time.time()
|
||||
print(f"Epoch: {epoch + 1}")
|
||||
|
||||
if h.num_gpus > 1:
|
||||
train_sampler.set_epoch(epoch)
|
||||
|
||||
for i, batch in enumerate(train_loader):
|
||||
if rank == 0:
|
||||
start_b = time.time()
|
||||
x, y, _, y_mel = batch
|
||||
|
||||
x = x.to(device, non_blocking=True)
|
||||
y = y.to(device, non_blocking=True)
|
||||
y_mel = y_mel.to(device, non_blocking=True)
|
||||
y = y.unsqueeze(1)
|
||||
|
||||
y_g_hat = generator(x)
|
||||
y_g_hat_mel = mel_spectrogram(
|
||||
y_g_hat.squeeze(1),
|
||||
h.n_fft,
|
||||
h.num_mels,
|
||||
h.sampling_rate,
|
||||
h.hop_size,
|
||||
h.win_size,
|
||||
h.fmin,
|
||||
h.fmax_for_loss,
|
||||
)
|
||||
|
||||
optim_d.zero_grad()
|
||||
|
||||
# MPD
|
||||
y_df_hat_r, y_df_hat_g, _, _ = mpd(y, y_g_hat.detach())
|
||||
loss_disc_f, losses_disc_f_r, losses_disc_f_g = discriminator_loss(
|
||||
y_df_hat_r, y_df_hat_g
|
||||
)
|
||||
|
||||
# MRD
|
||||
y_ds_hat_r, y_ds_hat_g, _, _ = mrd(y, y_g_hat.detach())
|
||||
loss_disc_s, losses_disc_s_r, losses_disc_s_g = discriminator_loss(
|
||||
y_ds_hat_r, y_ds_hat_g
|
||||
)
|
||||
|
||||
loss_disc_all = loss_disc_s + loss_disc_f
|
||||
|
||||
# Set clip_grad_norm value
|
||||
clip_grad_norm = h.get("clip_grad_norm", 1000.0) # Default to 1000
|
||||
|
||||
# Whether to freeze D for initial training steps
|
||||
if steps >= a.freeze_step:
|
||||
loss_disc_all.backward()
|
||||
grad_norm_mpd = torch.nn.utils.clip_grad_norm_(
|
||||
mpd.parameters(), clip_grad_norm
|
||||
)
|
||||
grad_norm_mrd = torch.nn.utils.clip_grad_norm_(
|
||||
mrd.parameters(), clip_grad_norm
|
||||
)
|
||||
optim_d.step()
|
||||
else:
|
||||
print(
|
||||
f"[WARNING] skipping D training for the first {a.freeze_step} steps"
|
||||
)
|
||||
grad_norm_mpd = 0.0
|
||||
grad_norm_mrd = 0.0
|
||||
|
||||
# Generator
|
||||
optim_g.zero_grad()
|
||||
|
||||
# L1 Mel-Spectrogram Loss
|
||||
lambda_melloss = h.get(
|
||||
"lambda_melloss", 45.0
|
||||
) # Defaults to 45 in BigVGAN-v1 if not set
|
||||
if h.get("use_multiscale_melloss", False): # uses wav <y, y_g_hat> for loss
|
||||
loss_mel = fn_mel_loss_multiscale(y, y_g_hat) * lambda_melloss
|
||||
else: # Uses mel <y_mel, y_g_hat_mel> for loss
|
||||
loss_mel = fn_mel_loss_singlescale(y_mel, y_g_hat_mel) * lambda_melloss
|
||||
|
||||
# MPD loss
|
||||
y_df_hat_r, y_df_hat_g, fmap_f_r, fmap_f_g = mpd(y, y_g_hat)
|
||||
loss_fm_f = feature_loss(fmap_f_r, fmap_f_g)
|
||||
loss_gen_f, losses_gen_f = generator_loss(y_df_hat_g)
|
||||
|
||||
# MRD loss
|
||||
y_ds_hat_r, y_ds_hat_g, fmap_s_r, fmap_s_g = mrd(y, y_g_hat)
|
||||
loss_fm_s = feature_loss(fmap_s_r, fmap_s_g)
|
||||
loss_gen_s, losses_gen_s = generator_loss(y_ds_hat_g)
|
||||
|
||||
if steps >= a.freeze_step:
|
||||
loss_gen_all = (
|
||||
loss_gen_s + loss_gen_f + loss_fm_s + loss_fm_f + loss_mel
|
||||
)
|
||||
else:
|
||||
print(
|
||||
f"[WARNING] using regression loss only for G for the first {a.freeze_step} steps"
|
||||
)
|
||||
loss_gen_all = loss_mel
|
||||
|
||||
loss_gen_all.backward()
|
||||
grad_norm_g = torch.nn.utils.clip_grad_norm_(
|
||||
generator.parameters(), clip_grad_norm
|
||||
)
|
||||
optim_g.step()
|
||||
|
||||
if rank == 0:
|
||||
# STDOUT logging
|
||||
if steps % a.stdout_interval == 0:
|
||||
mel_error = (
|
||||
loss_mel.item() / lambda_melloss
|
||||
) # Log training mel regression loss to stdout
|
||||
print(
|
||||
f"Steps: {steps:d}, "
|
||||
f"Gen Loss Total: {loss_gen_all:4.3f}, "
|
||||
f"Mel Error: {mel_error:4.3f}, "
|
||||
f"s/b: {time.time() - start_b:4.3f} "
|
||||
f"lr: {optim_g.param_groups[0]['lr']:4.7f} "
|
||||
f"grad_norm_g: {grad_norm_g:4.3f}"
|
||||
)
|
||||
|
||||
# Checkpointing
|
||||
if steps % a.checkpoint_interval == 0 and steps != 0:
|
||||
checkpoint_path = f"{a.checkpoint_path}/g_{steps:08d}"
|
||||
save_checkpoint(
|
||||
checkpoint_path,
|
||||
{
|
||||
"generator": (
|
||||
generator.module if h.num_gpus > 1 else generator
|
||||
).state_dict()
|
||||
},
|
||||
)
|
||||
checkpoint_path = f"{a.checkpoint_path}/do_{steps:08d}"
|
||||
save_checkpoint(
|
||||
checkpoint_path,
|
||||
{
|
||||
"mpd": (mpd.module if h.num_gpus > 1 else mpd).state_dict(),
|
||||
"mrd": (mrd.module if h.num_gpus > 1 else mrd).state_dict(),
|
||||
"optim_g": optim_g.state_dict(),
|
||||
"optim_d": optim_d.state_dict(),
|
||||
"steps": steps,
|
||||
"epoch": epoch,
|
||||
},
|
||||
)
|
||||
|
||||
# Tensorboard summary logging
|
||||
if steps % a.summary_interval == 0:
|
||||
mel_error = (
|
||||
loss_mel.item() / lambda_melloss
|
||||
) # Log training mel regression loss to tensorboard
|
||||
sw.add_scalar("training/gen_loss_total", loss_gen_all.item(), steps)
|
||||
sw.add_scalar("training/mel_spec_error", mel_error, steps)
|
||||
sw.add_scalar("training/fm_loss_mpd", loss_fm_f.item(), steps)
|
||||
sw.add_scalar("training/gen_loss_mpd", loss_gen_f.item(), steps)
|
||||
sw.add_scalar("training/disc_loss_mpd", loss_disc_f.item(), steps)
|
||||
sw.add_scalar("training/grad_norm_mpd", grad_norm_mpd, steps)
|
||||
sw.add_scalar("training/fm_loss_mrd", loss_fm_s.item(), steps)
|
||||
sw.add_scalar("training/gen_loss_mrd", loss_gen_s.item(), steps)
|
||||
sw.add_scalar("training/disc_loss_mrd", loss_disc_s.item(), steps)
|
||||
sw.add_scalar("training/grad_norm_mrd", grad_norm_mrd, steps)
|
||||
sw.add_scalar("training/grad_norm_g", grad_norm_g, steps)
|
||||
sw.add_scalar(
|
||||
"training/learning_rate_d", scheduler_d.get_last_lr()[0], steps
|
||||
)
|
||||
sw.add_scalar(
|
||||
"training/learning_rate_g", scheduler_g.get_last_lr()[0], steps
|
||||
)
|
||||
sw.add_scalar("training/epoch", epoch + 1, steps)
|
||||
|
||||
# Validation
|
||||
if steps % a.validation_interval == 0:
|
||||
# Plot training input x so far used
|
||||
for i_x in range(x.shape[0]):
|
||||
sw.add_figure(
|
||||
f"training_input/x_{i_x}",
|
||||
plot_spectrogram(x[i_x].cpu()),
|
||||
steps,
|
||||
)
|
||||
sw.add_audio(
|
||||
f"training_input/y_{i_x}",
|
||||
y[i_x][0],
|
||||
steps,
|
||||
h.sampling_rate,
|
||||
)
|
||||
|
||||
# Seen and unseen speakers validation loops
|
||||
if not a.debug and steps != 0:
|
||||
validate(
|
||||
rank,
|
||||
a,
|
||||
h,
|
||||
validation_loader,
|
||||
mode=f"seen_{train_loader.dataset.name}",
|
||||
)
|
||||
for i in range(len(list_unseen_validation_loader)):
|
||||
validate(
|
||||
rank,
|
||||
a,
|
||||
h,
|
||||
list_unseen_validation_loader[i],
|
||||
mode=f"unseen_{list_unseen_validation_loader[i].dataset.name}",
|
||||
)
|
||||
steps += 1
|
||||
|
||||
# BigVGAN-v2 learning rate scheduler is changed from epoch-level to step-level
|
||||
scheduler_g.step()
|
||||
scheduler_d.step()
|
||||
|
||||
if rank == 0:
|
||||
print(
|
||||
f"Time taken for epoch {epoch + 1} is {int(time.time() - start)} sec\n"
|
||||
)
|
||||
|
||||
|
||||
def main():
|
||||
print("Initializing Training Process..")
|
||||
|
||||
parser = argparse.ArgumentParser()
|
||||
|
||||
parser.add_argument("--group_name", default=None)
|
||||
|
||||
parser.add_argument("--input_wavs_dir", default="LibriTTS")
|
||||
parser.add_argument("--input_mels_dir", default="ft_dataset")
|
||||
parser.add_argument(
|
||||
"--input_training_file", default="tests/LibriTTS/train-full.txt"
|
||||
)
|
||||
parser.add_argument(
|
||||
"--input_validation_file", default="tests/LibriTTS/val-full.txt"
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--list_input_unseen_wavs_dir",
|
||||
nargs="+",
|
||||
default=["tests/LibriTTS", "tests/LibriTTS"],
|
||||
)
|
||||
parser.add_argument(
|
||||
"--list_input_unseen_validation_file",
|
||||
nargs="+",
|
||||
default=["tests/LibriTTS/dev-clean.txt", "tests/LibriTTS/dev-other.txt"],
|
||||
)
|
||||
|
||||
parser.add_argument("--checkpoint_path", default="exp/bigvgan")
|
||||
parser.add_argument("--config", default="")
|
||||
|
||||
parser.add_argument("--training_epochs", default=100000, type=int)
|
||||
parser.add_argument("--stdout_interval", default=5, type=int)
|
||||
parser.add_argument("--checkpoint_interval", default=50000, type=int)
|
||||
parser.add_argument("--summary_interval", default=100, type=int)
|
||||
parser.add_argument("--validation_interval", default=50000, type=int)
|
||||
|
||||
parser.add_argument(
|
||||
"--freeze_step",
|
||||
default=0,
|
||||
type=int,
|
||||
help="freeze D for the first specified steps. G only uses regression loss for these steps.",
|
||||
)
|
||||
|
||||
parser.add_argument("--fine_tuning", default=False, type=bool)
|
||||
|
||||
parser.add_argument(
|
||||
"--debug",
|
||||
default=False,
|
||||
type=bool,
|
||||
help="debug mode. skips validation loop throughout training",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--evaluate",
|
||||
default=False,
|
||||
type=bool,
|
||||
help="only run evaluation from checkpoint and exit",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--eval_subsample",
|
||||
default=5,
|
||||
type=int,
|
||||
help="subsampling during evaluation loop",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--skip_seen",
|
||||
default=False,
|
||||
type=bool,
|
||||
help="skip seen dataset. useful for test set inference",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--save_audio",
|
||||
default=False,
|
||||
type=bool,
|
||||
help="save audio of test set inference to disk",
|
||||
)
|
||||
|
||||
a = parser.parse_args()
|
||||
|
||||
with open(a.config) as f:
|
||||
data = f.read()
|
||||
|
||||
json_config = json.loads(data)
|
||||
h = AttrDict(json_config)
|
||||
|
||||
build_env(a.config, "config.json", a.checkpoint_path)
|
||||
|
||||
torch.manual_seed(h.seed)
|
||||
if torch.cuda.is_available():
|
||||
torch.cuda.manual_seed(h.seed)
|
||||
h.num_gpus = torch.cuda.device_count()
|
||||
h.batch_size = int(h.batch_size / h.num_gpus)
|
||||
print(f"Batch size per GPU: {h.batch_size}")
|
||||
else:
|
||||
pass
|
||||
|
||||
if h.num_gpus > 1:
|
||||
mp.spawn(
|
||||
train,
|
||||
nprocs=h.num_gpus,
|
||||
args=(
|
||||
a,
|
||||
h,
|
||||
),
|
||||
)
|
||||
else:
|
||||
train(0, a, h)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
99
GPT_SoVITS/BigVGAN/utils0.py
Normal file
99
GPT_SoVITS/BigVGAN/utils0.py
Normal file
@ -0,0 +1,99 @@
|
||||
# Adapted from https://github.com/jik876/hifi-gan under the MIT license.
|
||||
# LICENSE is in incl_licenses directory.
|
||||
|
||||
import glob
|
||||
import os
|
||||
import matplotlib
|
||||
import torch
|
||||
from torch.nn.utils import weight_norm
|
||||
|
||||
matplotlib.use("Agg")
|
||||
import matplotlib.pylab as plt
|
||||
from .meldataset import MAX_WAV_VALUE
|
||||
from scipy.io.wavfile import write
|
||||
|
||||
|
||||
def plot_spectrogram(spectrogram):
|
||||
fig, ax = plt.subplots(figsize=(10, 2))
|
||||
im = ax.imshow(spectrogram, aspect="auto", origin="lower", interpolation="none")
|
||||
plt.colorbar(im, ax=ax)
|
||||
|
||||
fig.canvas.draw()
|
||||
plt.close()
|
||||
|
||||
return fig
|
||||
|
||||
|
||||
def plot_spectrogram_clipped(spectrogram, clip_max=2.0):
|
||||
fig, ax = plt.subplots(figsize=(10, 2))
|
||||
im = ax.imshow(
|
||||
spectrogram,
|
||||
aspect="auto",
|
||||
origin="lower",
|
||||
interpolation="none",
|
||||
vmin=1e-6,
|
||||
vmax=clip_max,
|
||||
)
|
||||
plt.colorbar(im, ax=ax)
|
||||
|
||||
fig.canvas.draw()
|
||||
plt.close()
|
||||
|
||||
return fig
|
||||
|
||||
|
||||
def init_weights(m, mean=0.0, std=0.01):
|
||||
classname = m.__class__.__name__
|
||||
if classname.find("Conv") != -1:
|
||||
m.weight.data.normal_(mean, std)
|
||||
|
||||
|
||||
def apply_weight_norm(m):
|
||||
classname = m.__class__.__name__
|
||||
if classname.find("Conv") != -1:
|
||||
weight_norm(m)
|
||||
|
||||
|
||||
def get_padding(kernel_size, dilation=1):
|
||||
return int((kernel_size * dilation - dilation) / 2)
|
||||
|
||||
|
||||
def load_checkpoint(filepath, device):
|
||||
assert os.path.isfile(filepath)
|
||||
print(f"Loading '{filepath}'")
|
||||
checkpoint_dict = torch.load(filepath, map_location=device)
|
||||
print("Complete.")
|
||||
return checkpoint_dict
|
||||
|
||||
|
||||
def save_checkpoint(filepath, obj):
|
||||
print(f"Saving checkpoint to {filepath}")
|
||||
torch.save(obj, filepath)
|
||||
print("Complete.")
|
||||
|
||||
|
||||
def scan_checkpoint(cp_dir, prefix, renamed_file=None):
|
||||
# Fallback to original scanning logic first
|
||||
pattern = os.path.join(cp_dir, prefix + "????????")
|
||||
cp_list = glob.glob(pattern)
|
||||
|
||||
if len(cp_list) > 0:
|
||||
last_checkpoint_path = sorted(cp_list)[-1]
|
||||
print(f"[INFO] Resuming from checkpoint: '{last_checkpoint_path}'")
|
||||
return last_checkpoint_path
|
||||
|
||||
# If no pattern-based checkpoints are found, check for renamed file
|
||||
if renamed_file:
|
||||
renamed_path = os.path.join(cp_dir, renamed_file)
|
||||
if os.path.isfile(renamed_path):
|
||||
print(f"[INFO] Resuming from renamed checkpoint: '{renamed_file}'")
|
||||
return renamed_path
|
||||
|
||||
return None
|
||||
|
||||
|
||||
def save_audio(audio, path, sr):
|
||||
# wav: torch with 1d shape
|
||||
audio = audio * MAX_WAV_VALUE
|
||||
audio = audio.cpu().numpy().astype("int16")
|
||||
write(path, sr, audio)
|
1454
GPT_SoVITS/TTS_infer_pack/TTS.py
Normal file
1454
GPT_SoVITS/TTS_infer_pack/TTS.py
Normal file
File diff suppressed because it is too large
Load Diff
239
GPT_SoVITS/TTS_infer_pack/TextPreprocessor.py
Normal file
239
GPT_SoVITS/TTS_infer_pack/TextPreprocessor.py
Normal file
@ -0,0 +1,239 @@
|
||||
|
||||
import os, sys
|
||||
import threading
|
||||
|
||||
from tqdm import tqdm
|
||||
now_dir = os.getcwd()
|
||||
sys.path.append(now_dir)
|
||||
|
||||
import re
|
||||
import torch
|
||||
from text.LangSegmenter import LangSegmenter
|
||||
from text import chinese
|
||||
from typing import Dict, List, Tuple
|
||||
from text.cleaner import clean_text
|
||||
from text import cleaned_text_to_sequence
|
||||
from transformers import AutoModelForMaskedLM, AutoTokenizer
|
||||
from TTS_infer_pack.text_segmentation_method import split_big_text, splits, get_method as get_seg_method
|
||||
|
||||
from tools.i18n.i18n import I18nAuto, scan_language_list
|
||||
|
||||
language=os.environ.get("language","Auto")
|
||||
language=sys.argv[-1] if sys.argv[-1] in scan_language_list() else language
|
||||
i18n = I18nAuto(language=language)
|
||||
punctuation = set(['!', '?', '…', ',', '.', '-'])
|
||||
|
||||
def get_first(text:str) -> str:
|
||||
pattern = "[" + "".join(re.escape(sep) for sep in splits) + "]"
|
||||
text = re.split(pattern, text)[0].strip()
|
||||
return text
|
||||
|
||||
def merge_short_text_in_array(texts:str, threshold:int) -> list:
|
||||
if (len(texts)) < 2:
|
||||
return texts
|
||||
result = []
|
||||
text = ""
|
||||
for ele in texts:
|
||||
text += ele
|
||||
if len(text) >= threshold:
|
||||
result.append(text)
|
||||
text = ""
|
||||
if (len(text) > 0):
|
||||
if len(result) == 0:
|
||||
result.append(text)
|
||||
else:
|
||||
result[len(result) - 1] += text
|
||||
return result
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
class TextPreprocessor:
|
||||
def __init__(self, bert_model:AutoModelForMaskedLM,
|
||||
tokenizer:AutoTokenizer, device:torch.device):
|
||||
self.bert_model = bert_model
|
||||
self.tokenizer = tokenizer
|
||||
self.device = device
|
||||
self.bert_lock = threading.RLock()
|
||||
|
||||
def preprocess(self, text:str, lang:str, text_split_method:str, version:str="v2")->List[Dict]:
|
||||
print(f'############ {i18n("切分文本")} ############')
|
||||
text = self.replace_consecutive_punctuation(text)
|
||||
texts = self.pre_seg_text(text, lang, text_split_method)
|
||||
result = []
|
||||
print(f'############ {i18n("提取文本Bert特征")} ############')
|
||||
for text in tqdm(texts):
|
||||
phones, bert_features, norm_text = self.segment_and_extract_feature_for_text(text, lang, version)
|
||||
if phones is None or norm_text=="":
|
||||
continue
|
||||
res={
|
||||
"phones": phones,
|
||||
"bert_features": bert_features,
|
||||
"norm_text": norm_text,
|
||||
}
|
||||
result.append(res)
|
||||
return result
|
||||
|
||||
def pre_seg_text(self, text:str, lang:str, text_split_method:str):
|
||||
text = text.strip("\n")
|
||||
if len(text) == 0:
|
||||
return []
|
||||
if (text[0] not in splits and len(get_first(text)) < 4):
|
||||
text = "。" + text if lang != "en" else "." + text
|
||||
print(i18n("实际输入的目标文本:"))
|
||||
print(text)
|
||||
|
||||
seg_method = get_seg_method(text_split_method)
|
||||
text = seg_method(text)
|
||||
|
||||
while "\n\n" in text:
|
||||
text = text.replace("\n\n", "\n")
|
||||
|
||||
_texts = text.split("\n")
|
||||
_texts = self.filter_text(_texts)
|
||||
_texts = merge_short_text_in_array(_texts, 5)
|
||||
texts = []
|
||||
|
||||
|
||||
for text in _texts:
|
||||
# 解决输入目标文本的空行导致报错的问题
|
||||
if (len(text.strip()) == 0):
|
||||
continue
|
||||
if not re.sub("\W+", "", text):
|
||||
# 检测一下,如果是纯符号,就跳过。
|
||||
continue
|
||||
if (text[-1] not in splits): text += "。" if lang != "en" else "."
|
||||
|
||||
# 解决句子过长导致Bert报错的问题
|
||||
if (len(text) > 510):
|
||||
texts.extend(split_big_text(text))
|
||||
else:
|
||||
texts.append(text)
|
||||
|
||||
print(i18n("实际输入的目标文本(切句后):"))
|
||||
print(texts)
|
||||
return texts
|
||||
|
||||
def segment_and_extract_feature_for_text(self, text:str, language:str, version:str="v1")->Tuple[list, torch.Tensor, str]:
|
||||
return self.get_phones_and_bert(text, language, version)
|
||||
|
||||
def get_phones_and_bert(self, text:str, language:str, version:str, final:bool=False):
|
||||
with self.bert_lock:
|
||||
if language in {"en", "all_zh", "all_ja", "all_ko", "all_yue"}:
|
||||
# language = language.replace("all_","")
|
||||
formattext = text
|
||||
while " " in formattext:
|
||||
formattext = formattext.replace(" ", " ")
|
||||
if language == "all_zh":
|
||||
if re.search(r'[A-Za-z]', formattext):
|
||||
formattext = re.sub(r'[a-z]', lambda x: x.group(0).upper(), formattext)
|
||||
formattext = chinese.mix_text_normalize(formattext)
|
||||
return self.get_phones_and_bert(formattext,"zh",version)
|
||||
else:
|
||||
phones, word2ph, norm_text = self.clean_text_inf(formattext, language, version)
|
||||
bert = self.get_bert_feature(norm_text, word2ph).to(self.device)
|
||||
elif language == "all_yue" and re.search(r'[A-Za-z]', formattext):
|
||||
formattext = re.sub(r'[a-z]', lambda x: x.group(0).upper(), formattext)
|
||||
formattext = chinese.mix_text_normalize(formattext)
|
||||
return self.get_phones_and_bert(formattext,"yue",version)
|
||||
else:
|
||||
phones, word2ph, norm_text = self.clean_text_inf(formattext, language, version)
|
||||
bert = torch.zeros(
|
||||
(1024, len(phones)),
|
||||
dtype=torch.float32,
|
||||
).to(self.device)
|
||||
elif language in {"zh", "ja", "ko", "yue", "auto", "auto_yue"}:
|
||||
textlist=[]
|
||||
langlist=[]
|
||||
if language == "auto":
|
||||
for tmp in LangSegmenter.getTexts(text):
|
||||
langlist.append(tmp["lang"])
|
||||
textlist.append(tmp["text"])
|
||||
elif language == "auto_yue":
|
||||
for tmp in LangSegmenter.getTexts(text):
|
||||
if tmp["lang"] == "zh":
|
||||
tmp["lang"] = "yue"
|
||||
langlist.append(tmp["lang"])
|
||||
textlist.append(tmp["text"])
|
||||
else:
|
||||
for tmp in LangSegmenter.getTexts(text):
|
||||
if tmp["lang"] == "en":
|
||||
langlist.append(tmp["lang"])
|
||||
else:
|
||||
# 因无法区别中日韩文汉字,以用户输入为准
|
||||
langlist.append(language)
|
||||
textlist.append(tmp["text"])
|
||||
# print(textlist)
|
||||
# print(langlist)
|
||||
phones_list = []
|
||||
bert_list = []
|
||||
norm_text_list = []
|
||||
for i in range(len(textlist)):
|
||||
lang = langlist[i]
|
||||
phones, word2ph, norm_text = self.clean_text_inf(textlist[i], lang, version)
|
||||
bert = self.get_bert_inf(phones, word2ph, norm_text, lang)
|
||||
phones_list.append(phones)
|
||||
norm_text_list.append(norm_text)
|
||||
bert_list.append(bert)
|
||||
bert = torch.cat(bert_list, dim=1)
|
||||
phones = sum(phones_list, [])
|
||||
norm_text = ''.join(norm_text_list)
|
||||
|
||||
if not final and len(phones) < 6:
|
||||
return self.get_phones_and_bert("." + text,language,version,final=True)
|
||||
|
||||
return phones, bert, norm_text
|
||||
|
||||
|
||||
def get_bert_feature(self, text:str, word2ph:list)->torch.Tensor:
|
||||
with torch.no_grad():
|
||||
inputs = self.tokenizer(text, return_tensors="pt")
|
||||
for i in inputs:
|
||||
inputs[i] = inputs[i].to(self.device)
|
||||
res = self.bert_model(**inputs, output_hidden_states=True)
|
||||
res = torch.cat(res["hidden_states"][-3:-2], -1)[0].cpu()[1:-1]
|
||||
assert len(word2ph) == len(text)
|
||||
phone_level_feature = []
|
||||
for i in range(len(word2ph)):
|
||||
repeat_feature = res[i].repeat(word2ph[i], 1)
|
||||
phone_level_feature.append(repeat_feature)
|
||||
phone_level_feature = torch.cat(phone_level_feature, dim=0)
|
||||
return phone_level_feature.T
|
||||
|
||||
def clean_text_inf(self, text:str, language:str, version:str="v2"):
|
||||
language = language.replace("all_","")
|
||||
phones, word2ph, norm_text = clean_text(text, language, version)
|
||||
phones = cleaned_text_to_sequence(phones, version)
|
||||
return phones, word2ph, norm_text
|
||||
|
||||
def get_bert_inf(self, phones:list, word2ph:list, norm_text:str, language:str):
|
||||
language=language.replace("all_","")
|
||||
if language == "zh":
|
||||
feature = self.get_bert_feature(norm_text, word2ph).to(self.device)
|
||||
else:
|
||||
feature = torch.zeros(
|
||||
(1024, len(phones)),
|
||||
dtype=torch.float32,
|
||||
).to(self.device)
|
||||
|
||||
return feature
|
||||
|
||||
|
||||
def filter_text(self,texts):
|
||||
_text=[]
|
||||
if all(text in [None, " ", "\n",""] for text in texts):
|
||||
raise ValueError(i18n("请输入有效文本"))
|
||||
for text in texts:
|
||||
if text in [None, " ", ""]:
|
||||
pass
|
||||
else:
|
||||
_text.append(text)
|
||||
return _text
|
||||
|
||||
|
||||
def replace_consecutive_punctuation(self,text):
|
||||
punctuations = ''.join(re.escape(p) for p in punctuation)
|
||||
pattern = f'([{punctuations}])([{punctuations}])+'
|
||||
result = re.sub(pattern, r'\1', text)
|
||||
return result
|
1
GPT_SoVITS/TTS_infer_pack/__init__.py
Normal file
1
GPT_SoVITS/TTS_infer_pack/__init__.py
Normal file
@ -0,0 +1 @@
|
||||
from . import TTS, text_segmentation_method
|
173
GPT_SoVITS/TTS_infer_pack/text_segmentation_method.py
Normal file
173
GPT_SoVITS/TTS_infer_pack/text_segmentation_method.py
Normal file
@ -0,0 +1,173 @@
|
||||
|
||||
|
||||
|
||||
|
||||
import re
|
||||
from typing import Callable
|
||||
|
||||
punctuation = set(['!', '?', '…', ',', '.', '-'," "])
|
||||
METHODS = dict()
|
||||
|
||||
def get_method(name:str)->Callable:
|
||||
method = METHODS.get(name, None)
|
||||
if method is None:
|
||||
raise ValueError(f"Method {name} not found")
|
||||
return method
|
||||
|
||||
def get_method_names()->list:
|
||||
return list(METHODS.keys())
|
||||
|
||||
def register_method(name):
|
||||
def decorator(func):
|
||||
METHODS[name] = func
|
||||
return func
|
||||
return decorator
|
||||
|
||||
splits = {",", "。", "?", "!", ",", ".", "?", "!", "~", ":", ":", "—", "…", }
|
||||
|
||||
def split_big_text(text, max_len=510):
|
||||
# 定义全角和半角标点符号
|
||||
punctuation = "".join(splits)
|
||||
|
||||
# 切割文本
|
||||
segments = re.split('([' + punctuation + '])', text)
|
||||
|
||||
# 初始化结果列表和当前片段
|
||||
result = []
|
||||
current_segment = ''
|
||||
|
||||
for segment in segments:
|
||||
# 如果当前片段加上新的片段长度超过max_len,就将当前片段加入结果列表,并重置当前片段
|
||||
if len(current_segment + segment) > max_len:
|
||||
result.append(current_segment)
|
||||
current_segment = segment
|
||||
else:
|
||||
current_segment += segment
|
||||
|
||||
# 将最后一个片段加入结果列表
|
||||
if current_segment:
|
||||
result.append(current_segment)
|
||||
|
||||
return result
|
||||
|
||||
|
||||
|
||||
def split(todo_text):
|
||||
todo_text = todo_text.replace("……", "。").replace("——", ",")
|
||||
if todo_text[-1] not in splits:
|
||||
todo_text += "。"
|
||||
i_split_head = i_split_tail = 0
|
||||
len_text = len(todo_text)
|
||||
todo_texts = []
|
||||
while 1:
|
||||
if i_split_head >= len_text:
|
||||
break # 结尾一定有标点,所以直接跳出即可,最后一段在上次已加入
|
||||
if todo_text[i_split_head] in splits:
|
||||
i_split_head += 1
|
||||
todo_texts.append(todo_text[i_split_tail:i_split_head])
|
||||
i_split_tail = i_split_head
|
||||
else:
|
||||
i_split_head += 1
|
||||
return todo_texts
|
||||
|
||||
|
||||
# 不切
|
||||
@register_method("cut0")
|
||||
def cut0(inp):
|
||||
if not set(inp).issubset(punctuation):
|
||||
return inp
|
||||
else:
|
||||
return "/n"
|
||||
|
||||
|
||||
# 凑四句一切
|
||||
@register_method("cut1")
|
||||
def cut1(inp):
|
||||
inp = inp.strip("\n")
|
||||
inps = split(inp)
|
||||
split_idx = list(range(0, len(inps), 4))
|
||||
split_idx[-1] = None
|
||||
if len(split_idx) > 1:
|
||||
opts = []
|
||||
for idx in range(len(split_idx) - 1):
|
||||
opts.append("".join(inps[split_idx[idx]: split_idx[idx + 1]]))
|
||||
else:
|
||||
opts = [inp]
|
||||
opts = [item for item in opts if not set(item).issubset(punctuation)]
|
||||
return "\n".join(opts)
|
||||
|
||||
|
||||
# 凑50字一切
|
||||
@register_method("cut2")
|
||||
def cut2(inp):
|
||||
inp = inp.strip("\n")
|
||||
inps = split(inp)
|
||||
if len(inps) < 2:
|
||||
return inp
|
||||
opts = []
|
||||
summ = 0
|
||||
tmp_str = ""
|
||||
for i in range(len(inps)):
|
||||
summ += len(inps[i])
|
||||
tmp_str += inps[i]
|
||||
if summ > 50:
|
||||
summ = 0
|
||||
opts.append(tmp_str)
|
||||
tmp_str = ""
|
||||
if tmp_str != "":
|
||||
opts.append(tmp_str)
|
||||
# print(opts)
|
||||
if len(opts) > 1 and len(opts[-1]) < 50: ##如果最后一个太短了,和前一个合一起
|
||||
opts[-2] = opts[-2] + opts[-1]
|
||||
opts = opts[:-1]
|
||||
opts = [item for item in opts if not set(item).issubset(punctuation)]
|
||||
return "\n".join(opts)
|
||||
|
||||
# 按中文句号。切
|
||||
@register_method("cut3")
|
||||
def cut3(inp):
|
||||
inp = inp.strip("\n")
|
||||
opts = ["%s" % item for item in inp.strip("。").split("。")]
|
||||
opts = [item for item in opts if not set(item).issubset(punctuation)]
|
||||
return "\n".join(opts)
|
||||
|
||||
#按英文句号.切
|
||||
@register_method("cut4")
|
||||
def cut4(inp):
|
||||
inp = inp.strip("\n")
|
||||
opts = re.split(r'(?<!\d)\.(?!\d)', inp.strip("."))
|
||||
opts = [item for item in opts if not set(item).issubset(punctuation)]
|
||||
return "\n".join(opts)
|
||||
|
||||
# 按标点符号切
|
||||
# contributed by https://github.com/AI-Hobbyist/GPT-SoVITS/blob/main/GPT_SoVITS/inference_webui.py
|
||||
@register_method("cut5")
|
||||
def cut5(inp):
|
||||
inp = inp.strip("\n")
|
||||
punds = {',', '.', ';', '?', '!', '、', ',', '。', '?', '!', ';', ':', '…'}
|
||||
mergeitems = []
|
||||
items = []
|
||||
|
||||
for i, char in enumerate(inp):
|
||||
if char in punds:
|
||||
if char == '.' and i > 0 and i < len(inp) - 1 and inp[i - 1].isdigit() and inp[i + 1].isdigit():
|
||||
items.append(char)
|
||||
else:
|
||||
items.append(char)
|
||||
mergeitems.append("".join(items))
|
||||
items = []
|
||||
else:
|
||||
items.append(char)
|
||||
|
||||
if items:
|
||||
mergeitems.append("".join(items))
|
||||
|
||||
opt = [item for item in mergeitems if not set(item).issubset(punds)]
|
||||
return "\n".join(opt)
|
||||
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
method = get_method("cut5")
|
||||
print(method("你好,我是小明。你好,我是小红。你好,我是小刚。你好,我是小张。"))
|
||||
|
1
GPT_SoVITS/configs/.gitignore
vendored
Normal file
1
GPT_SoVITS/configs/.gitignore
vendored
Normal file
@ -0,0 +1 @@
|
||||
*.yaml
|
31
GPT_SoVITS/configs/s1longer-v2.yaml
Normal file
31
GPT_SoVITS/configs/s1longer-v2.yaml
Normal file
@ -0,0 +1,31 @@
|
||||
train:
|
||||
seed: 1234
|
||||
epochs: 20
|
||||
batch_size: 8
|
||||
save_every_n_epoch: 1
|
||||
precision: 16-mixed
|
||||
gradient_clip: 1.0
|
||||
optimizer:
|
||||
lr: 0.01
|
||||
lr_init: 0.00001
|
||||
lr_end: 0.0001
|
||||
warmup_steps: 2000
|
||||
decay_steps: 40000
|
||||
data:
|
||||
max_eval_sample: 8
|
||||
max_sec: 54
|
||||
num_workers: 4
|
||||
pad_val: 1024 # same with EOS in model
|
||||
model:
|
||||
vocab_size: 1025
|
||||
phoneme_vocab_size: 732
|
||||
embedding_dim: 512
|
||||
hidden_dim: 512
|
||||
head: 16
|
||||
linear_units: 2048
|
||||
n_layer: 24
|
||||
dropout: 0
|
||||
EOS: 1024
|
||||
random_bert: 0
|
||||
inference:
|
||||
top_k: 15
|
@ -18,7 +18,8 @@
|
||||
"warmup_epochs": 0,
|
||||
"c_mel": 45,
|
||||
"c_kl": 1.0,
|
||||
"text_low_lr_rate": 0.4
|
||||
"text_low_lr_rate": 0.4,
|
||||
"grad_ckpt": false
|
||||
},
|
||||
"data": {
|
||||
"max_wav_value": 32768.0,
|
||||
|
32
GPT_SoVITS/configs/tts_infer.yaml
Normal file
32
GPT_SoVITS/configs/tts_infer.yaml
Normal file
@ -0,0 +1,32 @@
|
||||
custom:
|
||||
bert_base_path: GPT_SoVITS/pretrained_models/chinese-roberta-wwm-ext-large
|
||||
cnhuhbert_base_path: GPT_SoVITS/pretrained_models/chinese-hubert-base
|
||||
device: cuda
|
||||
is_half: true
|
||||
t2s_weights_path: GPT_SoVITS/pretrained_models/gsv-v2final-pretrained/s1bert25hz-5kh-longer-epoch=12-step=369668.ckpt
|
||||
version: v2
|
||||
vits_weights_path: GPT_SoVITS/pretrained_models/gsv-v2final-pretrained/s2G2333k.pth
|
||||
v1:
|
||||
bert_base_path: GPT_SoVITS/pretrained_models/chinese-roberta-wwm-ext-large
|
||||
cnhuhbert_base_path: GPT_SoVITS/pretrained_models/chinese-hubert-base
|
||||
device: cpu
|
||||
is_half: false
|
||||
t2s_weights_path: GPT_SoVITS/pretrained_models/s1bert25hz-2kh-longer-epoch=68e-step=50232.ckpt
|
||||
version: v1
|
||||
vits_weights_path: GPT_SoVITS/pretrained_models/s2G488k.pth
|
||||
v2:
|
||||
bert_base_path: GPT_SoVITS/pretrained_models/chinese-roberta-wwm-ext-large
|
||||
cnhuhbert_base_path: GPT_SoVITS/pretrained_models/chinese-hubert-base
|
||||
device: cpu
|
||||
is_half: false
|
||||
t2s_weights_path: GPT_SoVITS/pretrained_models/gsv-v2final-pretrained/s1bert25hz-5kh-longer-epoch=12-step=369668.ckpt
|
||||
version: v2
|
||||
vits_weights_path: GPT_SoVITS/pretrained_models/gsv-v2final-pretrained/s2G2333k.pth
|
||||
v3:
|
||||
bert_base_path: GPT_SoVITS/pretrained_models/chinese-roberta-wwm-ext-large
|
||||
cnhuhbert_base_path: GPT_SoVITS/pretrained_models/chinese-hubert-base
|
||||
device: cpu
|
||||
is_half: false
|
||||
t2s_weights_path: GPT_SoVITS/pretrained_models/s1v3.ckpt
|
||||
version: v3
|
||||
vits_weights_path: GPT_SoVITS/pretrained_models/s2Gv3.pth
|
5
GPT_SoVITS/download.py
Normal file
5
GPT_SoVITS/download.py
Normal file
@ -0,0 +1,5 @@
|
||||
import os, sys
|
||||
now_dir = os.getcwd()
|
||||
sys.path.insert(0, now_dir)
|
||||
from text.g2pw import G2PWPinyin
|
||||
g2pw = G2PWPinyin(model_dir="GPT_SoVITS/text/G2PWModel",model_source="GPT_SoVITS/pretrained_models/chinese-roberta-wwm-ext-large",v_to_u=False, neutral_tone_with_five=True)
|
849
GPT_SoVITS/export_torch_script.py
Normal file
849
GPT_SoVITS/export_torch_script.py
Normal file
@ -0,0 +1,849 @@
|
||||
# modified from https://github.com/yangdongchao/SoundStorm/blob/master/soundstorm/s1/AR/models/t2s_model.py
|
||||
# reference: https://github.com/lifeiteng/vall-e
|
||||
import argparse
|
||||
from typing import Optional
|
||||
from my_utils import load_audio
|
||||
from text import cleaned_text_to_sequence
|
||||
import torch
|
||||
import torchaudio
|
||||
|
||||
from torch import IntTensor, LongTensor, Tensor, nn
|
||||
from torch.nn import functional as F
|
||||
|
||||
from transformers import AutoModelForMaskedLM, AutoTokenizer
|
||||
from feature_extractor import cnhubert
|
||||
|
||||
from AR.models.t2s_lightning_module import Text2SemanticLightningModule
|
||||
from module.models_onnx import SynthesizerTrn
|
||||
|
||||
from inference_webui import get_phones_and_bert
|
||||
|
||||
import os
|
||||
import soundfile
|
||||
|
||||
default_config = {
|
||||
"embedding_dim": 512,
|
||||
"hidden_dim": 512,
|
||||
"num_head": 8,
|
||||
"num_layers": 12,
|
||||
"num_codebook": 8,
|
||||
"p_dropout": 0.0,
|
||||
"vocab_size": 1024 + 1,
|
||||
"phoneme_vocab_size": 512,
|
||||
"EOS": 1024,
|
||||
}
|
||||
|
||||
def get_raw_t2s_model(dict_s1) -> Text2SemanticLightningModule:
|
||||
config = dict_s1["config"]
|
||||
config["model"]["dropout"] = float(config["model"]["dropout"])
|
||||
t2s_model = Text2SemanticLightningModule(config, "****", is_train=False)
|
||||
t2s_model.load_state_dict(dict_s1["weight"])
|
||||
t2s_model = t2s_model.eval()
|
||||
return t2s_model
|
||||
|
||||
@torch.jit.script
|
||||
def logits_to_probs(
|
||||
logits,
|
||||
previous_tokens: Optional[torch.Tensor] = None,
|
||||
temperature: float = 1.0,
|
||||
top_k: Optional[int] = None,
|
||||
top_p: Optional[int] = None,
|
||||
repetition_penalty: float = 1.0,
|
||||
):
|
||||
# if previous_tokens is not None:
|
||||
# previous_tokens = previous_tokens.squeeze()
|
||||
# print(logits.shape,previous_tokens.shape)
|
||||
# pdb.set_trace()
|
||||
if previous_tokens is not None and repetition_penalty != 1.0:
|
||||
previous_tokens = previous_tokens.long()
|
||||
score = torch.gather(logits, dim=1, index=previous_tokens)
|
||||
score = torch.where(
|
||||
score < 0, score * repetition_penalty, score / repetition_penalty
|
||||
)
|
||||
logits.scatter_(dim=1, index=previous_tokens, src=score)
|
||||
|
||||
if top_p is not None and top_p < 1.0:
|
||||
sorted_logits, sorted_indices = torch.sort(logits, descending=True)
|
||||
cum_probs = torch.cumsum(
|
||||
torch.nn.functional.softmax(sorted_logits, dim=-1), dim=-1
|
||||
)
|
||||
sorted_indices_to_remove = cum_probs > top_p
|
||||
sorted_indices_to_remove[:, 0] = False # keep at least one option
|
||||
indices_to_remove = sorted_indices_to_remove.scatter(
|
||||
dim=1, index=sorted_indices, src=sorted_indices_to_remove
|
||||
)
|
||||
logits = logits.masked_fill(indices_to_remove, -float("Inf"))
|
||||
|
||||
logits = logits / max(temperature, 1e-5)
|
||||
|
||||
if top_k is not None:
|
||||
v, _ = torch.topk(logits, min(top_k, logits.size(-1)))
|
||||
pivot = v[: , -1].unsqueeze(-1)
|
||||
logits = torch.where(logits < pivot, -float("Inf"), logits)
|
||||
|
||||
probs = torch.nn.functional.softmax(logits, dim=-1)
|
||||
return probs
|
||||
|
||||
@torch.jit.script
|
||||
def multinomial_sample_one_no_sync(probs_sort):
|
||||
# Does multinomial sampling without a cuda synchronization
|
||||
q = torch.randn_like(probs_sort)
|
||||
return torch.argmax(probs_sort / q, dim=-1, keepdim=True).to(dtype=torch.int)
|
||||
|
||||
@torch.jit.script
|
||||
def sample(
|
||||
logits,
|
||||
previous_tokens,
|
||||
temperature: float = 1.0,
|
||||
top_k: Optional[int] = None,
|
||||
top_p: Optional[int] = None,
|
||||
repetition_penalty: float = 1.0,
|
||||
):
|
||||
probs = logits_to_probs(
|
||||
logits=logits, previous_tokens=previous_tokens, temperature=temperature, top_k=top_k, top_p=top_p, repetition_penalty=repetition_penalty
|
||||
)
|
||||
idx_next = multinomial_sample_one_no_sync(probs)
|
||||
return idx_next, probs
|
||||
|
||||
|
||||
@torch.jit.script
|
||||
def spectrogram_torch(y:Tensor, n_fft:int, sampling_rate:int, hop_size:int, win_size:int, center:bool=False):
|
||||
hann_window = torch.hann_window(win_size,device=y.device,dtype=y.dtype)
|
||||
y = torch.nn.functional.pad(
|
||||
y.unsqueeze(1),
|
||||
(int((n_fft - hop_size) / 2), int((n_fft - hop_size) / 2)),
|
||||
mode="reflect",
|
||||
)
|
||||
y = y.squeeze(1)
|
||||
spec = torch.stft(
|
||||
y,
|
||||
n_fft,
|
||||
hop_length=hop_size,
|
||||
win_length=win_size,
|
||||
window=hann_window,
|
||||
center=center,
|
||||
pad_mode="reflect",
|
||||
normalized=False,
|
||||
onesided=True,
|
||||
return_complex=False,
|
||||
)
|
||||
spec = torch.sqrt(spec.pow(2).sum(-1) + 1e-6)
|
||||
return spec
|
||||
|
||||
|
||||
class DictToAttrRecursive(dict):
|
||||
def __init__(self, input_dict):
|
||||
super().__init__(input_dict)
|
||||
for key, value in input_dict.items():
|
||||
if isinstance(value, dict):
|
||||
value = DictToAttrRecursive(value)
|
||||
self[key] = value
|
||||
setattr(self, key, value)
|
||||
|
||||
def __getattr__(self, item):
|
||||
try:
|
||||
return self[item]
|
||||
except KeyError:
|
||||
raise AttributeError(f"Attribute {item} not found")
|
||||
|
||||
def __setattr__(self, key, value):
|
||||
if isinstance(value, dict):
|
||||
value = DictToAttrRecursive(value)
|
||||
super(DictToAttrRecursive, self).__setitem__(key, value)
|
||||
super().__setattr__(key, value)
|
||||
|
||||
def __delattr__(self, item):
|
||||
try:
|
||||
del self[item]
|
||||
except KeyError:
|
||||
raise AttributeError(f"Attribute {item} not found")
|
||||
|
||||
@torch.jit.script
|
||||
class T2SMLP:
|
||||
def __init__(self, w1, b1, w2, b2):
|
||||
self.w1 = w1
|
||||
self.b1 = b1
|
||||
self.w2 = w2
|
||||
self.b2 = b2
|
||||
|
||||
def forward(self, x):
|
||||
x = F.relu(F.linear(x, self.w1, self.b1))
|
||||
x = F.linear(x, self.w2, self.b2)
|
||||
return x
|
||||
|
||||
@torch.jit.script
|
||||
class T2SBlock:
|
||||
def __init__(
|
||||
self,
|
||||
num_heads: int,
|
||||
hidden_dim: int,
|
||||
mlp: T2SMLP,
|
||||
qkv_w,
|
||||
qkv_b,
|
||||
out_w,
|
||||
out_b,
|
||||
norm_w1,
|
||||
norm_b1,
|
||||
norm_eps1: float,
|
||||
norm_w2,
|
||||
norm_b2,
|
||||
norm_eps2: float,
|
||||
):
|
||||
self.num_heads = num_heads
|
||||
self.mlp = mlp
|
||||
self.hidden_dim: int = hidden_dim
|
||||
self.qkv_w = qkv_w
|
||||
self.qkv_b = qkv_b
|
||||
self.out_w = out_w
|
||||
self.out_b = out_b
|
||||
self.norm_w1 = norm_w1
|
||||
self.norm_b1 = norm_b1
|
||||
self.norm_eps1 = norm_eps1
|
||||
self.norm_w2 = norm_w2
|
||||
self.norm_b2 = norm_b2
|
||||
self.norm_eps2 = norm_eps2
|
||||
|
||||
self.false = torch.tensor(False, dtype=torch.bool)
|
||||
|
||||
@torch.jit.ignore
|
||||
def to_mask(self, x:torch.Tensor, padding_mask:Optional[torch.Tensor]):
|
||||
if padding_mask is None:
|
||||
return x
|
||||
|
||||
if padding_mask.dtype == torch.bool:
|
||||
return x.masked_fill(padding_mask, 0)
|
||||
else:
|
||||
return x * padding_mask
|
||||
|
||||
def process_prompt(self, x:torch.Tensor, attn_mask : torch.Tensor, padding_mask:Optional[torch.Tensor]=None):
|
||||
q, k, v = F.linear(self.to_mask(x, padding_mask), self.qkv_w, self.qkv_b).chunk(3, dim=-1)
|
||||
|
||||
batch_size = q.shape[0]
|
||||
q_len = q.shape[1]
|
||||
kv_len = k.shape[1]
|
||||
|
||||
q = self.to_mask(q, padding_mask)
|
||||
k_cache = self.to_mask(k, padding_mask)
|
||||
v_cache = self.to_mask(v, padding_mask)
|
||||
|
||||
q = q.view(batch_size, q_len, self.num_heads, -1).transpose(1, 2)
|
||||
k = k_cache.view(batch_size, kv_len, self.num_heads, -1).transpose(1, 2)
|
||||
v = v_cache.view(batch_size, kv_len, self.num_heads, -1).transpose(1, 2)
|
||||
|
||||
attn = F.scaled_dot_product_attention(q, k, v, ~attn_mask)
|
||||
|
||||
attn = attn.permute(2, 0, 1, 3).reshape(batch_size*q_len, self.hidden_dim)
|
||||
attn = attn.view(q_len, batch_size, self.hidden_dim).transpose(1, 0)
|
||||
attn = F.linear(self.to_mask(attn, padding_mask), self.out_w, self.out_b)
|
||||
|
||||
if padding_mask is not None:
|
||||
for i in range(batch_size):
|
||||
# mask = padding_mask[i,:,0]
|
||||
if self.false.device!= padding_mask.device:
|
||||
self.false = self.false.to(padding_mask.device)
|
||||
idx = torch.where(padding_mask[i,:,0]==self.false)[0]
|
||||
x_item = x[i,idx,:].unsqueeze(0)
|
||||
attn_item = attn[i,idx,:].unsqueeze(0)
|
||||
x_item = x_item + attn_item
|
||||
x_item = F.layer_norm(
|
||||
x_item, [self.hidden_dim], self.norm_w1, self.norm_b1, self.norm_eps1
|
||||
)
|
||||
x_item = x_item + self.mlp.forward(x_item)
|
||||
x_item = F.layer_norm(
|
||||
x_item,
|
||||
[self.hidden_dim],
|
||||
self.norm_w2,
|
||||
self.norm_b2,
|
||||
self.norm_eps2,
|
||||
)
|
||||
x[i,idx,:] = x_item.squeeze(0)
|
||||
x = self.to_mask(x, padding_mask)
|
||||
else:
|
||||
x = x + attn
|
||||
x = F.layer_norm(
|
||||
x, [self.hidden_dim], self.norm_w1, self.norm_b1, self.norm_eps1
|
||||
)
|
||||
x = x + self.mlp.forward(x)
|
||||
x = F.layer_norm(
|
||||
x,
|
||||
[self.hidden_dim],
|
||||
self.norm_w2,
|
||||
self.norm_b2,
|
||||
self.norm_eps2,
|
||||
)
|
||||
return x, k_cache, v_cache
|
||||
|
||||
def decode_next_token(self, x:torch.Tensor, k_cache:torch.Tensor, v_cache:torch.Tensor):
|
||||
q, k, v = F.linear(x, self.qkv_w, self.qkv_b).chunk(3, dim=-1)
|
||||
|
||||
k_cache = torch.cat([k_cache, k], dim=1)
|
||||
v_cache = torch.cat([v_cache, v], dim=1)
|
||||
|
||||
batch_size = q.shape[0]
|
||||
q_len = q.shape[1]
|
||||
kv_len = k_cache.shape[1]
|
||||
|
||||
q = q.view(batch_size, q_len, self.num_heads, -1).transpose(1, 2)
|
||||
k = k_cache.view(batch_size, kv_len, self.num_heads, -1).transpose(1, 2)
|
||||
v = v_cache.view(batch_size, kv_len, self.num_heads, -1).transpose(1, 2)
|
||||
|
||||
attn = F.scaled_dot_product_attention(q, k, v)
|
||||
|
||||
attn = attn.permute(2, 0, 1, 3).reshape(batch_size*q_len, self.hidden_dim)
|
||||
attn = attn.view(q_len, batch_size, self.hidden_dim).transpose(1, 0)
|
||||
attn = F.linear(attn, self.out_w, self.out_b)
|
||||
|
||||
x = x + attn
|
||||
x = F.layer_norm(
|
||||
x, [self.hidden_dim], self.norm_w1, self.norm_b1, self.norm_eps1
|
||||
)
|
||||
x = x + self.mlp.forward(x)
|
||||
x = F.layer_norm(
|
||||
x,
|
||||
[self.hidden_dim],
|
||||
self.norm_w2,
|
||||
self.norm_b2,
|
||||
self.norm_eps2,
|
||||
)
|
||||
return x, k_cache, v_cache
|
||||
|
||||
@torch.jit.script
|
||||
class T2STransformer:
|
||||
def __init__(self, num_blocks : int, blocks: list[T2SBlock]):
|
||||
self.num_blocks : int = num_blocks
|
||||
self.blocks = blocks
|
||||
|
||||
def process_prompt(
|
||||
self, x:torch.Tensor, attn_mask : torch.Tensor,padding_mask : Optional[torch.Tensor]=None):
|
||||
k_cache : list[torch.Tensor] = []
|
||||
v_cache : list[torch.Tensor] = []
|
||||
for i in range(self.num_blocks):
|
||||
x, k_cache_, v_cache_ = self.blocks[i].process_prompt(x, attn_mask, padding_mask)
|
||||
k_cache.append(k_cache_)
|
||||
v_cache.append(v_cache_)
|
||||
return x, k_cache, v_cache
|
||||
|
||||
def decode_next_token(
|
||||
self, x:torch.Tensor,
|
||||
k_cache: list[torch.Tensor],
|
||||
v_cache: list[torch.Tensor]):
|
||||
for i in range(self.num_blocks):
|
||||
x, k_cache[i], v_cache[i] = self.blocks[i].decode_next_token(x, k_cache[i], v_cache[i])
|
||||
return x, k_cache, v_cache
|
||||
|
||||
class VitsModel(nn.Module):
|
||||
def __init__(self, vits_path):
|
||||
super().__init__()
|
||||
# dict_s2 = torch.load(vits_path,map_location="cpu")
|
||||
dict_s2 = torch.load(vits_path)
|
||||
self.hps = dict_s2["config"]
|
||||
if dict_s2['weight']['enc_p.text_embedding.weight'].shape[0] == 322:
|
||||
self.hps["model"]["version"] = "v1"
|
||||
else:
|
||||
self.hps["model"]["version"] = "v2"
|
||||
|
||||
self.hps = DictToAttrRecursive(self.hps)
|
||||
self.hps.model.semantic_frame_rate = "25hz"
|
||||
self.vq_model = SynthesizerTrn(
|
||||
self.hps.data.filter_length // 2 + 1,
|
||||
self.hps.train.segment_size // self.hps.data.hop_length,
|
||||
n_speakers=self.hps.data.n_speakers,
|
||||
**self.hps.model
|
||||
)
|
||||
self.vq_model.eval()
|
||||
self.vq_model.load_state_dict(dict_s2["weight"], strict=False)
|
||||
|
||||
def forward(self, text_seq, pred_semantic, ref_audio, speed=1.0):
|
||||
refer = spectrogram_torch(
|
||||
ref_audio,
|
||||
self.hps.data.filter_length,
|
||||
self.hps.data.sampling_rate,
|
||||
self.hps.data.hop_length,
|
||||
self.hps.data.win_length,
|
||||
center=False
|
||||
)
|
||||
return self.vq_model(pred_semantic, text_seq, refer, speed)[0, 0]
|
||||
|
||||
class T2SModel(nn.Module):
|
||||
def __init__(self,raw_t2s:Text2SemanticLightningModule):
|
||||
super(T2SModel, self).__init__()
|
||||
self.model_dim = raw_t2s.model.model_dim
|
||||
self.embedding_dim = raw_t2s.model.embedding_dim
|
||||
self.num_head = raw_t2s.model.num_head
|
||||
self.num_layers = raw_t2s.model.num_layers
|
||||
self.vocab_size = raw_t2s.model.vocab_size
|
||||
self.phoneme_vocab_size = raw_t2s.model.phoneme_vocab_size
|
||||
# self.p_dropout = float(raw_t2s.model.p_dropout)
|
||||
self.EOS:int = int(raw_t2s.model.EOS)
|
||||
self.norm_first = raw_t2s.model.norm_first
|
||||
assert self.EOS == self.vocab_size - 1
|
||||
self.hz = 50
|
||||
|
||||
self.bert_proj = raw_t2s.model.bert_proj
|
||||
self.ar_text_embedding = raw_t2s.model.ar_text_embedding
|
||||
self.ar_text_position = raw_t2s.model.ar_text_position
|
||||
self.ar_audio_embedding = raw_t2s.model.ar_audio_embedding
|
||||
self.ar_audio_position = raw_t2s.model.ar_audio_position
|
||||
|
||||
# self.t2s_transformer = T2STransformer(self.num_layers, blocks)
|
||||
# self.t2s_transformer = raw_t2s.model.t2s_transformer
|
||||
|
||||
blocks = []
|
||||
h = raw_t2s.model.h
|
||||
|
||||
for i in range(self.num_layers):
|
||||
layer = h.layers[i]
|
||||
t2smlp = T2SMLP(
|
||||
layer.linear1.weight,
|
||||
layer.linear1.bias,
|
||||
layer.linear2.weight,
|
||||
layer.linear2.bias
|
||||
)
|
||||
|
||||
block = T2SBlock(
|
||||
self.num_head,
|
||||
self.model_dim,
|
||||
t2smlp,
|
||||
layer.self_attn.in_proj_weight,
|
||||
layer.self_attn.in_proj_bias,
|
||||
layer.self_attn.out_proj.weight,
|
||||
layer.self_attn.out_proj.bias,
|
||||
layer.norm1.weight,
|
||||
layer.norm1.bias,
|
||||
layer.norm1.eps,
|
||||
layer.norm2.weight,
|
||||
layer.norm2.bias,
|
||||
layer.norm2.eps
|
||||
)
|
||||
|
||||
blocks.append(block)
|
||||
|
||||
self.t2s_transformer = T2STransformer(self.num_layers, blocks)
|
||||
|
||||
# self.ar_predict_layer = nn.Linear(self.model_dim, self.vocab_size, bias=False)
|
||||
self.ar_predict_layer = raw_t2s.model.ar_predict_layer
|
||||
# self.loss_fct = nn.CrossEntropyLoss(reduction="sum")
|
||||
self.max_sec = raw_t2s.config["data"]["max_sec"]
|
||||
self.top_k = int(raw_t2s.config["inference"]["top_k"])
|
||||
self.early_stop_num = torch.LongTensor([self.hz * self.max_sec])
|
||||
|
||||
def forward(self,prompts:LongTensor, ref_seq:LongTensor, text_seq:LongTensor, ref_bert:torch.Tensor, text_bert:torch.Tensor,top_k:LongTensor):
|
||||
bert = torch.cat([ref_bert.T, text_bert.T], 1)
|
||||
all_phoneme_ids = torch.cat([ref_seq, text_seq], 1)
|
||||
bert = bert.unsqueeze(0)
|
||||
|
||||
x = self.ar_text_embedding(all_phoneme_ids)
|
||||
x = x + self.bert_proj(bert.transpose(1, 2))
|
||||
x:torch.Tensor = self.ar_text_position(x)
|
||||
|
||||
early_stop_num = self.early_stop_num
|
||||
|
||||
|
||||
#[1,N,512] [1,N]
|
||||
# y, k, v, y_emb, x_example = self.first_stage_decoder(x, prompts)
|
||||
y = prompts
|
||||
# x_example = x[:,:,0] * 0.0
|
||||
|
||||
x_len = x.shape[1]
|
||||
x_attn_mask = torch.zeros((x_len, x_len), dtype=torch.bool)
|
||||
|
||||
y_emb = self.ar_audio_embedding(y)
|
||||
y_len = y_emb.shape[1]
|
||||
prefix_len = y.shape[1]
|
||||
y_pos = self.ar_audio_position(y_emb)
|
||||
xy_pos = torch.concat([x, y_pos], dim=1)
|
||||
|
||||
bsz = x.shape[0]
|
||||
src_len = x_len + y_len
|
||||
x_attn_mask_pad = F.pad(
|
||||
x_attn_mask,
|
||||
(0, y_len), ###xx的纯0扩展到xx纯0+xy纯1,(x,x+y)
|
||||
value=True,
|
||||
)
|
||||
y_attn_mask = F.pad( ###yy的右上1扩展到左边xy的0,(y,x+y)
|
||||
torch.triu(torch.ones(y_len, y_len, dtype=torch.bool), diagonal=1),
|
||||
(x_len, 0),
|
||||
value=False,
|
||||
)
|
||||
xy_attn_mask = torch.concat([x_attn_mask_pad, y_attn_mask], dim=0)\
|
||||
.unsqueeze(0)\
|
||||
.expand(bsz*self.num_head, -1, -1)\
|
||||
.view(bsz, self.num_head, src_len, src_len)\
|
||||
.to(device=x.device, dtype=torch.bool)
|
||||
|
||||
idx = 0
|
||||
top_k = int(top_k)
|
||||
|
||||
xy_dec, k_cache, v_cache = self.t2s_transformer.process_prompt(xy_pos, xy_attn_mask, None)
|
||||
|
||||
logits = self.ar_predict_layer(xy_dec[:, -1])
|
||||
logits = logits[:, :-1]
|
||||
samples = sample(logits, y, top_k=top_k, top_p=1, repetition_penalty=1.35, temperature=1.0)[0]
|
||||
y = torch.concat([y, samples], dim=1)
|
||||
y_emb = self.ar_audio_embedding(y[:, -1:])
|
||||
xy_pos = y_emb * self.ar_audio_position.x_scale + self.ar_audio_position.alpha * self.ar_audio_position.pe[:, y_len + idx].to(dtype=y_emb.dtype,device=y_emb.device)
|
||||
|
||||
stop = False
|
||||
# for idx in range(1, 50):
|
||||
for idx in range(1, 1500):
|
||||
#[1, N] [N_layer, N, 1, 512] [N_layer, N, 1, 512] [1, N, 512] [1] [1, N, 512] [1, N]
|
||||
# y, k, v, y_emb, logits, samples = self.stage_decoder(y, k, v, y_emb, x_example)
|
||||
xy_dec, k_cache, v_cache = self.t2s_transformer.decode_next_token(xy_pos, k_cache, v_cache)
|
||||
logits = self.ar_predict_layer(xy_dec[:, -1])
|
||||
|
||||
if(idx<11):###至少预测出10个token不然不给停止(0.4s)
|
||||
logits = logits[:, :-1]
|
||||
|
||||
samples = sample(logits, y, top_k=top_k, top_p=1, repetition_penalty=1.35, temperature=1.0)[0]
|
||||
|
||||
y = torch.concat([y, samples], dim=1)
|
||||
|
||||
if early_stop_num != -1 and (y.shape[1] - prefix_len) > early_stop_num:
|
||||
stop = True
|
||||
if torch.argmax(logits, dim=-1)[0] == self.EOS or samples[0, 0] == self.EOS:
|
||||
stop = True
|
||||
if stop:
|
||||
if y.shape[1] == 0:
|
||||
y = torch.concat([y, torch.zeros_like(samples)], dim=1)
|
||||
break
|
||||
|
||||
y_emb = self.ar_audio_embedding(y[:, -1:])
|
||||
xy_pos = y_emb * self.ar_audio_position.x_scale + self.ar_audio_position.alpha * self.ar_audio_position.pe[:, y_len + idx].to(dtype=y_emb.dtype,device=y_emb.device)
|
||||
|
||||
y[0,-1] = 0
|
||||
|
||||
return y[:, -idx:].unsqueeze(0)
|
||||
|
||||
bert_path = os.environ.get(
|
||||
"bert_path", "GPT_SoVITS/pretrained_models/chinese-roberta-wwm-ext-large"
|
||||
)
|
||||
cnhubert_base_path = "GPT_SoVITS/pretrained_models/chinese-hubert-base"
|
||||
cnhubert.cnhubert_base_path = cnhubert_base_path
|
||||
|
||||
@torch.jit.script
|
||||
def build_phone_level_feature(res:Tensor, word2ph:IntTensor):
|
||||
phone_level_feature = []
|
||||
for i in range(word2ph.shape[0]):
|
||||
repeat_feature = res[i].repeat(word2ph[i].item(), 1)
|
||||
phone_level_feature.append(repeat_feature)
|
||||
phone_level_feature = torch.cat(phone_level_feature, dim=0)
|
||||
# [sum(word2ph), 1024]
|
||||
return phone_level_feature
|
||||
|
||||
class MyBertModel(torch.nn.Module):
|
||||
def __init__(self, bert_model):
|
||||
super(MyBertModel, self).__init__()
|
||||
self.bert = bert_model
|
||||
|
||||
def forward(self, input_ids:torch.Tensor, attention_mask:torch.Tensor, token_type_ids:torch.Tensor, word2ph:IntTensor):
|
||||
outputs = self.bert(input_ids=input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids)
|
||||
# res = torch.cat(outputs["hidden_states"][-3:-2], -1)[0][1:-1]
|
||||
res = torch.cat(outputs[1][-3:-2], -1)[0][1:-1]
|
||||
return build_phone_level_feature(res, word2ph)
|
||||
|
||||
class SSLModel(torch.nn.Module):
|
||||
def __init__(self):
|
||||
super().__init__()
|
||||
self.ssl = cnhubert.get_model().model
|
||||
|
||||
def forward(self, ref_audio_16k)-> torch.Tensor:
|
||||
ssl_content = self.ssl(ref_audio_16k)["last_hidden_state"].transpose(1, 2)
|
||||
return ssl_content
|
||||
|
||||
class ExportSSLModel(torch.nn.Module):
|
||||
def __init__(self,ssl:SSLModel):
|
||||
super().__init__()
|
||||
self.ssl = ssl
|
||||
|
||||
def forward(self, ref_audio:torch.Tensor):
|
||||
return self.ssl(ref_audio)
|
||||
|
||||
@torch.jit.export
|
||||
def resample(self,ref_audio:torch.Tensor,src_sr:int,dst_sr:int)->torch.Tensor:
|
||||
audio = resamplex(ref_audio,src_sr,dst_sr).float()
|
||||
return audio
|
||||
|
||||
def export_bert(output_path):
|
||||
tokenizer = AutoTokenizer.from_pretrained(bert_path)
|
||||
|
||||
text = "叹息声一声接着一声传出,木兰对着房门织布.听不见织布机织布的声音,只听见木兰在叹息.问木兰在想什么?问木兰在惦记什么?木兰答道,我也没有在想什么,也没有在惦记什么."
|
||||
ref_bert_inputs = tokenizer(text, return_tensors="pt")
|
||||
word2ph = []
|
||||
for c in text:
|
||||
if c in [',','。',':','?',",",".","?"]:
|
||||
word2ph.append(1)
|
||||
else:
|
||||
word2ph.append(2)
|
||||
ref_bert_inputs['word2ph'] = torch.Tensor(word2ph).int()
|
||||
|
||||
bert_model = AutoModelForMaskedLM.from_pretrained(bert_path,output_hidden_states=True,torchscript=True)
|
||||
my_bert_model = MyBertModel(bert_model)
|
||||
|
||||
ref_bert_inputs = {
|
||||
'input_ids': ref_bert_inputs['input_ids'],
|
||||
'attention_mask': ref_bert_inputs['attention_mask'],
|
||||
'token_type_ids': ref_bert_inputs['token_type_ids'],
|
||||
'word2ph': ref_bert_inputs['word2ph']
|
||||
}
|
||||
|
||||
torch._dynamo.mark_dynamic(ref_bert_inputs['input_ids'], 1)
|
||||
torch._dynamo.mark_dynamic(ref_bert_inputs['attention_mask'], 1)
|
||||
torch._dynamo.mark_dynamic(ref_bert_inputs['token_type_ids'], 1)
|
||||
torch._dynamo.mark_dynamic(ref_bert_inputs['word2ph'], 0)
|
||||
|
||||
my_bert_model = torch.jit.trace(my_bert_model,example_kwarg_inputs=ref_bert_inputs)
|
||||
output_path = os.path.join(output_path, "bert_model.pt")
|
||||
my_bert_model.save(output_path)
|
||||
print('#### exported bert ####')
|
||||
|
||||
def export(gpt_path, vits_path, ref_audio_path, ref_text, output_path, export_bert_and_ssl=False, device='cpu'):
|
||||
if not os.path.exists(output_path):
|
||||
os.makedirs(output_path)
|
||||
print(f"目录已创建: {output_path}")
|
||||
else:
|
||||
print(f"目录已存在: {output_path}")
|
||||
|
||||
ref_audio = torch.tensor([load_audio(ref_audio_path, 16000)]).float()
|
||||
ssl = SSLModel()
|
||||
if export_bert_and_ssl:
|
||||
s = ExportSSLModel(torch.jit.trace(ssl,example_inputs=(ref_audio)))
|
||||
ssl_path = os.path.join(output_path, "ssl_model.pt")
|
||||
torch.jit.script(s).save(ssl_path)
|
||||
print('#### exported ssl ####')
|
||||
export_bert(output_path)
|
||||
else:
|
||||
s = ExportSSLModel(ssl)
|
||||
|
||||
print(f"device: {device}")
|
||||
|
||||
|
||||
ref_seq_id,ref_bert_T,ref_norm_text = get_phones_and_bert(ref_text,"all_zh",'v2')
|
||||
ref_seq = torch.LongTensor([ref_seq_id]).to(device)
|
||||
ref_bert = ref_bert_T.T.to(ref_seq.device)
|
||||
text_seq_id,text_bert_T,norm_text = get_phones_and_bert("这是一条测试语音,说什么无所谓,只是给它一个例子","all_zh",'v2')
|
||||
text_seq = torch.LongTensor([text_seq_id]).to(device)
|
||||
text_bert = text_bert_T.T.to(text_seq.device)
|
||||
|
||||
ssl_content = ssl(ref_audio).to(device)
|
||||
|
||||
# vits_path = "SoVITS_weights_v2/xw_e8_s216.pth"
|
||||
vits = VitsModel(vits_path).to(device)
|
||||
vits.eval()
|
||||
|
||||
# gpt_path = "GPT_weights_v2/xw-e15.ckpt"
|
||||
# dict_s1 = torch.load(gpt_path, map_location=device)
|
||||
dict_s1 = torch.load(gpt_path)
|
||||
raw_t2s = get_raw_t2s_model(dict_s1).to(device)
|
||||
print('#### get_raw_t2s_model ####')
|
||||
print(raw_t2s.config)
|
||||
t2s_m = T2SModel(raw_t2s)
|
||||
t2s_m.eval()
|
||||
t2s = torch.jit.script(t2s_m).to(device)
|
||||
print('#### script t2s_m ####')
|
||||
|
||||
print("vits.hps.data.sampling_rate:",vits.hps.data.sampling_rate)
|
||||
gpt_sovits = GPT_SoVITS(t2s,vits).to(device)
|
||||
gpt_sovits.eval()
|
||||
|
||||
ref_audio_sr = s.resample(ref_audio,16000,32000).to(device)
|
||||
|
||||
torch._dynamo.mark_dynamic(ssl_content, 2)
|
||||
torch._dynamo.mark_dynamic(ref_audio_sr, 1)
|
||||
torch._dynamo.mark_dynamic(ref_seq, 1)
|
||||
torch._dynamo.mark_dynamic(text_seq, 1)
|
||||
torch._dynamo.mark_dynamic(ref_bert, 0)
|
||||
torch._dynamo.mark_dynamic(text_bert, 0)
|
||||
|
||||
top_k = torch.LongTensor([5]).to(device)
|
||||
|
||||
with torch.no_grad():
|
||||
gpt_sovits_export = torch.jit.trace(
|
||||
gpt_sovits,
|
||||
example_inputs=(
|
||||
ssl_content,
|
||||
ref_audio_sr,
|
||||
ref_seq,
|
||||
text_seq,
|
||||
ref_bert,
|
||||
text_bert,
|
||||
top_k))
|
||||
|
||||
gpt_sovits_path = os.path.join(output_path, "gpt_sovits_model.pt")
|
||||
gpt_sovits_export.save(gpt_sovits_path)
|
||||
print('#### exported gpt_sovits ####')
|
||||
|
||||
@torch.jit.script
|
||||
def parse_audio(ref_audio):
|
||||
ref_audio_16k = torchaudio.functional.resample(ref_audio,48000,16000).float()#.to(ref_audio.device)
|
||||
ref_audio_sr = torchaudio.functional.resample(ref_audio,48000,32000).float()#.to(ref_audio.device)
|
||||
return ref_audio_16k,ref_audio_sr
|
||||
|
||||
@torch.jit.script
|
||||
def resamplex(ref_audio:torch.Tensor,src_sr:int,dst_sr:int)->torch.Tensor:
|
||||
return torchaudio.functional.resample(ref_audio,src_sr,dst_sr).float()
|
||||
|
||||
class GPT_SoVITS(nn.Module):
|
||||
def __init__(self, t2s:T2SModel,vits:VitsModel):
|
||||
super().__init__()
|
||||
self.t2s = t2s
|
||||
self.vits = vits
|
||||
|
||||
def forward(
|
||||
self,
|
||||
ssl_content: torch.Tensor,
|
||||
ref_audio_sr: torch.Tensor,
|
||||
ref_seq: Tensor,
|
||||
text_seq: Tensor,
|
||||
ref_bert: Tensor,
|
||||
text_bert: Tensor,
|
||||
top_k: LongTensor,
|
||||
speed=1.0,
|
||||
):
|
||||
codes = self.vits.vq_model.extract_latent(ssl_content)
|
||||
prompt_semantic = codes[0, 0]
|
||||
prompts = prompt_semantic.unsqueeze(0)
|
||||
|
||||
pred_semantic = self.t2s(prompts, ref_seq, text_seq, ref_bert, text_bert, top_k)
|
||||
audio = self.vits(text_seq, pred_semantic, ref_audio_sr, speed)
|
||||
return audio
|
||||
|
||||
|
||||
def test():
|
||||
parser = argparse.ArgumentParser(description="GPT-SoVITS Command Line Tool")
|
||||
parser.add_argument('--gpt_model', required=True, help="Path to the GPT model file")
|
||||
parser.add_argument('--sovits_model', required=True, help="Path to the SoVITS model file")
|
||||
parser.add_argument('--ref_audio', required=True, help="Path to the reference audio file")
|
||||
parser.add_argument('--ref_text', required=True, help="Path to the reference text file")
|
||||
parser.add_argument('--output_path', required=True, help="Path to the output directory")
|
||||
|
||||
|
||||
args = parser.parse_args()
|
||||
gpt_path = args.gpt_model
|
||||
vits_path = args.sovits_model
|
||||
ref_audio_path = args.ref_audio
|
||||
ref_text = args.ref_text
|
||||
|
||||
tokenizer = AutoTokenizer.from_pretrained(bert_path)
|
||||
# bert_model = AutoModelForMaskedLM.from_pretrained(bert_path,output_hidden_states=True,torchscript=True)
|
||||
# bert = MyBertModel(bert_model)
|
||||
my_bert = torch.jit.load("onnx/bert_model.pt",map_location='cuda')
|
||||
|
||||
# dict_s1 = torch.load(gpt_path, map_location="cuda")
|
||||
# raw_t2s = get_raw_t2s_model(dict_s1)
|
||||
# t2s = T2SModel(raw_t2s)
|
||||
# t2s.eval()
|
||||
# t2s = torch.jit.load("onnx/xw/t2s_model.pt",map_location='cuda')
|
||||
|
||||
# vits_path = "SoVITS_weights_v2/xw_e8_s216.pth"
|
||||
# vits = VitsModel(vits_path)
|
||||
# vits.eval()
|
||||
|
||||
# ssl = ExportSSLModel(SSLModel()).to('cuda')
|
||||
# ssl.eval()
|
||||
ssl = torch.jit.load("onnx/by/ssl_model.pt",map_location='cuda')
|
||||
|
||||
# gpt_sovits = GPT_SoVITS(t2s,vits)
|
||||
gpt_sovits = torch.jit.load("onnx/by/gpt_sovits_model.pt",map_location='cuda')
|
||||
|
||||
ref_seq_id,ref_bert_T,ref_norm_text = get_phones_and_bert(ref_text,"all_zh",'v2')
|
||||
ref_seq = torch.LongTensor([ref_seq_id])
|
||||
ref_bert = ref_bert_T.T.to(ref_seq.device)
|
||||
# text_seq_id,text_bert_T,norm_text = get_phones_and_bert("昨天晚上看见征兵文书,知道君主在大规模征兵,那么多卷征兵文册,每一卷上都有父亲的名字.","all_zh",'v2')
|
||||
text = "昨天晚上看见征兵文书,知道君主在大规模征兵,那么多卷征兵文册,每一卷上都有父亲的名字."
|
||||
|
||||
text_seq_id,text_bert_T,norm_text = get_phones_and_bert(text,"all_zh",'v2')
|
||||
|
||||
test_bert = tokenizer(text, return_tensors="pt")
|
||||
word2ph = []
|
||||
for c in text:
|
||||
if c in [',','。',':','?',"?",",","."]:
|
||||
word2ph.append(1)
|
||||
else:
|
||||
word2ph.append(2)
|
||||
test_bert['word2ph'] = torch.Tensor(word2ph).int()
|
||||
|
||||
test_bert = my_bert(
|
||||
test_bert['input_ids'].to('cuda'),
|
||||
test_bert['attention_mask'].to('cuda'),
|
||||
test_bert['token_type_ids'].to('cuda'),
|
||||
test_bert['word2ph'].to('cuda')
|
||||
)
|
||||
|
||||
text_seq = torch.LongTensor([text_seq_id])
|
||||
text_bert = text_bert_T.T.to(text_seq.device)
|
||||
|
||||
print('text_bert:',text_bert.shape,text_bert)
|
||||
print('test_bert:',test_bert.shape,test_bert)
|
||||
print(torch.allclose(text_bert.to('cuda'),test_bert))
|
||||
|
||||
print('text_seq:',text_seq.shape)
|
||||
print('text_bert:',text_bert.shape,text_bert.type())
|
||||
|
||||
#[1,N]
|
||||
ref_audio = torch.tensor([load_audio(ref_audio_path, 16000)]).float().to('cuda')
|
||||
print('ref_audio:',ref_audio.shape)
|
||||
|
||||
ref_audio_sr = ssl.resample(ref_audio,16000,32000)
|
||||
print('start ssl')
|
||||
ssl_content = ssl(ref_audio)
|
||||
|
||||
print('start gpt_sovits:')
|
||||
print('ssl_content:',ssl_content.shape)
|
||||
print('ref_audio_sr:',ref_audio_sr.shape)
|
||||
print('ref_seq:',ref_seq.shape)
|
||||
ref_seq=ref_seq.to('cuda')
|
||||
print('text_seq:',text_seq.shape)
|
||||
text_seq=text_seq.to('cuda')
|
||||
print('ref_bert:',ref_bert.shape)
|
||||
ref_bert=ref_bert.to('cuda')
|
||||
print('text_bert:',text_bert.shape)
|
||||
text_bert=text_bert.to('cuda')
|
||||
|
||||
top_k = torch.LongTensor([5]).to('cuda')
|
||||
|
||||
with torch.no_grad():
|
||||
audio = gpt_sovits(ssl_content, ref_audio_sr, ref_seq, text_seq, ref_bert, test_bert, top_k)
|
||||
print('start write wav')
|
||||
soundfile.write("out.wav", audio.detach().cpu().numpy(), 32000)
|
||||
|
||||
|
||||
import text
|
||||
import json
|
||||
|
||||
def export_symbel(version='v2'):
|
||||
if version=='v1':
|
||||
symbols = text._symbol_to_id_v1
|
||||
with open(f"onnx/symbols_v1.json", "w") as file:
|
||||
json.dump(symbols, file, indent=4)
|
||||
else:
|
||||
symbols = text._symbol_to_id_v2
|
||||
with open(f"onnx/symbols_v2.json", "w") as file:
|
||||
json.dump(symbols, file, indent=4)
|
||||
|
||||
def main():
|
||||
parser = argparse.ArgumentParser(description="GPT-SoVITS Command Line Tool")
|
||||
parser.add_argument('--gpt_model', required=True, help="Path to the GPT model file")
|
||||
parser.add_argument('--sovits_model', required=True, help="Path to the SoVITS model file")
|
||||
parser.add_argument('--ref_audio', required=True, help="Path to the reference audio file")
|
||||
parser.add_argument('--ref_text', required=True, help="Path to the reference text file")
|
||||
parser.add_argument('--output_path', required=True, help="Path to the output directory")
|
||||
parser.add_argument('--export_common_model', action='store_true', help="Export Bert and SSL model")
|
||||
parser.add_argument('--device', help="Device to use")
|
||||
|
||||
args = parser.parse_args()
|
||||
export(
|
||||
gpt_path=args.gpt_model,
|
||||
vits_path=args.sovits_model,
|
||||
ref_audio_path=args.ref_audio,
|
||||
ref_text=args.ref_text,
|
||||
output_path=args.output_path,
|
||||
device=args.device,
|
||||
export_bert_and_ssl=args.export_common_model,
|
||||
)
|
||||
|
||||
import inference_webui
|
||||
if __name__ == "__main__":
|
||||
inference_webui.is_half=False
|
||||
inference_webui.dtype=torch.float32
|
||||
main()
|
||||
# test()
|
1045
GPT_SoVITS/export_torch_script_v3.py
Normal file
1045
GPT_SoVITS/export_torch_script_v3.py
Normal file
File diff suppressed because it is too large
Load Diff
13
GPT_SoVITS/f5_tts/model/__init__.py
Normal file
13
GPT_SoVITS/f5_tts/model/__init__.py
Normal file
@ -0,0 +1,13 @@
|
||||
# from f5_tts.model.cfm import CFM
|
||||
#
|
||||
# from f5_tts.model.backbones.unett import UNetT
|
||||
from GPT_SoVITS.f5_tts.model.backbones.dit import DiT
|
||||
# from f5_tts.model.backbones.dit import DiTNoCond
|
||||
# from f5_tts.model.backbones.dit import DiTNoCondNoT
|
||||
# from f5_tts.model.backbones.mmdit import MMDiT
|
||||
|
||||
# from f5_tts.model.trainer import Trainer
|
||||
|
||||
|
||||
# __all__ = ["CFM", "UNetT", "DiT", "MMDiT", "Trainer"]
|
||||
# __all__ = ["CFM", "UNetT", "DiTNoCond","DiT", "MMDiT"]
|
20
GPT_SoVITS/f5_tts/model/backbones/README.md
Normal file
20
GPT_SoVITS/f5_tts/model/backbones/README.md
Normal file
@ -0,0 +1,20 @@
|
||||
## Backbones quick introduction
|
||||
|
||||
|
||||
### unett.py
|
||||
- flat unet transformer
|
||||
- structure same as in e2-tts & voicebox paper except using rotary pos emb
|
||||
- update: allow possible abs pos emb & convnextv2 blocks for embedded text before concat
|
||||
|
||||
### dit.py
|
||||
- adaln-zero dit
|
||||
- embedded timestep as condition
|
||||
- concatted noised_input + masked_cond + embedded_text, linear proj in
|
||||
- possible abs pos emb & convnextv2 blocks for embedded text before concat
|
||||
- possible long skip connection (first layer to last layer)
|
||||
|
||||
### mmdit.py
|
||||
- sd3 structure
|
||||
- timestep as condition
|
||||
- left stream: text embedded and applied a abs pos emb
|
||||
- right stream: masked_cond & noised_input concatted and with same conv pos emb as unett
|
182
GPT_SoVITS/f5_tts/model/backbones/dit.py
Normal file
182
GPT_SoVITS/f5_tts/model/backbones/dit.py
Normal file
@ -0,0 +1,182 @@
|
||||
"""
|
||||
ein notation:
|
||||
b - batch
|
||||
n - sequence
|
||||
nt - text sequence
|
||||
nw - raw wave length
|
||||
d - dimension
|
||||
"""
|
||||
|
||||
from __future__ import annotations
|
||||
|
||||
import torch
|
||||
from torch import nn
|
||||
import torch.nn.functional as F
|
||||
from torch.utils.checkpoint import checkpoint
|
||||
|
||||
from x_transformers.x_transformers import RotaryEmbedding
|
||||
|
||||
from GPT_SoVITS.f5_tts.model.modules import (
|
||||
TimestepEmbedding,
|
||||
ConvNeXtV2Block,
|
||||
ConvPositionEmbedding,
|
||||
DiTBlock,
|
||||
AdaLayerNormZero_Final,
|
||||
precompute_freqs_cis,
|
||||
get_pos_embed_indices,
|
||||
)
|
||||
|
||||
from module.commons import sequence_mask
|
||||
|
||||
class TextEmbedding(nn.Module):
|
||||
def __init__(self, text_dim, conv_layers=0, conv_mult=2):
|
||||
super().__init__()
|
||||
if conv_layers > 0:
|
||||
self.extra_modeling = True
|
||||
self.precompute_max_pos = 4096 # ~44s of 24khz audio
|
||||
self.register_buffer("freqs_cis", precompute_freqs_cis(text_dim, self.precompute_max_pos), persistent=False)
|
||||
self.text_blocks = nn.Sequential(
|
||||
*[ConvNeXtV2Block(text_dim, text_dim * conv_mult) for _ in range(conv_layers)]
|
||||
)
|
||||
else:
|
||||
self.extra_modeling = False
|
||||
|
||||
def forward(self, text: int["b nt"], seq_len, drop_text=False): # noqa: F722
|
||||
batch, text_len = text.shape[0], text.shape[1]
|
||||
|
||||
if drop_text: # cfg for text
|
||||
text = torch.zeros_like(text)
|
||||
|
||||
# possible extra modeling
|
||||
if self.extra_modeling:
|
||||
# sinus pos emb
|
||||
batch_start = torch.zeros((batch,), dtype=torch.long)
|
||||
pos_idx = get_pos_embed_indices(batch_start, seq_len, max_pos=self.precompute_max_pos)
|
||||
text_pos_embed = self.freqs_cis[pos_idx]
|
||||
|
||||
# print(23333333,text.shape,text_pos_embed.shape)#torch.Size([7, 465, 256]) torch.Size([7, 465, 256])
|
||||
|
||||
text = text + text_pos_embed
|
||||
|
||||
# convnextv2 blocks
|
||||
text = self.text_blocks(text)
|
||||
|
||||
return text
|
||||
|
||||
|
||||
# noised input audio and context mixing embedding
|
||||
|
||||
|
||||
class InputEmbedding(nn.Module):
|
||||
def __init__(self, mel_dim, text_dim, out_dim):
|
||||
super().__init__()
|
||||
self.proj = nn.Linear(mel_dim * 2 + text_dim, out_dim)
|
||||
self.conv_pos_embed = ConvPositionEmbedding(dim=out_dim)
|
||||
|
||||
def forward(self, x: float["b n d"], cond: float["b n d"], text_embed: float["b n d"], drop_audio_cond=False): # noqa: F722
|
||||
if drop_audio_cond: # cfg for cond audio
|
||||
cond = torch.zeros_like(cond)
|
||||
|
||||
x = self.proj(torch.cat((x, cond, text_embed), dim=-1))
|
||||
x = self.conv_pos_embed(x) + x
|
||||
return x
|
||||
|
||||
|
||||
# Transformer backbone using DiT blocks
|
||||
|
||||
|
||||
class DiT(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
*,
|
||||
dim,
|
||||
depth=8,
|
||||
heads=8,
|
||||
dim_head=64,
|
||||
dropout=0.1,
|
||||
ff_mult=4,
|
||||
mel_dim=100,
|
||||
text_dim=None,
|
||||
conv_layers=0,
|
||||
long_skip_connection=False,
|
||||
):
|
||||
super().__init__()
|
||||
|
||||
self.time_embed = TimestepEmbedding(dim)
|
||||
self.d_embed = TimestepEmbedding(dim)
|
||||
if text_dim is None:
|
||||
text_dim = mel_dim
|
||||
self.text_embed = TextEmbedding(text_dim, conv_layers=conv_layers)
|
||||
self.input_embed = InputEmbedding(mel_dim, text_dim, dim)
|
||||
|
||||
self.rotary_embed = RotaryEmbedding(dim_head)
|
||||
|
||||
self.dim = dim
|
||||
self.depth = depth
|
||||
|
||||
self.transformer_blocks = nn.ModuleList(
|
||||
[DiTBlock(dim=dim, heads=heads, dim_head=dim_head, ff_mult=ff_mult, dropout=dropout) for _ in range(depth)]
|
||||
)
|
||||
self.long_skip_connection = nn.Linear(dim * 2, dim, bias=False) if long_skip_connection else None
|
||||
|
||||
self.norm_out = AdaLayerNormZero_Final(dim) # final modulation
|
||||
self.proj_out = nn.Linear(dim, mel_dim)
|
||||
|
||||
def ckpt_wrapper(self, module):
|
||||
# https://github.com/chuanyangjin/fast-DiT/blob/main/models.py
|
||||
def ckpt_forward(*inputs):
|
||||
outputs = module(*inputs)
|
||||
return outputs
|
||||
|
||||
return ckpt_forward
|
||||
|
||||
def forward(#x, prompt_x, x_lens, t, style,cond
|
||||
self,#d is channel,n is T
|
||||
x0: float["b n d"], # nosied input audio # noqa: F722
|
||||
cond0: float["b n d"], # masked cond audio # noqa: F722
|
||||
x_lens,
|
||||
time: float["b"] | float[""], # time step # noqa: F821 F722
|
||||
dt_base_bootstrap,
|
||||
text0, # : int["b nt"] # noqa: F722#####condition feature
|
||||
use_grad_ckpt=False, # bool
|
||||
###no-use
|
||||
drop_audio_cond=False, # cfg for cond audio
|
||||
drop_text=False, # cfg for text
|
||||
# mask: bool["b n"] | None = None, # noqa: F722
|
||||
|
||||
):
|
||||
|
||||
x=x0.transpose(2,1)
|
||||
cond=cond0.transpose(2,1)
|
||||
text=text0.transpose(2,1)
|
||||
mask = sequence_mask(x_lens,max_length=x.size(1)).to(x.device)
|
||||
|
||||
batch, seq_len = x.shape[0], x.shape[1]
|
||||
if time.ndim == 0:
|
||||
time = time.repeat(batch)
|
||||
|
||||
# t: conditioning time, c: context (text + masked cond audio), x: noised input audio
|
||||
t = self.time_embed(time)
|
||||
dt = self.d_embed(dt_base_bootstrap)
|
||||
t+=dt
|
||||
text_embed = self.text_embed(text, seq_len, drop_text=drop_text)###need to change
|
||||
x = self.input_embed(x, cond, text_embed, drop_audio_cond=drop_audio_cond)
|
||||
|
||||
rope = self.rotary_embed.forward_from_seq_len(seq_len)
|
||||
|
||||
if self.long_skip_connection is not None:
|
||||
residual = x
|
||||
|
||||
for block in self.transformer_blocks:
|
||||
if use_grad_ckpt:
|
||||
x = checkpoint(self.ckpt_wrapper(block), x, t, mask, rope, use_reentrant=False)
|
||||
else:
|
||||
x = block(x, t, mask=mask, rope=rope)
|
||||
|
||||
if self.long_skip_connection is not None:
|
||||
x = self.long_skip_connection(torch.cat((x, residual), dim=-1))
|
||||
|
||||
x = self.norm_out(x, t)
|
||||
output = self.proj_out(x)
|
||||
|
||||
return output
|
146
GPT_SoVITS/f5_tts/model/backbones/mmdit.py
Normal file
146
GPT_SoVITS/f5_tts/model/backbones/mmdit.py
Normal file
@ -0,0 +1,146 @@
|
||||
"""
|
||||
ein notation:
|
||||
b - batch
|
||||
n - sequence
|
||||
nt - text sequence
|
||||
nw - raw wave length
|
||||
d - dimension
|
||||
"""
|
||||
|
||||
from __future__ import annotations
|
||||
|
||||
import torch
|
||||
from torch import nn
|
||||
|
||||
from x_transformers.x_transformers import RotaryEmbedding
|
||||
|
||||
from f5_tts.model.modules import (
|
||||
TimestepEmbedding,
|
||||
ConvPositionEmbedding,
|
||||
MMDiTBlock,
|
||||
AdaLayerNormZero_Final,
|
||||
precompute_freqs_cis,
|
||||
get_pos_embed_indices,
|
||||
)
|
||||
|
||||
|
||||
# text embedding
|
||||
|
||||
|
||||
class TextEmbedding(nn.Module):
|
||||
def __init__(self, out_dim, text_num_embeds):
|
||||
super().__init__()
|
||||
self.text_embed = nn.Embedding(text_num_embeds + 1, out_dim) # will use 0 as filler token
|
||||
|
||||
self.precompute_max_pos = 1024
|
||||
self.register_buffer("freqs_cis", precompute_freqs_cis(out_dim, self.precompute_max_pos), persistent=False)
|
||||
|
||||
def forward(self, text: int["b nt"], drop_text=False) -> int["b nt d"]: # noqa: F722
|
||||
text = text + 1
|
||||
if drop_text:
|
||||
text = torch.zeros_like(text)
|
||||
text = self.text_embed(text)
|
||||
|
||||
# sinus pos emb
|
||||
batch_start = torch.zeros((text.shape[0],), dtype=torch.long)
|
||||
batch_text_len = text.shape[1]
|
||||
pos_idx = get_pos_embed_indices(batch_start, batch_text_len, max_pos=self.precompute_max_pos)
|
||||
text_pos_embed = self.freqs_cis[pos_idx]
|
||||
|
||||
text = text + text_pos_embed
|
||||
|
||||
return text
|
||||
|
||||
|
||||
# noised input & masked cond audio embedding
|
||||
|
||||
|
||||
class AudioEmbedding(nn.Module):
|
||||
def __init__(self, in_dim, out_dim):
|
||||
super().__init__()
|
||||
self.linear = nn.Linear(2 * in_dim, out_dim)
|
||||
self.conv_pos_embed = ConvPositionEmbedding(out_dim)
|
||||
|
||||
def forward(self, x: float["b n d"], cond: float["b n d"], drop_audio_cond=False): # noqa: F722
|
||||
if drop_audio_cond:
|
||||
cond = torch.zeros_like(cond)
|
||||
x = torch.cat((x, cond), dim=-1)
|
||||
x = self.linear(x)
|
||||
x = self.conv_pos_embed(x) + x
|
||||
return x
|
||||
|
||||
|
||||
# Transformer backbone using MM-DiT blocks
|
||||
|
||||
|
||||
class MMDiT(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
*,
|
||||
dim,
|
||||
depth=8,
|
||||
heads=8,
|
||||
dim_head=64,
|
||||
dropout=0.1,
|
||||
ff_mult=4,
|
||||
text_num_embeds=256,
|
||||
mel_dim=100,
|
||||
):
|
||||
super().__init__()
|
||||
|
||||
self.time_embed = TimestepEmbedding(dim)
|
||||
self.text_embed = TextEmbedding(dim, text_num_embeds)
|
||||
self.audio_embed = AudioEmbedding(mel_dim, dim)
|
||||
|
||||
self.rotary_embed = RotaryEmbedding(dim_head)
|
||||
|
||||
self.dim = dim
|
||||
self.depth = depth
|
||||
|
||||
self.transformer_blocks = nn.ModuleList(
|
||||
[
|
||||
MMDiTBlock(
|
||||
dim=dim,
|
||||
heads=heads,
|
||||
dim_head=dim_head,
|
||||
dropout=dropout,
|
||||
ff_mult=ff_mult,
|
||||
context_pre_only=i == depth - 1,
|
||||
)
|
||||
for i in range(depth)
|
||||
]
|
||||
)
|
||||
self.norm_out = AdaLayerNormZero_Final(dim) # final modulation
|
||||
self.proj_out = nn.Linear(dim, mel_dim)
|
||||
|
||||
def forward(
|
||||
self,
|
||||
x: float["b n d"], # nosied input audio # noqa: F722
|
||||
cond: float["b n d"], # masked cond audio # noqa: F722
|
||||
text: int["b nt"], # text # noqa: F722
|
||||
time: float["b"] | float[""], # time step # noqa: F821 F722
|
||||
drop_audio_cond, # cfg for cond audio
|
||||
drop_text, # cfg for text
|
||||
mask: bool["b n"] | None = None, # noqa: F722
|
||||
):
|
||||
batch = x.shape[0]
|
||||
if time.ndim == 0:
|
||||
time = time.repeat(batch)
|
||||
|
||||
# t: conditioning (time), c: context (text + masked cond audio), x: noised input audio
|
||||
t = self.time_embed(time)
|
||||
c = self.text_embed(text, drop_text=drop_text)
|
||||
x = self.audio_embed(x, cond, drop_audio_cond=drop_audio_cond)
|
||||
|
||||
seq_len = x.shape[1]
|
||||
text_len = text.shape[1]
|
||||
rope_audio = self.rotary_embed.forward_from_seq_len(seq_len)
|
||||
rope_text = self.rotary_embed.forward_from_seq_len(text_len)
|
||||
|
||||
for block in self.transformer_blocks:
|
||||
c, x = block(x, c, t, mask=mask, rope=rope_audio, c_rope=rope_text)
|
||||
|
||||
x = self.norm_out(x, t)
|
||||
output = self.proj_out(x)
|
||||
|
||||
return output
|
219
GPT_SoVITS/f5_tts/model/backbones/unett.py
Normal file
219
GPT_SoVITS/f5_tts/model/backbones/unett.py
Normal file
@ -0,0 +1,219 @@
|
||||
"""
|
||||
ein notation:
|
||||
b - batch
|
||||
n - sequence
|
||||
nt - text sequence
|
||||
nw - raw wave length
|
||||
d - dimension
|
||||
"""
|
||||
|
||||
from __future__ import annotations
|
||||
from typing import Literal
|
||||
|
||||
import torch
|
||||
from torch import nn
|
||||
import torch.nn.functional as F
|
||||
|
||||
from x_transformers import RMSNorm
|
||||
from x_transformers.x_transformers import RotaryEmbedding
|
||||
|
||||
from f5_tts.model.modules import (
|
||||
TimestepEmbedding,
|
||||
ConvNeXtV2Block,
|
||||
ConvPositionEmbedding,
|
||||
Attention,
|
||||
AttnProcessor,
|
||||
FeedForward,
|
||||
precompute_freqs_cis,
|
||||
get_pos_embed_indices,
|
||||
)
|
||||
|
||||
|
||||
# Text embedding
|
||||
|
||||
|
||||
class TextEmbedding(nn.Module):
|
||||
def __init__(self, text_num_embeds, text_dim, conv_layers=0, conv_mult=2):
|
||||
super().__init__()
|
||||
self.text_embed = nn.Embedding(text_num_embeds + 1, text_dim) # use 0 as filler token
|
||||
|
||||
if conv_layers > 0:
|
||||
self.extra_modeling = True
|
||||
self.precompute_max_pos = 4096 # ~44s of 24khz audio
|
||||
self.register_buffer("freqs_cis", precompute_freqs_cis(text_dim, self.precompute_max_pos), persistent=False)
|
||||
self.text_blocks = nn.Sequential(
|
||||
*[ConvNeXtV2Block(text_dim, text_dim * conv_mult) for _ in range(conv_layers)]
|
||||
)
|
||||
else:
|
||||
self.extra_modeling = False
|
||||
|
||||
def forward(self, text: int["b nt"], seq_len, drop_text=False): # noqa: F722
|
||||
text = text + 1 # use 0 as filler token. preprocess of batch pad -1, see list_str_to_idx()
|
||||
text = text[:, :seq_len] # curtail if character tokens are more than the mel spec tokens
|
||||
batch, text_len = text.shape[0], text.shape[1]
|
||||
text = F.pad(text, (0, seq_len - text_len), value=0)
|
||||
|
||||
if drop_text: # cfg for text
|
||||
text = torch.zeros_like(text)
|
||||
|
||||
text = self.text_embed(text) # b n -> b n d
|
||||
|
||||
# possible extra modeling
|
||||
if self.extra_modeling:
|
||||
# sinus pos emb
|
||||
batch_start = torch.zeros((batch,), dtype=torch.long)
|
||||
pos_idx = get_pos_embed_indices(batch_start, seq_len, max_pos=self.precompute_max_pos)
|
||||
text_pos_embed = self.freqs_cis[pos_idx]
|
||||
text = text + text_pos_embed
|
||||
|
||||
# convnextv2 blocks
|
||||
text = self.text_blocks(text)
|
||||
|
||||
return text
|
||||
|
||||
|
||||
# noised input audio and context mixing embedding
|
||||
|
||||
|
||||
class InputEmbedding(nn.Module):
|
||||
def __init__(self, mel_dim, text_dim, out_dim):
|
||||
super().__init__()
|
||||
self.proj = nn.Linear(mel_dim * 2 + text_dim, out_dim)
|
||||
self.conv_pos_embed = ConvPositionEmbedding(dim=out_dim)
|
||||
|
||||
def forward(self, x: float["b n d"], cond: float["b n d"], text_embed: float["b n d"], drop_audio_cond=False): # noqa: F722
|
||||
if drop_audio_cond: # cfg for cond audio
|
||||
cond = torch.zeros_like(cond)
|
||||
|
||||
x = self.proj(torch.cat((x, cond, text_embed), dim=-1))
|
||||
x = self.conv_pos_embed(x) + x
|
||||
return x
|
||||
|
||||
|
||||
# Flat UNet Transformer backbone
|
||||
|
||||
|
||||
class UNetT(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
*,
|
||||
dim,
|
||||
depth=8,
|
||||
heads=8,
|
||||
dim_head=64,
|
||||
dropout=0.1,
|
||||
ff_mult=4,
|
||||
mel_dim=100,
|
||||
text_num_embeds=256,
|
||||
text_dim=None,
|
||||
conv_layers=0,
|
||||
skip_connect_type: Literal["add", "concat", "none"] = "concat",
|
||||
):
|
||||
super().__init__()
|
||||
assert depth % 2 == 0, "UNet-Transformer's depth should be even."
|
||||
|
||||
self.time_embed = TimestepEmbedding(dim)
|
||||
if text_dim is None:
|
||||
text_dim = mel_dim
|
||||
self.text_embed = TextEmbedding(text_num_embeds, text_dim, conv_layers=conv_layers)
|
||||
self.input_embed = InputEmbedding(mel_dim, text_dim, dim)
|
||||
|
||||
self.rotary_embed = RotaryEmbedding(dim_head)
|
||||
|
||||
# transformer layers & skip connections
|
||||
|
||||
self.dim = dim
|
||||
self.skip_connect_type = skip_connect_type
|
||||
needs_skip_proj = skip_connect_type == "concat"
|
||||
|
||||
self.depth = depth
|
||||
self.layers = nn.ModuleList([])
|
||||
|
||||
for idx in range(depth):
|
||||
is_later_half = idx >= (depth // 2)
|
||||
|
||||
attn_norm = RMSNorm(dim)
|
||||
attn = Attention(
|
||||
processor=AttnProcessor(),
|
||||
dim=dim,
|
||||
heads=heads,
|
||||
dim_head=dim_head,
|
||||
dropout=dropout,
|
||||
)
|
||||
|
||||
ff_norm = RMSNorm(dim)
|
||||
ff = FeedForward(dim=dim, mult=ff_mult, dropout=dropout, approximate="tanh")
|
||||
|
||||
skip_proj = nn.Linear(dim * 2, dim, bias=False) if needs_skip_proj and is_later_half else None
|
||||
|
||||
self.layers.append(
|
||||
nn.ModuleList(
|
||||
[
|
||||
skip_proj,
|
||||
attn_norm,
|
||||
attn,
|
||||
ff_norm,
|
||||
ff,
|
||||
]
|
||||
)
|
||||
)
|
||||
|
||||
self.norm_out = RMSNorm(dim)
|
||||
self.proj_out = nn.Linear(dim, mel_dim)
|
||||
|
||||
def forward(
|
||||
self,
|
||||
x: float["b n d"], # nosied input audio # noqa: F722
|
||||
cond: float["b n d"], # masked cond audio # noqa: F722
|
||||
text: int["b nt"], # text # noqa: F722
|
||||
time: float["b"] | float[""], # time step # noqa: F821 F722
|
||||
drop_audio_cond, # cfg for cond audio
|
||||
drop_text, # cfg for text
|
||||
mask: bool["b n"] | None = None, # noqa: F722
|
||||
):
|
||||
batch, seq_len = x.shape[0], x.shape[1]
|
||||
if time.ndim == 0:
|
||||
time = time.repeat(batch)
|
||||
|
||||
# t: conditioning time, c: context (text + masked cond audio), x: noised input audio
|
||||
t = self.time_embed(time)
|
||||
text_embed = self.text_embed(text, seq_len, drop_text=drop_text)
|
||||
x = self.input_embed(x, cond, text_embed, drop_audio_cond=drop_audio_cond)
|
||||
|
||||
# postfix time t to input x, [b n d] -> [b n+1 d]
|
||||
x = torch.cat([t.unsqueeze(1), x], dim=1) # pack t to x
|
||||
if mask is not None:
|
||||
mask = F.pad(mask, (1, 0), value=1)
|
||||
|
||||
rope = self.rotary_embed.forward_from_seq_len(seq_len + 1)
|
||||
|
||||
# flat unet transformer
|
||||
skip_connect_type = self.skip_connect_type
|
||||
skips = []
|
||||
for idx, (maybe_skip_proj, attn_norm, attn, ff_norm, ff) in enumerate(self.layers):
|
||||
layer = idx + 1
|
||||
|
||||
# skip connection logic
|
||||
is_first_half = layer <= (self.depth // 2)
|
||||
is_later_half = not is_first_half
|
||||
|
||||
if is_first_half:
|
||||
skips.append(x)
|
||||
|
||||
if is_later_half:
|
||||
skip = skips.pop()
|
||||
if skip_connect_type == "concat":
|
||||
x = torch.cat((x, skip), dim=-1)
|
||||
x = maybe_skip_proj(x)
|
||||
elif skip_connect_type == "add":
|
||||
x = x + skip
|
||||
|
||||
# attention and feedforward blocks
|
||||
x = attn(attn_norm(x), rope=rope, mask=mask) + x
|
||||
x = ff(ff_norm(x)) + x
|
||||
|
||||
assert len(skips) == 0
|
||||
|
||||
x = self.norm_out(x)[:, 1:, :] # unpack t from x
|
||||
|
||||
return self.proj_out(x)
|
664
GPT_SoVITS/f5_tts/model/modules.py
Normal file
664
GPT_SoVITS/f5_tts/model/modules.py
Normal file
@ -0,0 +1,664 @@
|
||||
"""
|
||||
ein notation:
|
||||
b - batch
|
||||
n - sequence
|
||||
nt - text sequence
|
||||
nw - raw wave length
|
||||
d - dimension
|
||||
"""
|
||||
|
||||
from __future__ import annotations
|
||||
|
||||
import math
|
||||
from typing import Optional
|
||||
|
||||
import torch
|
||||
import torch.nn.functional as F
|
||||
import torchaudio
|
||||
from librosa.filters import mel as librosa_mel_fn
|
||||
from torch import nn
|
||||
from x_transformers.x_transformers import apply_rotary_pos_emb
|
||||
|
||||
|
||||
# raw wav to mel spec
|
||||
|
||||
|
||||
mel_basis_cache = {}
|
||||
hann_window_cache = {}
|
||||
|
||||
|
||||
def get_bigvgan_mel_spectrogram(
|
||||
waveform,
|
||||
n_fft=1024,
|
||||
n_mel_channels=100,
|
||||
target_sample_rate=24000,
|
||||
hop_length=256,
|
||||
win_length=1024,
|
||||
fmin=0,
|
||||
fmax=None,
|
||||
center=False,
|
||||
): # Copy from https://github.com/NVIDIA/BigVGAN/tree/main
|
||||
device = waveform.device
|
||||
key = f"{n_fft}_{n_mel_channels}_{target_sample_rate}_{hop_length}_{win_length}_{fmin}_{fmax}_{device}"
|
||||
|
||||
if key not in mel_basis_cache:
|
||||
mel = librosa_mel_fn(sr=target_sample_rate, n_fft=n_fft, n_mels=n_mel_channels, fmin=fmin, fmax=fmax)
|
||||
mel_basis_cache[key] = torch.from_numpy(mel).float().to(device) # TODO: why they need .float()?
|
||||
hann_window_cache[key] = torch.hann_window(win_length).to(device)
|
||||
|
||||
mel_basis = mel_basis_cache[key]
|
||||
hann_window = hann_window_cache[key]
|
||||
|
||||
padding = (n_fft - hop_length) // 2
|
||||
waveform = torch.nn.functional.pad(waveform.unsqueeze(1), (padding, padding), mode="reflect").squeeze(1)
|
||||
|
||||
spec = torch.stft(
|
||||
waveform,
|
||||
n_fft,
|
||||
hop_length=hop_length,
|
||||
win_length=win_length,
|
||||
window=hann_window,
|
||||
center=center,
|
||||
pad_mode="reflect",
|
||||
normalized=False,
|
||||
onesided=True,
|
||||
return_complex=True,
|
||||
)
|
||||
spec = torch.sqrt(torch.view_as_real(spec).pow(2).sum(-1) + 1e-9)
|
||||
|
||||
mel_spec = torch.matmul(mel_basis, spec)
|
||||
mel_spec = torch.log(torch.clamp(mel_spec, min=1e-5))
|
||||
|
||||
return mel_spec
|
||||
|
||||
|
||||
def get_vocos_mel_spectrogram(
|
||||
waveform,
|
||||
n_fft=1024,
|
||||
n_mel_channels=100,
|
||||
target_sample_rate=24000,
|
||||
hop_length=256,
|
||||
win_length=1024,
|
||||
):
|
||||
mel_stft = torchaudio.transforms.MelSpectrogram(
|
||||
sample_rate=target_sample_rate,
|
||||
n_fft=n_fft,
|
||||
win_length=win_length,
|
||||
hop_length=hop_length,
|
||||
n_mels=n_mel_channels,
|
||||
power=1,
|
||||
center=True,
|
||||
normalized=False,
|
||||
norm=None,
|
||||
).to(waveform.device)
|
||||
if len(waveform.shape) == 3:
|
||||
waveform = waveform.squeeze(1) # 'b 1 nw -> b nw'
|
||||
|
||||
assert len(waveform.shape) == 2
|
||||
|
||||
mel = mel_stft(waveform)
|
||||
mel = mel.clamp(min=1e-5).log()
|
||||
return mel
|
||||
|
||||
|
||||
class MelSpec(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
n_fft=1024,
|
||||
hop_length=256,
|
||||
win_length=1024,
|
||||
n_mel_channels=100,
|
||||
target_sample_rate=24_000,
|
||||
mel_spec_type="vocos",
|
||||
):
|
||||
super().__init__()
|
||||
assert mel_spec_type in ["vocos", "bigvgan"], print("We only support two extract mel backend: vocos or bigvgan")
|
||||
|
||||
self.n_fft = n_fft
|
||||
self.hop_length = hop_length
|
||||
self.win_length = win_length
|
||||
self.n_mel_channels = n_mel_channels
|
||||
self.target_sample_rate = target_sample_rate
|
||||
|
||||
if mel_spec_type == "vocos":
|
||||
self.extractor = get_vocos_mel_spectrogram
|
||||
elif mel_spec_type == "bigvgan":
|
||||
self.extractor = get_bigvgan_mel_spectrogram
|
||||
|
||||
self.register_buffer("dummy", torch.tensor(0), persistent=False)
|
||||
|
||||
def forward(self, wav):
|
||||
if self.dummy.device != wav.device:
|
||||
self.to(wav.device)
|
||||
|
||||
mel = self.extractor(
|
||||
waveform=wav,
|
||||
n_fft=self.n_fft,
|
||||
n_mel_channels=self.n_mel_channels,
|
||||
target_sample_rate=self.target_sample_rate,
|
||||
hop_length=self.hop_length,
|
||||
win_length=self.win_length,
|
||||
)
|
||||
|
||||
return mel
|
||||
|
||||
|
||||
# sinusoidal position embedding
|
||||
|
||||
|
||||
class SinusPositionEmbedding(nn.Module):
|
||||
def __init__(self, dim):
|
||||
super().__init__()
|
||||
self.dim = dim
|
||||
|
||||
def forward(self, x, scale=1000):
|
||||
device = x.device
|
||||
half_dim = self.dim // 2
|
||||
emb = math.log(10000) / (half_dim - 1)
|
||||
emb = torch.exp(torch.arange(half_dim, device=device).float() * -emb)
|
||||
emb = scale * x.unsqueeze(1) * emb.unsqueeze(0)
|
||||
emb = torch.cat((emb.sin(), emb.cos()), dim=-1)
|
||||
return emb
|
||||
|
||||
|
||||
# convolutional position embedding
|
||||
|
||||
|
||||
class ConvPositionEmbedding(nn.Module):
|
||||
def __init__(self, dim, kernel_size=31, groups=16):
|
||||
super().__init__()
|
||||
assert kernel_size % 2 != 0
|
||||
self.conv1d = nn.Sequential(
|
||||
nn.Conv1d(dim, dim, kernel_size, groups=groups, padding=kernel_size // 2),
|
||||
nn.Mish(),
|
||||
nn.Conv1d(dim, dim, kernel_size, groups=groups, padding=kernel_size // 2),
|
||||
nn.Mish(),
|
||||
)
|
||||
|
||||
def forward(self, x: float["b n d"], mask: bool["b n"] | None = None): # noqa: F722
|
||||
if mask is not None:
|
||||
mask = mask[..., None]
|
||||
x = x.masked_fill(~mask, 0.0)
|
||||
|
||||
x = x.permute(0, 2, 1)
|
||||
x = self.conv1d(x)
|
||||
out = x.permute(0, 2, 1)
|
||||
|
||||
if mask is not None:
|
||||
out = out.masked_fill(~mask, 0.0)
|
||||
|
||||
return out
|
||||
|
||||
|
||||
# rotary positional embedding related
|
||||
|
||||
|
||||
def precompute_freqs_cis(dim: int, end: int, theta: float = 10000.0, theta_rescale_factor=1.0):
|
||||
# proposed by reddit user bloc97, to rescale rotary embeddings to longer sequence length without fine-tuning
|
||||
# has some connection to NTK literature
|
||||
# https://www.reddit.com/r/LocalLLaMA/comments/14lz7j5/ntkaware_scaled_rope_allows_llama_models_to_have/
|
||||
# https://github.com/lucidrains/rotary-embedding-torch/blob/main/rotary_embedding_torch/rotary_embedding_torch.py
|
||||
theta *= theta_rescale_factor ** (dim / (dim - 2))
|
||||
freqs = 1.0 / (theta ** (torch.arange(0, dim, 2)[: (dim // 2)].float() / dim))
|
||||
t = torch.arange(end, device=freqs.device) # type: ignore
|
||||
freqs = torch.outer(t, freqs).float() # type: ignore
|
||||
freqs_cos = torch.cos(freqs) # real part
|
||||
freqs_sin = torch.sin(freqs) # imaginary part
|
||||
return torch.cat([freqs_cos, freqs_sin], dim=-1)
|
||||
|
||||
|
||||
def get_pos_embed_indices(start, length, max_pos, scale=1.0):
|
||||
# length = length if isinstance(length, int) else length.max()
|
||||
scale = scale * torch.ones_like(start, dtype=torch.float32) # in case scale is a scalar
|
||||
pos = (
|
||||
start.unsqueeze(1)
|
||||
+ (torch.arange(length, device=start.device, dtype=torch.float32).unsqueeze(0) * scale.unsqueeze(1)).long()
|
||||
)
|
||||
# avoid extra long error.
|
||||
pos = torch.where(pos < max_pos, pos, max_pos - 1)
|
||||
return pos
|
||||
|
||||
|
||||
# Global Response Normalization layer (Instance Normalization ?)
|
||||
|
||||
|
||||
class GRN(nn.Module):
|
||||
def __init__(self, dim):
|
||||
super().__init__()
|
||||
self.gamma = nn.Parameter(torch.zeros(1, 1, dim))
|
||||
self.beta = nn.Parameter(torch.zeros(1, 1, dim))
|
||||
|
||||
def forward(self, x):
|
||||
Gx = torch.norm(x, p=2, dim=1, keepdim=True)
|
||||
Nx = Gx / (Gx.mean(dim=-1, keepdim=True) + 1e-6)
|
||||
return self.gamma * (x * Nx) + self.beta + x
|
||||
|
||||
|
||||
# ConvNeXt-V2 Block https://github.com/facebookresearch/ConvNeXt-V2/blob/main/models/convnextv2.py
|
||||
# ref: https://github.com/bfs18/e2_tts/blob/main/rfwave/modules.py#L108
|
||||
|
||||
|
||||
class ConvNeXtV2Block(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
dim: int,
|
||||
intermediate_dim: int,
|
||||
dilation: int = 1,
|
||||
):
|
||||
super().__init__()
|
||||
padding = (dilation * (7 - 1)) // 2
|
||||
self.dwconv = nn.Conv1d(
|
||||
dim, dim, kernel_size=7, padding=padding, groups=dim, dilation=dilation
|
||||
) # depthwise conv
|
||||
self.norm = nn.LayerNorm(dim, eps=1e-6)
|
||||
self.pwconv1 = nn.Linear(dim, intermediate_dim) # pointwise/1x1 convs, implemented with linear layers
|
||||
self.act = nn.GELU()
|
||||
self.grn = GRN(intermediate_dim)
|
||||
self.pwconv2 = nn.Linear(intermediate_dim, dim)
|
||||
|
||||
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
||||
residual = x
|
||||
x = x.transpose(1, 2) # b n d -> b d n
|
||||
x = self.dwconv(x)
|
||||
x = x.transpose(1, 2) # b d n -> b n d
|
||||
x = self.norm(x)
|
||||
x = self.pwconv1(x)
|
||||
x = self.act(x)
|
||||
x = self.grn(x)
|
||||
x = self.pwconv2(x)
|
||||
return residual + x
|
||||
|
||||
|
||||
# AdaLayerNormZero
|
||||
# return with modulated x for attn input, and params for later mlp modulation
|
||||
|
||||
|
||||
class AdaLayerNormZero(nn.Module):
|
||||
def __init__(self, dim):
|
||||
super().__init__()
|
||||
|
||||
self.silu = nn.SiLU()
|
||||
self.linear = nn.Linear(dim, dim * 6)
|
||||
|
||||
self.norm = nn.LayerNorm(dim, elementwise_affine=False, eps=1e-6)
|
||||
|
||||
def forward(self, x, emb=None):
|
||||
emb = self.linear(self.silu(emb))
|
||||
shift_msa, scale_msa, gate_msa, shift_mlp, scale_mlp, gate_mlp = torch.chunk(emb, 6, dim=1)
|
||||
|
||||
x = self.norm(x) * (1 + scale_msa[:, None]) + shift_msa[:, None]
|
||||
return x, gate_msa, shift_mlp, scale_mlp, gate_mlp
|
||||
|
||||
|
||||
# AdaLayerNormZero for final layer
|
||||
# return only with modulated x for attn input, cuz no more mlp modulation
|
||||
|
||||
|
||||
class AdaLayerNormZero_Final(nn.Module):
|
||||
def __init__(self, dim):
|
||||
super().__init__()
|
||||
|
||||
self.silu = nn.SiLU()
|
||||
self.linear = nn.Linear(dim, dim * 2)
|
||||
|
||||
self.norm = nn.LayerNorm(dim, elementwise_affine=False, eps=1e-6)
|
||||
|
||||
def forward(self, x, emb):
|
||||
emb = self.linear(self.silu(emb))
|
||||
scale, shift = torch.chunk(emb, 2, dim=1)
|
||||
|
||||
x = self.norm(x) * (1 + scale)[:, None, :] + shift[:, None, :]
|
||||
return x
|
||||
|
||||
|
||||
# FeedForward
|
||||
|
||||
|
||||
class FeedForward(nn.Module):
|
||||
def __init__(self, dim, dim_out=None, mult=4, dropout=0.0, approximate: str = "none"):
|
||||
super().__init__()
|
||||
inner_dim = int(dim * mult)
|
||||
dim_out = dim_out if dim_out is not None else dim
|
||||
|
||||
activation = nn.GELU(approximate=approximate)
|
||||
project_in = nn.Sequential(nn.Linear(dim, inner_dim), activation)
|
||||
self.ff = nn.Sequential(project_in, nn.Dropout(dropout), nn.Linear(inner_dim, dim_out))
|
||||
|
||||
def forward(self, x):
|
||||
return self.ff(x)
|
||||
|
||||
|
||||
# Attention with possible joint part
|
||||
# modified from diffusers/src/diffusers/models/attention_processor.py
|
||||
|
||||
|
||||
class Attention(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
processor: JointAttnProcessor | AttnProcessor,
|
||||
dim: int,
|
||||
heads: int = 8,
|
||||
dim_head: int = 64,
|
||||
dropout: float = 0.0,
|
||||
context_dim: Optional[int] = None, # if not None -> joint attention
|
||||
context_pre_only=None,
|
||||
):
|
||||
super().__init__()
|
||||
|
||||
if not hasattr(F, "scaled_dot_product_attention"):
|
||||
raise ImportError("Attention equires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0.")
|
||||
|
||||
self.processor = processor
|
||||
|
||||
self.dim = dim
|
||||
self.heads = heads
|
||||
self.inner_dim = dim_head * heads
|
||||
self.dropout = dropout
|
||||
|
||||
self.context_dim = context_dim
|
||||
self.context_pre_only = context_pre_only
|
||||
|
||||
self.to_q = nn.Linear(dim, self.inner_dim)
|
||||
self.to_k = nn.Linear(dim, self.inner_dim)
|
||||
self.to_v = nn.Linear(dim, self.inner_dim)
|
||||
|
||||
if self.context_dim is not None:
|
||||
self.to_k_c = nn.Linear(context_dim, self.inner_dim)
|
||||
self.to_v_c = nn.Linear(context_dim, self.inner_dim)
|
||||
if self.context_pre_only is not None:
|
||||
self.to_q_c = nn.Linear(context_dim, self.inner_dim)
|
||||
|
||||
self.to_out = nn.ModuleList([])
|
||||
self.to_out.append(nn.Linear(self.inner_dim, dim))
|
||||
self.to_out.append(nn.Dropout(dropout))
|
||||
|
||||
if self.context_pre_only is not None and not self.context_pre_only:
|
||||
self.to_out_c = nn.Linear(self.inner_dim, dim)
|
||||
|
||||
def forward(
|
||||
self,
|
||||
x: float["b n d"], # noised input x # noqa: F722
|
||||
c: float["b n d"] = None, # context c # noqa: F722
|
||||
mask: bool["b n"] | None = None, # noqa: F722
|
||||
rope=None, # rotary position embedding for x
|
||||
c_rope=None, # rotary position embedding for c
|
||||
) -> torch.Tensor:
|
||||
if c is not None:
|
||||
return self.processor(self, x, c=c, mask=mask, rope=rope, c_rope=c_rope)
|
||||
else:
|
||||
return self.processor(self, x, mask=mask, rope=rope)
|
||||
|
||||
|
||||
# Attention processor
|
||||
|
||||
# from torch.nn.attention import SDPBackend
|
||||
# torch.backends.cuda.enable_flash_sdp(True)
|
||||
class AttnProcessor:
|
||||
def __init__(self):
|
||||
pass
|
||||
|
||||
def __call__(
|
||||
self,
|
||||
attn: Attention,
|
||||
x: float["b n d"], # noised input x # noqa: F722
|
||||
mask: bool["b n"] | None = None, # noqa: F722
|
||||
rope=None, # rotary position embedding
|
||||
) -> torch.FloatTensor:
|
||||
batch_size = x.shape[0]
|
||||
|
||||
# `sample` projections.
|
||||
query = attn.to_q(x)
|
||||
key = attn.to_k(x)
|
||||
value = attn.to_v(x)
|
||||
|
||||
# apply rotary position embedding
|
||||
if rope is not None:
|
||||
freqs, xpos_scale = rope
|
||||
q_xpos_scale, k_xpos_scale = (xpos_scale, xpos_scale**-1.0) if xpos_scale is not None else (1.0, 1.0)
|
||||
|
||||
query = apply_rotary_pos_emb(query, freqs, q_xpos_scale)
|
||||
key = apply_rotary_pos_emb(key, freqs, k_xpos_scale)
|
||||
|
||||
# attention
|
||||
inner_dim = key.shape[-1]
|
||||
head_dim = inner_dim // attn.heads
|
||||
query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
||||
key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
||||
value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
||||
|
||||
# mask. e.g. inference got a batch with different target durations, mask out the padding
|
||||
if mask is not None:
|
||||
attn_mask = mask
|
||||
attn_mask = attn_mask.unsqueeze(1).unsqueeze(1) # 'b n -> b 1 1 n'
|
||||
# print(3433333333,attn_mask.shape)
|
||||
attn_mask = attn_mask.expand(batch_size, attn.heads, query.shape[-2], key.shape[-2])
|
||||
else:
|
||||
attn_mask = None
|
||||
# with torch.nn.attention.sdpa_kernel(backends=[SDPBackend.EFFICIENT_ATTENTION]):
|
||||
# with torch.backends.cuda.sdp_kernel(enable_flash=True, enable_math=False, enable_mem_efficient=True):
|
||||
# with torch.backends.cuda.sdp_kernel(enable_flash=True, enable_math=True, enable_mem_efficient=False):
|
||||
# print(torch.backends.cuda.flash_sdp_enabled())
|
||||
# print(torch.backends.cuda.mem_efficient_sdp_enabled())
|
||||
# print(torch.backends.cuda.math_sdp_enabled())
|
||||
x = F.scaled_dot_product_attention(query, key, value, attn_mask=attn_mask, dropout_p=0.0, is_causal=False)
|
||||
x = x.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim)
|
||||
x = x.to(query.dtype)
|
||||
|
||||
# linear proj
|
||||
x = attn.to_out[0](x)
|
||||
# dropout
|
||||
x = attn.to_out[1](x)
|
||||
|
||||
if mask is not None:
|
||||
mask = mask.unsqueeze(-1)
|
||||
x = x.masked_fill(~mask, 0.0)
|
||||
|
||||
return x
|
||||
|
||||
|
||||
# Joint Attention processor for MM-DiT
|
||||
# modified from diffusers/src/diffusers/models/attention_processor.py
|
||||
|
||||
|
||||
class JointAttnProcessor:
|
||||
def __init__(self):
|
||||
pass
|
||||
|
||||
def __call__(
|
||||
self,
|
||||
attn: Attention,
|
||||
x: float["b n d"], # noised input x # noqa: F722
|
||||
c: float["b nt d"] = None, # context c, here text # noqa: F722
|
||||
mask: bool["b n"] | None = None, # noqa: F722
|
||||
rope=None, # rotary position embedding for x
|
||||
c_rope=None, # rotary position embedding for c
|
||||
) -> torch.FloatTensor:
|
||||
residual = x
|
||||
|
||||
batch_size = c.shape[0]
|
||||
|
||||
# `sample` projections.
|
||||
query = attn.to_q(x)
|
||||
key = attn.to_k(x)
|
||||
value = attn.to_v(x)
|
||||
|
||||
# `context` projections.
|
||||
c_query = attn.to_q_c(c)
|
||||
c_key = attn.to_k_c(c)
|
||||
c_value = attn.to_v_c(c)
|
||||
|
||||
# apply rope for context and noised input independently
|
||||
if rope is not None:
|
||||
freqs, xpos_scale = rope
|
||||
q_xpos_scale, k_xpos_scale = (xpos_scale, xpos_scale**-1.0) if xpos_scale is not None else (1.0, 1.0)
|
||||
query = apply_rotary_pos_emb(query, freqs, q_xpos_scale)
|
||||
key = apply_rotary_pos_emb(key, freqs, k_xpos_scale)
|
||||
if c_rope is not None:
|
||||
freqs, xpos_scale = c_rope
|
||||
q_xpos_scale, k_xpos_scale = (xpos_scale, xpos_scale**-1.0) if xpos_scale is not None else (1.0, 1.0)
|
||||
c_query = apply_rotary_pos_emb(c_query, freqs, q_xpos_scale)
|
||||
c_key = apply_rotary_pos_emb(c_key, freqs, k_xpos_scale)
|
||||
|
||||
# attention
|
||||
query = torch.cat([query, c_query], dim=1)
|
||||
key = torch.cat([key, c_key], dim=1)
|
||||
value = torch.cat([value, c_value], dim=1)
|
||||
|
||||
inner_dim = key.shape[-1]
|
||||
head_dim = inner_dim // attn.heads
|
||||
query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
||||
key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
||||
value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
||||
|
||||
# mask. e.g. inference got a batch with different target durations, mask out the padding
|
||||
if mask is not None:
|
||||
attn_mask = F.pad(mask, (0, c.shape[1]), value=True) # no mask for c (text)
|
||||
attn_mask = attn_mask.unsqueeze(1).unsqueeze(1) # 'b n -> b 1 1 n'
|
||||
attn_mask = attn_mask.expand(batch_size, attn.heads, query.shape[-2], key.shape[-2])
|
||||
else:
|
||||
attn_mask = None
|
||||
|
||||
x = F.scaled_dot_product_attention(query, key, value, attn_mask=attn_mask, dropout_p=0.0, is_causal=False)
|
||||
x = x.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim)
|
||||
x = x.to(query.dtype)
|
||||
|
||||
# Split the attention outputs.
|
||||
x, c = (
|
||||
x[:, : residual.shape[1]],
|
||||
x[:, residual.shape[1] :],
|
||||
)
|
||||
|
||||
# linear proj
|
||||
x = attn.to_out[0](x)
|
||||
# dropout
|
||||
x = attn.to_out[1](x)
|
||||
if not attn.context_pre_only:
|
||||
c = attn.to_out_c(c)
|
||||
|
||||
if mask is not None:
|
||||
mask = mask.unsqueeze(-1)
|
||||
x = x.masked_fill(~mask, 0.0)
|
||||
# c = c.masked_fill(~mask, 0.) # no mask for c (text)
|
||||
|
||||
return x, c
|
||||
|
||||
|
||||
# DiT Block
|
||||
|
||||
class DiTBlock(nn.Module):
|
||||
def __init__(self, dim, heads, dim_head, ff_mult=4, dropout=0.1):
|
||||
super().__init__()
|
||||
|
||||
self.attn_norm = AdaLayerNormZero(dim)
|
||||
self.attn = Attention(
|
||||
processor=AttnProcessor(),
|
||||
dim=dim,
|
||||
heads=heads,
|
||||
dim_head=dim_head,
|
||||
dropout=dropout,
|
||||
)
|
||||
|
||||
self.ff_norm = nn.LayerNorm(dim, elementwise_affine=False, eps=1e-6)
|
||||
self.ff = FeedForward(dim=dim, mult=ff_mult, dropout=dropout, approximate="tanh")
|
||||
|
||||
def forward(self, x, t, mask=None, rope=None): # x: noised input, t: time embedding
|
||||
# pre-norm & modulation for attention input
|
||||
norm, gate_msa, shift_mlp, scale_mlp, gate_mlp = self.attn_norm(x, emb=t)
|
||||
|
||||
# attention
|
||||
attn_output = self.attn(x=norm, mask=mask, rope=rope)
|
||||
|
||||
# process attention output for input x
|
||||
x = x + gate_msa.unsqueeze(1) * attn_output
|
||||
|
||||
norm = self.ff_norm(x) * (1 + scale_mlp[:, None]) + shift_mlp[:, None]
|
||||
ff_output = self.ff(norm)
|
||||
x = x + gate_mlp.unsqueeze(1) * ff_output
|
||||
|
||||
return x
|
||||
|
||||
|
||||
# MMDiT Block https://arxiv.org/abs/2403.03206
|
||||
|
||||
|
||||
class MMDiTBlock(nn.Module):
|
||||
r"""
|
||||
modified from diffusers/src/diffusers/models/attention.py
|
||||
|
||||
notes.
|
||||
_c: context related. text, cond, etc. (left part in sd3 fig2.b)
|
||||
_x: noised input related. (right part)
|
||||
context_pre_only: last layer only do prenorm + modulation cuz no more ffn
|
||||
"""
|
||||
|
||||
def __init__(self, dim, heads, dim_head, ff_mult=4, dropout=0.1, context_pre_only=False):
|
||||
super().__init__()
|
||||
|
||||
self.context_pre_only = context_pre_only
|
||||
|
||||
self.attn_norm_c = AdaLayerNormZero_Final(dim) if context_pre_only else AdaLayerNormZero(dim)
|
||||
self.attn_norm_x = AdaLayerNormZero(dim)
|
||||
self.attn = Attention(
|
||||
processor=JointAttnProcessor(),
|
||||
dim=dim,
|
||||
heads=heads,
|
||||
dim_head=dim_head,
|
||||
dropout=dropout,
|
||||
context_dim=dim,
|
||||
context_pre_only=context_pre_only,
|
||||
)
|
||||
|
||||
if not context_pre_only:
|
||||
self.ff_norm_c = nn.LayerNorm(dim, elementwise_affine=False, eps=1e-6)
|
||||
self.ff_c = FeedForward(dim=dim, mult=ff_mult, dropout=dropout, approximate="tanh")
|
||||
else:
|
||||
self.ff_norm_c = None
|
||||
self.ff_c = None
|
||||
self.ff_norm_x = nn.LayerNorm(dim, elementwise_affine=False, eps=1e-6)
|
||||
self.ff_x = FeedForward(dim=dim, mult=ff_mult, dropout=dropout, approximate="tanh")
|
||||
|
||||
def forward(self, x, c, t, mask=None, rope=None, c_rope=None): # x: noised input, c: context, t: time embedding
|
||||
# pre-norm & modulation for attention input
|
||||
if self.context_pre_only:
|
||||
norm_c = self.attn_norm_c(c, t)
|
||||
else:
|
||||
norm_c, c_gate_msa, c_shift_mlp, c_scale_mlp, c_gate_mlp = self.attn_norm_c(c, emb=t)
|
||||
norm_x, x_gate_msa, x_shift_mlp, x_scale_mlp, x_gate_mlp = self.attn_norm_x(x, emb=t)
|
||||
|
||||
# attention
|
||||
x_attn_output, c_attn_output = self.attn(x=norm_x, c=norm_c, mask=mask, rope=rope, c_rope=c_rope)
|
||||
|
||||
# process attention output for context c
|
||||
if self.context_pre_only:
|
||||
c = None
|
||||
else: # if not last layer
|
||||
c = c + c_gate_msa.unsqueeze(1) * c_attn_output
|
||||
|
||||
norm_c = self.ff_norm_c(c) * (1 + c_scale_mlp[:, None]) + c_shift_mlp[:, None]
|
||||
c_ff_output = self.ff_c(norm_c)
|
||||
c = c + c_gate_mlp.unsqueeze(1) * c_ff_output
|
||||
|
||||
# process attention output for input x
|
||||
x = x + x_gate_msa.unsqueeze(1) * x_attn_output
|
||||
|
||||
norm_x = self.ff_norm_x(x) * (1 + x_scale_mlp[:, None]) + x_shift_mlp[:, None]
|
||||
x_ff_output = self.ff_x(norm_x)
|
||||
x = x + x_gate_mlp.unsqueeze(1) * x_ff_output
|
||||
|
||||
return c, x
|
||||
|
||||
|
||||
# time step conditioning embedding
|
||||
|
||||
|
||||
class TimestepEmbedding(nn.Module):
|
||||
def __init__(self, dim, freq_embed_dim=256):
|
||||
super().__init__()
|
||||
self.time_embed = SinusPositionEmbedding(freq_embed_dim)
|
||||
self.time_mlp = nn.Sequential(nn.Linear(freq_embed_dim, dim), nn.SiLU(), nn.Linear(dim, dim))
|
||||
|
||||
def forward(self, timestep: float["b"]): # noqa: F821
|
||||
time_hidden = self.time_embed(timestep)
|
||||
time_hidden = time_hidden.to(timestep.dtype)
|
||||
time = self.time_mlp(time_hidden) # b d
|
||||
return time
|
@ -4,8 +4,11 @@ import librosa
|
||||
import torch
|
||||
import torch.nn.functional as F
|
||||
import soundfile as sf
|
||||
import logging
|
||||
import os
|
||||
from transformers import logging as tf_logging
|
||||
tf_logging.set_verbosity_error()
|
||||
|
||||
import logging
|
||||
logging.getLogger("numba").setLevel(logging.WARNING)
|
||||
|
||||
from transformers import (
|
||||
@ -20,11 +23,15 @@ cnhubert_base_path = None
|
||||
|
||||
|
||||
class CNHubert(nn.Module):
|
||||
def __init__(self):
|
||||
def __init__(self, base_path:str=None):
|
||||
super().__init__()
|
||||
self.model = HubertModel.from_pretrained(cnhubert_base_path)
|
||||
if base_path is None:
|
||||
base_path = cnhubert_base_path
|
||||
if os.path.exists(base_path):...
|
||||
else:raise FileNotFoundError(base_path)
|
||||
self.model = HubertModel.from_pretrained(base_path, local_files_only=True)
|
||||
self.feature_extractor = Wav2Vec2FeatureExtractor.from_pretrained(
|
||||
cnhubert_base_path
|
||||
base_path, local_files_only=True
|
||||
)
|
||||
|
||||
def forward(self, x):
|
||||
|
55
GPT_SoVITS/inference_cli.py
Normal file
55
GPT_SoVITS/inference_cli.py
Normal file
@ -0,0 +1,55 @@
|
||||
import argparse
|
||||
import os
|
||||
import soundfile as sf
|
||||
|
||||
from tools.i18n.i18n import I18nAuto
|
||||
from GPT_SoVITS.inference_webui import change_gpt_weights, change_sovits_weights, get_tts_wav
|
||||
|
||||
i18n = I18nAuto()
|
||||
|
||||
def synthesize(GPT_model_path, SoVITS_model_path, ref_audio_path, ref_text_path, ref_language, target_text_path, target_language, output_path):
|
||||
# Read reference text
|
||||
with open(ref_text_path, 'r', encoding='utf-8') as file:
|
||||
ref_text = file.read()
|
||||
|
||||
# Read target text
|
||||
with open(target_text_path, 'r', encoding='utf-8') as file:
|
||||
target_text = file.read()
|
||||
|
||||
# Change model weights
|
||||
change_gpt_weights(gpt_path=GPT_model_path)
|
||||
change_sovits_weights(sovits_path=SoVITS_model_path)
|
||||
|
||||
# Synthesize audio
|
||||
synthesis_result = get_tts_wav(ref_wav_path=ref_audio_path,
|
||||
prompt_text=ref_text,
|
||||
prompt_language=i18n(ref_language),
|
||||
text=target_text,
|
||||
text_language=i18n(target_language), top_p=1, temperature=1)
|
||||
|
||||
result_list = list(synthesis_result)
|
||||
|
||||
if result_list:
|
||||
last_sampling_rate, last_audio_data = result_list[-1]
|
||||
output_wav_path = os.path.join(output_path, "output.wav")
|
||||
sf.write(output_wav_path, last_audio_data, last_sampling_rate)
|
||||
print(f"Audio saved to {output_wav_path}")
|
||||
|
||||
def main():
|
||||
parser = argparse.ArgumentParser(description="GPT-SoVITS Command Line Tool")
|
||||
parser.add_argument('--gpt_model', required=True, help="Path to the GPT model file")
|
||||
parser.add_argument('--sovits_model', required=True, help="Path to the SoVITS model file")
|
||||
parser.add_argument('--ref_audio', required=True, help="Path to the reference audio file")
|
||||
parser.add_argument('--ref_text', required=True, help="Path to the reference text file")
|
||||
parser.add_argument('--ref_language', required=True, choices=["中文", "英文", "日文"], help="Language of the reference audio")
|
||||
parser.add_argument('--target_text', required=True, help="Path to the target text file")
|
||||
parser.add_argument('--target_language', required=True, choices=["中文", "英文", "日文", "中英混合", "日英混合", "多语种混合"], help="Language of the target text")
|
||||
parser.add_argument('--output_path', required=True, help="Path to the output directory")
|
||||
|
||||
args = parser.parse_args()
|
||||
|
||||
synthesize(args.gpt_model, args.sovits_model, args.ref_audio, args.ref_text, args.ref_language, args.target_text, args.target_language, args.output_path)
|
||||
|
||||
if __name__ == '__main__':
|
||||
main()
|
||||
|
@ -1,3 +1,4 @@
|
||||
import os
|
||||
import sys
|
||||
from PyQt5.QtCore import QEvent
|
||||
from PyQt5.QtWidgets import QApplication, QMainWindow, QLabel, QLineEdit, QPushButton, QTextEdit
|
||||
@ -7,16 +8,16 @@ import soundfile as sf
|
||||
from tools.i18n.i18n import I18nAuto
|
||||
i18n = I18nAuto()
|
||||
|
||||
from GPT_SoVITS.inference_webui import change_gpt_weights, change_sovits_weights, get_tts_wav
|
||||
from inference_webui import gpt_path, sovits_path, change_gpt_weights, change_sovits_weights, get_tts_wav
|
||||
|
||||
|
||||
class GPTSoVITSGUI(QMainWindow):
|
||||
GPT_Path = gpt_path
|
||||
SoVITS_Path = sovits_path
|
||||
|
||||
def __init__(self):
|
||||
super().__init__()
|
||||
|
||||
self.init_ui()
|
||||
|
||||
def init_ui(self):
|
||||
self.setWindowTitle('GPT-SoVITS GUI')
|
||||
self.setGeometry(800, 450, 950, 850)
|
||||
|
||||
@ -71,6 +72,7 @@ class GPTSoVITSGUI(QMainWindow):
|
||||
self.GPT_model_label = QLabel("选择GPT模型:")
|
||||
self.GPT_model_input = QLineEdit()
|
||||
self.GPT_model_input.setPlaceholderText("拖拽或选择文件")
|
||||
self.GPT_model_input.setText(self.GPT_Path)
|
||||
self.GPT_model_input.setReadOnly(True)
|
||||
self.GPT_model_button = QPushButton("选择GPT模型文件")
|
||||
self.GPT_model_button.clicked.connect(self.select_GPT_model)
|
||||
@ -78,6 +80,7 @@ class GPTSoVITSGUI(QMainWindow):
|
||||
self.SoVITS_model_label = QLabel("选择SoVITS模型:")
|
||||
self.SoVITS_model_input = QLineEdit()
|
||||
self.SoVITS_model_input.setPlaceholderText("拖拽或选择文件")
|
||||
self.SoVITS_model_input.setText(self.SoVITS_Path)
|
||||
self.SoVITS_model_input.setReadOnly(True)
|
||||
self.SoVITS_model_button = QPushButton("选择SoVITS模型文件")
|
||||
self.SoVITS_model_button.clicked.connect(self.select_SoVITS_model)
|
||||
@ -91,25 +94,25 @@ class GPTSoVITSGUI(QMainWindow):
|
||||
|
||||
self.ref_text_label = QLabel("参考音频文本:")
|
||||
self.ref_text_input = QLineEdit()
|
||||
self.ref_text_input.setPlaceholderText("拖拽或选择文件")
|
||||
self.ref_text_input.setReadOnly(True)
|
||||
self.ref_text_input.setPlaceholderText("直接输入文字或上传文本")
|
||||
self.ref_text_button = QPushButton("上传文本")
|
||||
self.ref_text_button.clicked.connect(self.upload_ref_text)
|
||||
|
||||
self.language_label = QLabel("参考音频语言:")
|
||||
self.language_combobox = QComboBox()
|
||||
self.language_combobox.addItems(["中文", "英文", "日文"])
|
||||
self.ref_language_label = QLabel("参考音频语言:")
|
||||
self.ref_language_combobox = QComboBox()
|
||||
self.ref_language_combobox.addItems(["中文", "英文", "日文", "中英混合", "日英混合", "多语种混合"])
|
||||
self.ref_language_combobox.setCurrentText("多语种混合")
|
||||
|
||||
self.target_text_label = QLabel("合成目标文本:")
|
||||
self.target_text_input = QLineEdit()
|
||||
self.target_text_input.setPlaceholderText("拖拽或选择文件")
|
||||
self.target_text_input.setReadOnly(True)
|
||||
self.target_text_input.setPlaceholderText("直接输入文字或上传文本")
|
||||
self.target_text_button = QPushButton("上传文本")
|
||||
self.target_text_button.clicked.connect(self.upload_target_text)
|
||||
|
||||
self.language_label_02 = QLabel("合成音频语言:")
|
||||
self.language_combobox_02 = QComboBox()
|
||||
self.language_combobox_02.addItems(["中文", "英文", "日文"])
|
||||
self.target_language_label = QLabel("合成音频语言:")
|
||||
self.target_language_combobox = QComboBox()
|
||||
self.target_language_combobox.addItems(["中文", "英文", "日文", "中英混合", "日英混合", "多语种混合"])
|
||||
self.target_language_combobox.setCurrentText("多语种混合")
|
||||
|
||||
self.output_label = QLabel("输出音频路径:")
|
||||
self.output_input = QLineEdit()
|
||||
@ -140,10 +143,8 @@ class GPTSoVITSGUI(QMainWindow):
|
||||
|
||||
main_layout = QVBoxLayout()
|
||||
|
||||
input_layout = QGridLayout()
|
||||
input_layout.setSpacing(10)
|
||||
|
||||
self.setLayout(input_layout)
|
||||
input_layout = QGridLayout(self)
|
||||
input_layout.setSpacing(10)
|
||||
|
||||
input_layout.addWidget(license_label, 0, 0, 1, 3)
|
||||
|
||||
@ -159,22 +160,22 @@ class GPTSoVITSGUI(QMainWindow):
|
||||
input_layout.addWidget(self.ref_audio_input, 6, 0, 1, 2)
|
||||
input_layout.addWidget(self.ref_audio_button, 6, 2)
|
||||
|
||||
input_layout.addWidget(self.language_label, 7, 0)
|
||||
input_layout.addWidget(self.language_combobox, 8, 0, 1, 1)
|
||||
input_layout.addWidget(self.ref_language_label, 7, 0)
|
||||
input_layout.addWidget(self.ref_language_combobox, 8, 0, 1, 1)
|
||||
input_layout.addWidget(self.ref_text_label, 9, 0)
|
||||
input_layout.addWidget(self.ref_text_input, 10, 0, 1, 2)
|
||||
input_layout.addWidget(self.ref_text_button, 10, 2)
|
||||
|
||||
input_layout.addWidget(self.language_label_02, 11, 0)
|
||||
input_layout.addWidget(self.language_combobox_02, 12, 0, 1, 1)
|
||||
input_layout.addWidget(self.target_language_label, 11, 0)
|
||||
input_layout.addWidget(self.target_language_combobox, 12, 0, 1, 1)
|
||||
input_layout.addWidget(self.target_text_label, 13, 0)
|
||||
input_layout.addWidget(self.target_text_input, 14, 0, 1, 2)
|
||||
input_layout.addWidget(self.target_text_button, 14, 2)
|
||||
|
||||
|
||||
input_layout.addWidget(self.output_label, 15, 0)
|
||||
input_layout.addWidget(self.output_input, 16, 0, 1, 2)
|
||||
input_layout.addWidget(self.output_button, 16, 2)
|
||||
|
||||
|
||||
main_layout.addLayout(input_layout)
|
||||
|
||||
output_layout = QVBoxLayout()
|
||||
@ -198,10 +199,8 @@ class GPTSoVITSGUI(QMainWindow):
|
||||
def dropEvent(self, event):
|
||||
if event.mimeData().hasUrls():
|
||||
file_paths = [url.toLocalFile() for url in event.mimeData().urls()]
|
||||
|
||||
if len(file_paths) == 1:
|
||||
self.update_ref_audio(file_paths[0])
|
||||
self.update_input_paths(self.ref_audio_input, file_paths[0])
|
||||
else:
|
||||
self.update_ref_audio(", ".join(file_paths))
|
||||
|
||||
@ -211,23 +210,13 @@ class GPTSoVITSGUI(QMainWindow):
|
||||
widget.installEventFilter(self)
|
||||
|
||||
def eventFilter(self, obj, event):
|
||||
if event.type() == QEvent.DragEnter:
|
||||
if event.type() in (QEvent.DragEnter, QEvent.Drop):
|
||||
mime_data = event.mimeData()
|
||||
if mime_data.hasUrls():
|
||||
event.acceptProposedAction()
|
||||
|
||||
elif event.type() == QEvent.Drop:
|
||||
mime_data = event.mimeData()
|
||||
if mime_data.hasUrls():
|
||||
file_paths = [url.toLocalFile() for url in mime_data.urls()]
|
||||
if len(file_paths) == 1:
|
||||
self.update_input_paths(obj, file_paths[0])
|
||||
else:
|
||||
self.update_input_paths(obj, ", ".join(file_paths))
|
||||
event.acceptProposedAction()
|
||||
|
||||
return super().eventFilter(obj, event)
|
||||
|
||||
|
||||
def select_GPT_model(self):
|
||||
file_path, _ = QFileDialog.getOpenFileName(self, "选择GPT模型文件", "", "GPT Files (*.ckpt)")
|
||||
if file_path:
|
||||
@ -239,24 +228,9 @@ class GPTSoVITSGUI(QMainWindow):
|
||||
self.SoVITS_model_input.setText(file_path)
|
||||
|
||||
def select_ref_audio(self):
|
||||
options = QFileDialog.Options()
|
||||
options |= QFileDialog.DontUseNativeDialog
|
||||
options |= QFileDialog.ShowDirsOnly
|
||||
|
||||
file_dialog = QFileDialog()
|
||||
file_dialog.setOptions(options)
|
||||
|
||||
file_dialog.setFileMode(QFileDialog.AnyFile)
|
||||
file_dialog.setNameFilter("Audio Files (*.wav *.mp3)")
|
||||
|
||||
if file_dialog.exec_():
|
||||
file_paths = file_dialog.selectedFiles()
|
||||
|
||||
if len(file_paths) == 1:
|
||||
self.update_ref_audio(file_paths[0])
|
||||
self.update_input_paths(self.ref_audio_input, file_paths[0])
|
||||
else:
|
||||
self.update_ref_audio(", ".join(file_paths))
|
||||
file_path, _ = QFileDialog.getOpenFileName(self, "选择参考音频文件", "", "Audio Files (*.wav *.mp3)")
|
||||
if file_path:
|
||||
self.update_ref_audio(file_path)
|
||||
|
||||
def upload_ref_text(self):
|
||||
file_path, _ = QFileDialog.getOpenFileName(self, "选择文本文件", "", "Text Files (*.txt)")
|
||||
@ -264,7 +238,6 @@ class GPTSoVITSGUI(QMainWindow):
|
||||
with open(file_path, 'r', encoding='utf-8') as file:
|
||||
content = file.read()
|
||||
self.ref_text_input.setText(content)
|
||||
self.update_input_paths(self.ref_text_input, file_path)
|
||||
|
||||
def upload_target_text(self):
|
||||
file_path, _ = QFileDialog.getOpenFileName(self, "选择文本文件", "", "Text Files (*.txt)")
|
||||
@ -272,7 +245,6 @@ class GPTSoVITSGUI(QMainWindow):
|
||||
with open(file_path, 'r', encoding='utf-8') as file:
|
||||
content = file.read()
|
||||
self.target_text_input.setText(content)
|
||||
self.update_input_paths(self.target_text_input, file_path)
|
||||
|
||||
def select_output_path(self):
|
||||
options = QFileDialog.Options()
|
||||
@ -290,9 +262,6 @@ class GPTSoVITSGUI(QMainWindow):
|
||||
def update_ref_audio(self, file_path):
|
||||
self.ref_audio_input.setText(file_path)
|
||||
|
||||
def update_input_paths(self, input_box, file_path):
|
||||
input_box.setText(file_path)
|
||||
|
||||
def clear_output(self):
|
||||
self.output_text.clear()
|
||||
|
||||
@ -300,23 +269,27 @@ class GPTSoVITSGUI(QMainWindow):
|
||||
GPT_model_path = self.GPT_model_input.text()
|
||||
SoVITS_model_path = self.SoVITS_model_input.text()
|
||||
ref_audio_path = self.ref_audio_input.text()
|
||||
language_combobox = self.language_combobox.currentText()
|
||||
language_combobox = self.ref_language_combobox.currentText()
|
||||
language_combobox = i18n(language_combobox)
|
||||
ref_text = self.ref_text_input.text()
|
||||
language_combobox_02 = self.language_combobox_02.currentText()
|
||||
language_combobox_02 = i18n(language_combobox_02)
|
||||
target_language_combobox = self.target_language_combobox.currentText()
|
||||
target_language_combobox = i18n(target_language_combobox)
|
||||
target_text = self.target_text_input.text()
|
||||
output_path = self.output_input.text()
|
||||
|
||||
change_gpt_weights(gpt_path=GPT_model_path)
|
||||
change_sovits_weights(sovits_path=SoVITS_model_path)
|
||||
if GPT_model_path != self.GPT_Path:
|
||||
change_gpt_weights(gpt_path=GPT_model_path)
|
||||
self.GPT_Path = GPT_model_path
|
||||
if SoVITS_model_path != self.SoVITS_Path:
|
||||
change_sovits_weights(sovits_path=SoVITS_model_path)
|
||||
self.SoVITS_Path = SoVITS_model_path
|
||||
|
||||
synthesis_result = get_tts_wav(ref_wav_path=ref_audio_path,
|
||||
prompt_text=ref_text,
|
||||
prompt_language=language_combobox,
|
||||
text=target_text,
|
||||
text_language=language_combobox_02)
|
||||
|
||||
text_language=target_language_combobox)
|
||||
|
||||
result_list = list(synthesis_result)
|
||||
|
||||
if result_list:
|
||||
@ -329,12 +302,9 @@ class GPTSoVITSGUI(QMainWindow):
|
||||
self.status_bar.showMessage("合成完成!输出路径:" + output_wav_path, 5000)
|
||||
self.output_text.append("处理结果:\n" + result)
|
||||
|
||||
def main():
|
||||
|
||||
if __name__ == '__main__':
|
||||
app = QApplication(sys.argv)
|
||||
mainWin = GPTSoVITSGUI()
|
||||
mainWin.show()
|
||||
sys.exit(app.exec_())
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
main()
|
||||
sys.exit(app.exec_())
|
File diff suppressed because it is too large
Load Diff
392
GPT_SoVITS/inference_webui_fast.py
Normal file
392
GPT_SoVITS/inference_webui_fast.py
Normal file
@ -0,0 +1,392 @@
|
||||
'''
|
||||
按中英混合识别
|
||||
按日英混合识别
|
||||
多语种启动切分识别语种
|
||||
全部按中文识别
|
||||
全部按英文识别
|
||||
全部按日文识别
|
||||
'''
|
||||
import random
|
||||
import os, re, logging, json
|
||||
import sys
|
||||
now_dir = os.getcwd()
|
||||
sys.path.append(now_dir)
|
||||
sys.path.append("%s/GPT_SoVITS" % (now_dir))
|
||||
|
||||
logging.getLogger("markdown_it").setLevel(logging.ERROR)
|
||||
logging.getLogger("urllib3").setLevel(logging.ERROR)
|
||||
logging.getLogger("httpcore").setLevel(logging.ERROR)
|
||||
logging.getLogger("httpx").setLevel(logging.ERROR)
|
||||
logging.getLogger("asyncio").setLevel(logging.ERROR)
|
||||
logging.getLogger("charset_normalizer").setLevel(logging.ERROR)
|
||||
logging.getLogger("torchaudio._extension").setLevel(logging.ERROR)
|
||||
import pdb
|
||||
import torch
|
||||
|
||||
try:
|
||||
import gradio.analytics as analytics
|
||||
analytics.version_check = lambda:None
|
||||
except:...
|
||||
|
||||
|
||||
infer_ttswebui = os.environ.get("infer_ttswebui", 9872)
|
||||
infer_ttswebui = int(infer_ttswebui)
|
||||
is_share = os.environ.get("is_share", "False")
|
||||
is_share = eval(is_share)
|
||||
if "_CUDA_VISIBLE_DEVICES" in os.environ:
|
||||
os.environ["CUDA_VISIBLE_DEVICES"] = os.environ["_CUDA_VISIBLE_DEVICES"]
|
||||
|
||||
is_half = eval(os.environ.get("is_half", "True")) and torch.cuda.is_available()
|
||||
gpt_path = os.environ.get("gpt_path", None)
|
||||
sovits_path = os.environ.get("sovits_path", None)
|
||||
cnhubert_base_path = os.environ.get("cnhubert_base_path", None)
|
||||
bert_path = os.environ.get("bert_path", None)
|
||||
version=model_version=os.environ.get("version","v2")
|
||||
|
||||
import gradio as gr
|
||||
from TTS_infer_pack.TTS import TTS, TTS_Config, NO_PROMPT_ERROR
|
||||
from TTS_infer_pack.text_segmentation_method import get_method
|
||||
from tools.i18n.i18n import I18nAuto, scan_language_list
|
||||
from inference_webui import DictToAttrRecursive
|
||||
|
||||
language=os.environ.get("language","Auto")
|
||||
language=sys.argv[-1] if sys.argv[-1] in scan_language_list() else language
|
||||
i18n = I18nAuto(language=language)
|
||||
|
||||
|
||||
# os.environ['PYTORCH_ENABLE_MPS_FALLBACK'] = '1' # 确保直接启动推理UI时也能够设置。
|
||||
|
||||
if torch.cuda.is_available():
|
||||
device = "cuda"
|
||||
# elif torch.backends.mps.is_available():
|
||||
# device = "mps"
|
||||
else:
|
||||
device = "cpu"
|
||||
|
||||
# is_half = False
|
||||
# device = "cpu"
|
||||
|
||||
dict_language_v1 = {
|
||||
i18n("中文"): "all_zh",#全部按中文识别
|
||||
i18n("英文"): "en",#全部按英文识别#######不变
|
||||
i18n("日文"): "all_ja",#全部按日文识别
|
||||
i18n("中英混合"): "zh",#按中英混合识别####不变
|
||||
i18n("日英混合"): "ja",#按日英混合识别####不变
|
||||
i18n("多语种混合"): "auto",#多语种启动切分识别语种
|
||||
}
|
||||
dict_language_v2 = {
|
||||
i18n("中文"): "all_zh",#全部按中文识别
|
||||
i18n("英文"): "en",#全部按英文识别#######不变
|
||||
i18n("日文"): "all_ja",#全部按日文识别
|
||||
i18n("粤语"): "all_yue",#全部按中文识别
|
||||
i18n("韩文"): "all_ko",#全部按韩文识别
|
||||
i18n("中英混合"): "zh",#按中英混合识别####不变
|
||||
i18n("日英混合"): "ja",#按日英混合识别####不变
|
||||
i18n("粤英混合"): "yue",#按粤英混合识别####不变
|
||||
i18n("韩英混合"): "ko",#按韩英混合识别####不变
|
||||
i18n("多语种混合"): "auto",#多语种启动切分识别语种
|
||||
i18n("多语种混合(粤语)"): "auto_yue",#多语种启动切分识别语种
|
||||
}
|
||||
dict_language = dict_language_v1 if version =='v1' else dict_language_v2
|
||||
|
||||
cut_method = {
|
||||
i18n("不切"):"cut0",
|
||||
i18n("凑四句一切"): "cut1",
|
||||
i18n("凑50字一切"): "cut2",
|
||||
i18n("按中文句号。切"): "cut3",
|
||||
i18n("按英文句号.切"): "cut4",
|
||||
i18n("按标点符号切"): "cut5",
|
||||
}
|
||||
|
||||
tts_config = TTS_Config("GPT_SoVITS/configs/tts_infer.yaml")
|
||||
tts_config.device = device
|
||||
tts_config.is_half = is_half
|
||||
tts_config.version = version
|
||||
if gpt_path is not None:
|
||||
tts_config.t2s_weights_path = gpt_path
|
||||
if sovits_path is not None:
|
||||
tts_config.vits_weights_path = sovits_path
|
||||
if cnhubert_base_path is not None:
|
||||
tts_config.cnhuhbert_base_path = cnhubert_base_path
|
||||
if bert_path is not None:
|
||||
tts_config.bert_base_path = bert_path
|
||||
|
||||
print(tts_config)
|
||||
tts_pipeline = TTS(tts_config)
|
||||
gpt_path = tts_config.t2s_weights_path
|
||||
sovits_path = tts_config.vits_weights_path
|
||||
version = tts_config.version
|
||||
|
||||
def inference(text, text_lang,
|
||||
ref_audio_path,
|
||||
aux_ref_audio_paths,
|
||||
prompt_text,
|
||||
prompt_lang, top_k,
|
||||
top_p, temperature,
|
||||
text_split_method, batch_size,
|
||||
speed_factor, ref_text_free,
|
||||
split_bucket,fragment_interval,
|
||||
seed, keep_random, parallel_infer,
|
||||
repetition_penalty, sample_steps, super_sampling,
|
||||
):
|
||||
|
||||
seed = -1 if keep_random else seed
|
||||
actual_seed = seed if seed not in [-1, "", None] else random.randint(0, 2**32 - 1)
|
||||
inputs={
|
||||
"text": text,
|
||||
"text_lang": dict_language[text_lang],
|
||||
"ref_audio_path": ref_audio_path,
|
||||
"aux_ref_audio_paths": [item.name for item in aux_ref_audio_paths] if aux_ref_audio_paths is not None else [],
|
||||
"prompt_text": prompt_text if not ref_text_free else "",
|
||||
"prompt_lang": dict_language[prompt_lang],
|
||||
"top_k": top_k,
|
||||
"top_p": top_p,
|
||||
"temperature": temperature,
|
||||
"text_split_method": cut_method[text_split_method],
|
||||
"batch_size":int(batch_size),
|
||||
"speed_factor":float(speed_factor),
|
||||
"split_bucket":split_bucket,
|
||||
"return_fragment":False,
|
||||
"fragment_interval":fragment_interval,
|
||||
"seed":actual_seed,
|
||||
"parallel_infer": parallel_infer,
|
||||
"repetition_penalty": repetition_penalty,
|
||||
"sample_steps": int(sample_steps),
|
||||
"super_sampling": super_sampling,
|
||||
}
|
||||
try:
|
||||
for item in tts_pipeline.run(inputs):
|
||||
yield item, actual_seed
|
||||
except NO_PROMPT_ERROR:
|
||||
gr.Warning(i18n('V3不支持无参考文本模式,请填写参考文本!'))
|
||||
|
||||
def custom_sort_key(s):
|
||||
# 使用正则表达式提取字符串中的数字部分和非数字部分
|
||||
parts = re.split('(\d+)', s)
|
||||
# 将数字部分转换为整数,非数字部分保持不变
|
||||
parts = [int(part) if part.isdigit() else part for part in parts]
|
||||
return parts
|
||||
|
||||
|
||||
def change_choices():
|
||||
SoVITS_names, GPT_names = get_weights_names(GPT_weight_root, SoVITS_weight_root)
|
||||
return {"choices": sorted(SoVITS_names, key=custom_sort_key), "__type__": "update"}, {"choices": sorted(GPT_names, key=custom_sort_key), "__type__": "update"}
|
||||
|
||||
path_sovits_v3="GPT_SoVITS/pretrained_models/s2Gv3.pth"
|
||||
pretrained_sovits_name=["GPT_SoVITS/pretrained_models/s2G488k.pth", "GPT_SoVITS/pretrained_models/gsv-v2final-pretrained/s2G2333k.pth",path_sovits_v3]
|
||||
pretrained_gpt_name=["GPT_SoVITS/pretrained_models/s1bert25hz-2kh-longer-epoch=68e-step=50232.ckpt","GPT_SoVITS/pretrained_models/gsv-v2final-pretrained/s1bert25hz-5kh-longer-epoch=12-step=369668.ckpt", "GPT_SoVITS/pretrained_models/s1v3.ckpt"]
|
||||
|
||||
_ =[[],[]]
|
||||
for i in range(3):
|
||||
if os.path.exists(pretrained_gpt_name[i]):_[0].append(pretrained_gpt_name[i])
|
||||
if os.path.exists(pretrained_sovits_name[i]):_[-1].append(pretrained_sovits_name[i])
|
||||
pretrained_gpt_name,pretrained_sovits_name = _
|
||||
|
||||
|
||||
if os.path.exists(f"./weight.json"):
|
||||
pass
|
||||
else:
|
||||
with open(f"./weight.json", 'w', encoding="utf-8") as file:json.dump({'GPT':{},'SoVITS':{}},file)
|
||||
|
||||
with open(f"./weight.json", 'r', encoding="utf-8") as file:
|
||||
weight_data = file.read()
|
||||
weight_data=json.loads(weight_data)
|
||||
gpt_path = os.environ.get(
|
||||
"gpt_path", weight_data.get('GPT',{}).get(version,pretrained_gpt_name))
|
||||
sovits_path = os.environ.get(
|
||||
"sovits_path", weight_data.get('SoVITS',{}).get(version,pretrained_sovits_name))
|
||||
if isinstance(gpt_path,list):
|
||||
gpt_path = gpt_path[0]
|
||||
if isinstance(sovits_path,list):
|
||||
sovits_path = sovits_path[0]
|
||||
|
||||
|
||||
|
||||
SoVITS_weight_root=["SoVITS_weights","SoVITS_weights_v2","SoVITS_weights_v3"]
|
||||
GPT_weight_root=["GPT_weights","GPT_weights_v2","GPT_weights_v3"]
|
||||
for path in SoVITS_weight_root+GPT_weight_root:
|
||||
os.makedirs(path,exist_ok=True)
|
||||
|
||||
def get_weights_names(GPT_weight_root, SoVITS_weight_root):
|
||||
SoVITS_names = [i for i in pretrained_sovits_name]
|
||||
for path in SoVITS_weight_root:
|
||||
for name in os.listdir(path):
|
||||
if name.endswith(".pth"): SoVITS_names.append("%s/%s" % (path, name))
|
||||
GPT_names = [i for i in pretrained_gpt_name]
|
||||
for path in GPT_weight_root:
|
||||
for name in os.listdir(path):
|
||||
if name.endswith(".ckpt"): GPT_names.append("%s/%s" % (path, name))
|
||||
return SoVITS_names, GPT_names
|
||||
|
||||
|
||||
SoVITS_names, GPT_names = get_weights_names(GPT_weight_root, SoVITS_weight_root)
|
||||
|
||||
|
||||
from process_ckpt import get_sovits_version_from_path_fast,load_sovits_new
|
||||
def change_sovits_weights(sovits_path,prompt_language=None,text_language=None):
|
||||
global version, model_version, dict_language,if_lora_v3
|
||||
version, model_version, if_lora_v3=get_sovits_version_from_path_fast(sovits_path)
|
||||
# print(sovits_path,version, model_version, if_lora_v3)
|
||||
if if_lora_v3 and not os.path.exists(path_sovits_v3):
|
||||
info= path_sovits_v3 + i18n("SoVITS V3 底模缺失,无法加载相应 LoRA 权重")
|
||||
gr.Warning(info)
|
||||
raise FileExistsError(info)
|
||||
dict_language = dict_language_v1 if version =='v1' else dict_language_v2
|
||||
if prompt_language is not None and text_language is not None:
|
||||
if prompt_language in list(dict_language.keys()):
|
||||
prompt_text_update, prompt_language_update = {'__type__':'update'}, {'__type__':'update', 'value':prompt_language}
|
||||
else:
|
||||
prompt_text_update = {'__type__':'update', 'value':''}
|
||||
prompt_language_update = {'__type__':'update', 'value':i18n("中文")}
|
||||
if text_language in list(dict_language.keys()):
|
||||
text_update, text_language_update = {'__type__':'update'}, {'__type__':'update', 'value':text_language}
|
||||
else:
|
||||
text_update = {'__type__':'update', 'value':''}
|
||||
text_language_update = {'__type__':'update', 'value':i18n("中文")}
|
||||
if model_version=="v3":
|
||||
visible_sample_steps=True
|
||||
visible_inp_refs=False
|
||||
else:
|
||||
visible_sample_steps=False
|
||||
visible_inp_refs=True
|
||||
#prompt_language,text_language,prompt_text,prompt_language,text,text_language,inp_refs,ref_text_free,
|
||||
yield {'__type__':'update', 'choices':list(dict_language.keys())}, {'__type__':'update', 'choices':list(dict_language.keys())}, prompt_text_update, prompt_language_update, text_update, text_language_update,{"__type__": "update", "interactive": visible_sample_steps,"value":32},{"__type__": "update", "visible": visible_inp_refs},{"__type__": "update", "interactive": True if model_version!="v3"else False},{"__type__": "update", "value":i18n("模型加载中,请等待"),"interactive":False}
|
||||
|
||||
tts_pipeline.init_vits_weights(sovits_path)
|
||||
yield {'__type__':'update', 'choices':list(dict_language.keys())}, {'__type__':'update', 'choices':list(dict_language.keys())}, prompt_text_update, prompt_language_update, text_update, text_language_update,{"__type__": "update", "interactive": visible_sample_steps,"value":32},{"__type__": "update", "visible": visible_inp_refs},{"__type__": "update", "interactive": True if model_version!="v3"else False},{"__type__": "update", "value":i18n("合成语音"),"interactive":True}
|
||||
with open("./weight.json")as f:
|
||||
data=f.read()
|
||||
data=json.loads(data)
|
||||
data["SoVITS"][version]=sovits_path
|
||||
with open("./weight.json","w")as f:f.write(json.dumps(data))
|
||||
|
||||
with gr.Blocks(title="GPT-SoVITS WebUI") as app:
|
||||
gr.Markdown(
|
||||
value=i18n("本软件以MIT协议开源, 作者不对软件具备任何控制力, 使用软件者、传播软件导出的声音者自负全责.") + "<br>" + i18n("如不认可该条款, 则不能使用或引用软件包内任何代码和文件. 详见根目录LICENSE.")
|
||||
)
|
||||
|
||||
with gr.Column():
|
||||
# with gr.Group():
|
||||
gr.Markdown(value=i18n("模型切换"))
|
||||
with gr.Row():
|
||||
GPT_dropdown = gr.Dropdown(label=i18n("GPT模型列表"), choices=sorted(GPT_names, key=custom_sort_key), value=gpt_path, interactive=True)
|
||||
SoVITS_dropdown = gr.Dropdown(label=i18n("SoVITS模型列表"), choices=sorted(SoVITS_names, key=custom_sort_key), value=sovits_path, interactive=True)
|
||||
refresh_button = gr.Button(i18n("刷新模型路径"), variant="primary")
|
||||
refresh_button.click(fn=change_choices, inputs=[], outputs=[SoVITS_dropdown, GPT_dropdown])
|
||||
|
||||
|
||||
with gr.Row():
|
||||
with gr.Column():
|
||||
gr.Markdown(value=i18n("*请上传并填写参考信息"))
|
||||
with gr.Row():
|
||||
inp_ref = gr.Audio(label=i18n("主参考音频(请上传3~10秒内参考音频,超过会报错!)"), type="filepath")
|
||||
inp_refs = gr.File(label=i18n("辅参考音频(可选多个,或不选)"),file_count="multiple", visible=True if model_version!="v3"else False)
|
||||
prompt_text = gr.Textbox(label=i18n("主参考音频的文本"), value="", lines=2)
|
||||
with gr.Row():
|
||||
prompt_language = gr.Dropdown(
|
||||
label=i18n("主参考音频的语种"), choices=list(dict_language.keys()), value=i18n("中文")
|
||||
)
|
||||
with gr.Column():
|
||||
ref_text_free = gr.Checkbox(label=i18n("开启无参考文本模式。不填参考文本亦相当于开启。"), value=False, interactive=True if model_version!="v3"else False, show_label=True)
|
||||
gr.Markdown(i18n("使用无参考文本模式时建议使用微调的GPT")+"<br>"+i18n("听不清参考音频说的啥(不晓得写啥)可以开。开启后无视填写的参考文本。"))
|
||||
|
||||
with gr.Column():
|
||||
gr.Markdown(value=i18n("*请填写需要合成的目标文本和语种模式"))
|
||||
text = gr.Textbox(label=i18n("需要合成的文本"), value="", lines=20, max_lines=20)
|
||||
text_language = gr.Dropdown(
|
||||
label=i18n("需要合成的文本的语种"), choices=list(dict_language.keys()), value=i18n("中文")
|
||||
)
|
||||
|
||||
|
||||
with gr.Group():
|
||||
gr.Markdown(value=i18n("推理设置"))
|
||||
with gr.Row():
|
||||
|
||||
with gr.Column():
|
||||
with gr.Row():
|
||||
batch_size = gr.Slider(minimum=1,maximum=200,step=1,label=i18n("batch_size"),value=20,interactive=True)
|
||||
sample_steps = gr.Radio(label=i18n("采样步数(仅对V3生效)"),value=32,choices=[4,8,16,32],visible=True)
|
||||
with gr.Row():
|
||||
fragment_interval = gr.Slider(minimum=0.01,maximum=1,step=0.01,label=i18n("分段间隔(秒)"),value=0.3,interactive=True)
|
||||
speed_factor = gr.Slider(minimum=0.6,maximum=1.65,step=0.05,label="语速",value=1.0,interactive=True)
|
||||
with gr.Row():
|
||||
top_k = gr.Slider(minimum=1,maximum=100,step=1,label=i18n("top_k"),value=5,interactive=True)
|
||||
top_p = gr.Slider(minimum=0,maximum=1,step=0.05,label=i18n("top_p"),value=1,interactive=True)
|
||||
with gr.Row():
|
||||
temperature = gr.Slider(minimum=0,maximum=1,step=0.05,label=i18n("temperature"),value=1,interactive=True)
|
||||
repetition_penalty = gr.Slider(minimum=0,maximum=2,step=0.05,label=i18n("重复惩罚"),value=1.35,interactive=True)
|
||||
|
||||
with gr.Column():
|
||||
with gr.Row():
|
||||
how_to_cut = gr.Dropdown(
|
||||
label=i18n("怎么切"),
|
||||
choices=[i18n("不切"), i18n("凑四句一切"), i18n("凑50字一切"), i18n("按中文句号。切"), i18n("按英文句号.切"), i18n("按标点符号切"), ],
|
||||
value=i18n("凑四句一切"),
|
||||
interactive=True, scale=1
|
||||
)
|
||||
super_sampling = gr.Checkbox(label=i18n("音频超采样(仅对V3生效))"), value=False, interactive=True, show_label=True)
|
||||
|
||||
with gr.Row():
|
||||
parallel_infer = gr.Checkbox(label=i18n("并行推理"), value=True, interactive=True, show_label=True)
|
||||
split_bucket = gr.Checkbox(label=i18n("数据分桶(并行推理时会降低一点计算量)"), value=True, interactive=True, show_label=True)
|
||||
|
||||
with gr.Row():
|
||||
|
||||
seed = gr.Number(label=i18n("随机种子"),value=-1)
|
||||
keep_random = gr.Checkbox(label=i18n("保持随机"), value=True, interactive=True, show_label=True)
|
||||
|
||||
output = gr.Audio(label=i18n("输出的语音"))
|
||||
with gr.Row():
|
||||
inference_button = gr.Button(i18n("合成语音"), variant="primary")
|
||||
stop_infer = gr.Button(i18n("终止合成"), variant="primary")
|
||||
|
||||
|
||||
inference_button.click(
|
||||
inference,
|
||||
[
|
||||
text,text_language, inp_ref, inp_refs,
|
||||
prompt_text, prompt_language,
|
||||
top_k, top_p, temperature,
|
||||
how_to_cut, batch_size,
|
||||
speed_factor, ref_text_free,
|
||||
split_bucket,fragment_interval,
|
||||
seed, keep_random, parallel_infer,
|
||||
repetition_penalty, sample_steps, super_sampling,
|
||||
],
|
||||
[output, seed],
|
||||
)
|
||||
stop_infer.click(tts_pipeline.stop, [], [])
|
||||
SoVITS_dropdown.change(change_sovits_weights, [SoVITS_dropdown,prompt_language,text_language], [prompt_language,text_language,prompt_text,prompt_language,text,text_language,sample_steps,inp_refs,ref_text_free,inference_button])#
|
||||
GPT_dropdown.change(tts_pipeline.init_t2s_weights, [GPT_dropdown], [])
|
||||
|
||||
with gr.Group():
|
||||
gr.Markdown(value=i18n("文本切分工具。太长的文本合成出来效果不一定好,所以太长建议先切。合成会根据文本的换行分开合成再拼起来。"))
|
||||
with gr.Row():
|
||||
text_inp = gr.Textbox(label=i18n("需要合成的切分前文本"), value="", lines=4)
|
||||
with gr.Column():
|
||||
_how_to_cut = gr.Radio(
|
||||
label=i18n("怎么切"),
|
||||
choices=[i18n("不切"), i18n("凑四句一切"), i18n("凑50字一切"), i18n("按中文句号。切"), i18n("按英文句号.切"), i18n("按标点符号切"), ],
|
||||
value=i18n("凑四句一切"),
|
||||
interactive=True,
|
||||
)
|
||||
cut_text= gr.Button(i18n("切分"), variant="primary")
|
||||
|
||||
def to_cut(text_inp, how_to_cut):
|
||||
if len(text_inp.strip()) == 0 or text_inp==[]:
|
||||
return ""
|
||||
method = get_method(cut_method[how_to_cut])
|
||||
return method(text_inp)
|
||||
|
||||
text_opt = gr.Textbox(label=i18n("切分后文本"), value="", lines=4)
|
||||
cut_text.click(to_cut, [text_inp, _how_to_cut], [text_opt])
|
||||
gr.Markdown(value=i18n("后续将支持转音素、手工修改音素、语音合成分步执行。"))
|
||||
|
||||
if __name__ == '__main__':
|
||||
app.queue().launch(#concurrency_count=511, max_size=1022
|
||||
server_name="0.0.0.0",
|
||||
inbrowser=True,
|
||||
share=is_share,
|
||||
server_port=infer_ttswebui,
|
||||
quiet=True,
|
||||
)
|
@ -4,8 +4,8 @@ from torch import nn
|
||||
from torch.nn import functional as F
|
||||
|
||||
from module import commons
|
||||
from module.modules import LayerNorm
|
||||
|
||||
from typing import Optional
|
||||
|
||||
class LayerNorm(nn.Module):
|
||||
def __init__(self, channels, eps=1e-5):
|
||||
@ -59,6 +59,7 @@ class Encoder(nn.Module):
|
||||
# self.cond_layer = weight_norm(cond_layer, name='weight')
|
||||
# self.gin_channels = 256
|
||||
self.cond_layer_idx = self.n_layers
|
||||
self.spk_emb_linear = nn.Linear(256, self.hidden_channels)
|
||||
if "gin_channels" in kwargs:
|
||||
self.gin_channels = kwargs["gin_channels"]
|
||||
if self.gin_channels != 0:
|
||||
@ -98,22 +99,36 @@ class Encoder(nn.Module):
|
||||
)
|
||||
self.norm_layers_2.append(LayerNorm(hidden_channels))
|
||||
|
||||
def forward(self, x, x_mask, g=None):
|
||||
# def forward(self, x, x_mask, g=None):
|
||||
# attn_mask = x_mask.unsqueeze(2) * x_mask.unsqueeze(-1)
|
||||
# x = x * x_mask
|
||||
# for i in range(self.n_layers):
|
||||
# if i == self.cond_layer_idx and g is not None:
|
||||
# g = self.spk_emb_linear(g.transpose(1, 2))
|
||||
# g = g.transpose(1, 2)
|
||||
# x = x + g
|
||||
# x = x * x_mask
|
||||
# y = self.attn_layers[i](x, x, attn_mask)
|
||||
# y = self.drop(y)
|
||||
# x = self.norm_layers_1[i](x + y)
|
||||
|
||||
# y = self.ffn_layers[i](x, x_mask)
|
||||
# y = self.drop(y)
|
||||
# x = self.norm_layers_2[i](x + y)
|
||||
# x = x * x_mask
|
||||
# return x
|
||||
|
||||
def forward(self, x, x_mask):
|
||||
attn_mask = x_mask.unsqueeze(2) * x_mask.unsqueeze(-1)
|
||||
x = x * x_mask
|
||||
for i in range(self.n_layers):
|
||||
if i == self.cond_layer_idx and g is not None:
|
||||
g = self.spk_emb_linear(g.transpose(1, 2))
|
||||
g = g.transpose(1, 2)
|
||||
x = x + g
|
||||
x = x * x_mask
|
||||
y = self.attn_layers[i](x, x, attn_mask)
|
||||
for attn_layers,norm_layers_1,ffn_layers,norm_layers_2 in zip(self.attn_layers,self.norm_layers_1,self.ffn_layers,self.norm_layers_2):
|
||||
y = attn_layers(x, x, attn_mask)
|
||||
y = self.drop(y)
|
||||
x = self.norm_layers_1[i](x + y)
|
||||
x = norm_layers_1(x + y)
|
||||
|
||||
y = self.ffn_layers[i](x, x_mask)
|
||||
y = ffn_layers(x, x_mask)
|
||||
y = self.drop(y)
|
||||
x = self.norm_layers_2[i](x + y)
|
||||
x = norm_layers_2(x + y)
|
||||
x = x * x_mask
|
||||
return x
|
||||
|
||||
@ -172,17 +187,18 @@ class MultiHeadAttention(nn.Module):
|
||||
self.conv_k.weight.copy_(self.conv_q.weight)
|
||||
self.conv_k.bias.copy_(self.conv_q.bias)
|
||||
|
||||
def forward(self, x, c, attn_mask=None):
|
||||
def forward(self, x, c, attn_mask:Optional[torch.Tensor]=None):
|
||||
q = self.conv_q(x)
|
||||
k = self.conv_k(c)
|
||||
v = self.conv_v(c)
|
||||
|
||||
x, self.attn = self.attention(q, k, v, mask=attn_mask)
|
||||
# x, self.attn = self.attention(q, k, v, mask=attn_mask)
|
||||
x, _ = self.attention(q, k, v, mask=attn_mask)
|
||||
|
||||
x = self.conv_o(x)
|
||||
return x
|
||||
|
||||
def attention(self, query, key, value, mask=None):
|
||||
def attention(self, query, key, value, mask:Optional[torch.Tensor]=None):
|
||||
# reshape [b, d, t] -> [b, n_h, t, d_k]
|
||||
b, d, t_s, _ = (*key.size(), query.size(2))
|
||||
query = query.view(b, self.n_heads, self.k_channels, -1).transpose(2, 3)
|
||||
@ -304,7 +320,7 @@ class FFN(nn.Module):
|
||||
filter_channels,
|
||||
kernel_size,
|
||||
p_dropout=0.0,
|
||||
activation=None,
|
||||
activation="",
|
||||
causal=False,
|
||||
):
|
||||
super().__init__()
|
||||
@ -316,10 +332,11 @@ class FFN(nn.Module):
|
||||
self.activation = activation
|
||||
self.causal = causal
|
||||
|
||||
if causal:
|
||||
self.padding = self._causal_padding
|
||||
else:
|
||||
self.padding = self._same_padding
|
||||
# 从上下文看这里一定是 False
|
||||
# if causal:
|
||||
# self.padding = self._causal_padding
|
||||
# else:
|
||||
# self.padding = self._same_padding
|
||||
|
||||
self.conv_1 = nn.Conv1d(in_channels, filter_channels, kernel_size)
|
||||
self.conv_2 = nn.Conv1d(filter_channels, out_channels, kernel_size)
|
||||
@ -334,6 +351,9 @@ class FFN(nn.Module):
|
||||
x = self.drop(x)
|
||||
x = self.conv_2(self.padding(x * x_mask))
|
||||
return x * x_mask
|
||||
|
||||
def padding(self, x):
|
||||
return self._same_padding(x)
|
||||
|
||||
def _causal_padding(self, x):
|
||||
if self.kernel_size == 1:
|
||||
@ -352,3 +372,35 @@ class FFN(nn.Module):
|
||||
padding = [[0, 0], [0, 0], [pad_l, pad_r]]
|
||||
x = F.pad(x, commons.convert_pad_shape(padding))
|
||||
return x
|
||||
|
||||
|
||||
class MRTE(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
content_enc_channels=192,
|
||||
hidden_size=512,
|
||||
out_channels=192,
|
||||
kernel_size=5,
|
||||
n_heads=4,
|
||||
ge_layer=2,
|
||||
):
|
||||
super(MRTE, self).__init__()
|
||||
self.cross_attention = MultiHeadAttention(hidden_size, hidden_size, n_heads)
|
||||
self.c_pre = nn.Conv1d(content_enc_channels, hidden_size, 1)
|
||||
self.text_pre = nn.Conv1d(content_enc_channels, hidden_size, 1)
|
||||
self.c_post = nn.Conv1d(hidden_size, out_channels, 1)
|
||||
|
||||
def forward(self, ssl_enc, ssl_mask, text, text_mask, ge):
|
||||
attn_mask = text_mask.unsqueeze(2) * ssl_mask.unsqueeze(-1)
|
||||
|
||||
ssl_enc = self.c_pre(ssl_enc * ssl_mask)
|
||||
text_enc = self.text_pre(text * text_mask)
|
||||
x = (
|
||||
self.cross_attention(
|
||||
ssl_enc * ssl_mask, text_enc * text_mask, attn_mask
|
||||
)
|
||||
+ ssl_enc
|
||||
+ ge
|
||||
)
|
||||
x = self.c_post(x * ssl_mask)
|
||||
return x
|
||||
|
@ -13,10 +13,10 @@ def get_padding(kernel_size, dilation=1):
|
||||
return int((kernel_size * dilation - dilation) / 2)
|
||||
|
||||
|
||||
def convert_pad_shape(pad_shape):
|
||||
l = pad_shape[::-1]
|
||||
pad_shape = [item for sublist in l for item in sublist]
|
||||
return pad_shape
|
||||
# def convert_pad_shape(pad_shape):
|
||||
# l = pad_shape[::-1]
|
||||
# pad_shape = [item for sublist in l for item in sublist]
|
||||
# return pad_shape
|
||||
|
||||
|
||||
def intersperse(lst, item):
|
||||
|
@ -9,7 +9,7 @@ import torch.utils.data
|
||||
from tqdm import tqdm
|
||||
|
||||
from module import commons
|
||||
from module.mel_processing import spectrogram_torch
|
||||
from module.mel_processing import spectrogram_torch,spec_to_mel_torch
|
||||
from text import cleaned_text_to_sequence
|
||||
from utils import load_wav_to_torch, load_filepaths_and_text
|
||||
import torch.nn.functional as F
|
||||
@ -17,8 +17,8 @@ from functools import lru_cache
|
||||
import requests
|
||||
from scipy.io import wavfile
|
||||
from io import BytesIO
|
||||
from my_utils import load_audio
|
||||
|
||||
from tools.my_utils import load_audio
|
||||
version = os.environ.get('version',None)
|
||||
# ZeroDivisionError fixed by Tybost (https://github.com/RVC-Boss/GPT-SoVITS/issues/79)
|
||||
class TextAudioSpeakerLoader(torch.utils.data.Dataset):
|
||||
"""
|
||||
@ -77,7 +77,7 @@ class TextAudioSpeakerLoader(torch.utils.data.Dataset):
|
||||
try:
|
||||
phoneme = self.phoneme_data[audiopath][0]
|
||||
phoneme = phoneme.split(' ')
|
||||
phoneme_ids = cleaned_text_to_sequence(phoneme)
|
||||
phoneme_ids = cleaned_text_to_sequence(phoneme, version)
|
||||
except Exception:
|
||||
print(f"{audiopath} not in self.phoneme_data !")
|
||||
skipped_phone += 1
|
||||
@ -170,8 +170,6 @@ class TextAudioSpeakerLoader(torch.utils.data.Dataset):
|
||||
assert abs(ssl.shape[-1] - wav2.shape[-1] // self.hop_length) < 3, (
|
||||
ssl.shape, wav.shape, wav2.shape, mel.shape, sep_point, self.hop_length, sep_point * self.hop_length, dir)
|
||||
return reference_mel, ssl, wav2, mel
|
||||
|
||||
|
||||
class TextAudioSpeakerCollate():
|
||||
""" Zero-pads model inputs and targets
|
||||
"""
|
||||
@ -232,7 +230,457 @@ class TextAudioSpeakerCollate():
|
||||
text_lengths[i] = text.size(0)
|
||||
|
||||
return ssl_padded, ssl_lengths, spec_padded, spec_lengths, wav_padded, wav_lengths, text_padded, text_lengths
|
||||
class TextAudioSpeakerLoaderV3(torch.utils.data.Dataset):
|
||||
"""
|
||||
1) loads audio, speaker_id, text pairs
|
||||
2) normalizes text and converts them to sequences of integers
|
||||
3) computes spectrograms from audio files.
|
||||
"""
|
||||
|
||||
def __init__(self, hparams, val=False):
|
||||
exp_dir = hparams.exp_dir
|
||||
self.path2 = "%s/2-name2text.txt" % exp_dir
|
||||
self.path4 = "%s/4-cnhubert" % exp_dir
|
||||
self.path5 = "%s/5-wav32k" % exp_dir
|
||||
assert os.path.exists(self.path2)
|
||||
assert os.path.exists(self.path4)
|
||||
assert os.path.exists(self.path5)
|
||||
names4 = set([name[:-3] for name in list(os.listdir(self.path4))]) # 去除.pt后缀
|
||||
names5 = set(os.listdir(self.path5))
|
||||
self.phoneme_data = {}
|
||||
with open(self.path2, "r", encoding="utf8") as f:
|
||||
lines = f.read().strip("\n").split("\n")
|
||||
|
||||
for line in lines:
|
||||
tmp = line.split("\t")
|
||||
if (len(tmp) != 4):
|
||||
continue
|
||||
self.phoneme_data[tmp[0]] = [tmp[1]]
|
||||
|
||||
self.audiopaths_sid_text = list(set(self.phoneme_data) & names4 & names5)
|
||||
tmp = self.audiopaths_sid_text
|
||||
leng = len(tmp)
|
||||
min_num = 100
|
||||
if (leng < min_num):
|
||||
self.audiopaths_sid_text = []
|
||||
for _ in range(max(2, int(min_num / leng))):
|
||||
self.audiopaths_sid_text += tmp
|
||||
self.max_wav_value = hparams.max_wav_value
|
||||
self.sampling_rate = hparams.sampling_rate
|
||||
self.filter_length = hparams.filter_length
|
||||
self.hop_length = hparams.hop_length
|
||||
self.win_length = hparams.win_length
|
||||
self.sampling_rate = hparams.sampling_rate
|
||||
self.val = val
|
||||
|
||||
random.seed(1234)
|
||||
random.shuffle(self.audiopaths_sid_text)
|
||||
|
||||
print("phoneme_data_len:", len(self.phoneme_data.keys()))
|
||||
print("wav_data_len:", len(self.audiopaths_sid_text))
|
||||
|
||||
audiopaths_sid_text_new = []
|
||||
lengths = []
|
||||
skipped_phone = 0
|
||||
skipped_dur = 0
|
||||
for audiopath in tqdm(self.audiopaths_sid_text):
|
||||
try:
|
||||
phoneme = self.phoneme_data[audiopath][0]
|
||||
phoneme = phoneme.split(' ')
|
||||
phoneme_ids = cleaned_text_to_sequence(phoneme, version)
|
||||
except Exception:
|
||||
print(f"{audiopath} not in self.phoneme_data !")
|
||||
skipped_phone += 1
|
||||
continue
|
||||
|
||||
size = os.path.getsize("%s/%s" % (self.path5, audiopath))
|
||||
duration = size / self.sampling_rate / 2
|
||||
|
||||
if duration == 0:
|
||||
print(f"Zero duration for {audiopath}, skipping...")
|
||||
skipped_dur += 1
|
||||
continue
|
||||
|
||||
if 54 > duration > 0.6 or self.val:
|
||||
audiopaths_sid_text_new.append([audiopath, phoneme_ids])
|
||||
lengths.append(size // (2 * self.hop_length))
|
||||
else:
|
||||
skipped_dur += 1
|
||||
continue
|
||||
|
||||
print("skipped_phone: ", skipped_phone, ", skipped_dur: ", skipped_dur)
|
||||
print("total left: ", len(audiopaths_sid_text_new))
|
||||
assert len(audiopaths_sid_text_new) > 1 # 至少能凑够batch size,这里todo
|
||||
self.audiopaths_sid_text = audiopaths_sid_text_new
|
||||
self.lengths = lengths
|
||||
self.spec_min=-12
|
||||
self.spec_max=2
|
||||
|
||||
self.filter_length_mel=self.win_length_mel=1024
|
||||
self.hop_length_mel=256
|
||||
self.n_mel_channels=100
|
||||
self.sampling_rate_mel=24000
|
||||
self.mel_fmin=0
|
||||
self.mel_fmax=None
|
||||
def norm_spec(self, x):
|
||||
return (x - self.spec_min) / (self.spec_max - self.spec_min) * 2 - 1
|
||||
|
||||
def get_audio_text_speaker_pair(self, audiopath_sid_text):
|
||||
audiopath, phoneme_ids = audiopath_sid_text
|
||||
text = torch.FloatTensor(phoneme_ids)
|
||||
try:
|
||||
spec, mel = self.get_audio("%s/%s" % (self.path5, audiopath))
|
||||
with torch.no_grad():
|
||||
ssl = torch.load("%s/%s.pt" % (self.path4, audiopath), map_location="cpu")
|
||||
if (ssl.shape[-1] != spec.shape[-1]):
|
||||
typee = ssl.dtype
|
||||
ssl = F.pad(ssl.float(), (0, 1), mode="replicate").to(typee)
|
||||
ssl.requires_grad = False
|
||||
except:
|
||||
traceback.print_exc()
|
||||
mel = torch.zeros(100, 180)
|
||||
# wav = torch.zeros(1, 96 * self.hop_length)
|
||||
spec = torch.zeros(1025, 96)
|
||||
ssl = torch.zeros(1, 768, 96)
|
||||
text = text[-1:]
|
||||
print("load audio or ssl error!!!!!!", audiopath)
|
||||
return (ssl, spec, mel, text)
|
||||
|
||||
def get_audio(self, filename):
|
||||
audio_array = load_audio(filename,self.sampling_rate)#load_audio的方法是已经归一化到-1~1之间的,不用再/32768
|
||||
audio=torch.FloatTensor(audio_array)#/32768
|
||||
audio_norm = audio
|
||||
audio_norm = audio_norm.unsqueeze(0)
|
||||
audio_array24 = load_audio(filename,24000)#load_audio的方法是已经归一化到-1~1之间的,不用再/32768######这里可以用GPU重采样加速
|
||||
audio24=torch.FloatTensor(audio_array24)#/32768
|
||||
audio_norm24 = audio24
|
||||
audio_norm24 = audio_norm24.unsqueeze(0)
|
||||
|
||||
spec = spectrogram_torch(audio_norm, self.filter_length,
|
||||
self.sampling_rate, self.hop_length, self.win_length,
|
||||
center=False)
|
||||
spec = torch.squeeze(spec, 0)
|
||||
|
||||
|
||||
spec1 = spectrogram_torch(audio_norm24, self.filter_length_mel,self.sampling_rate_mel, self.hop_length_mel, self.win_length_mel,center=False)
|
||||
mel = spec_to_mel_torch(spec1, self.filter_length_mel, self.n_mel_channels, self.sampling_rate_mel, self.mel_fmin, self.mel_fmax)
|
||||
mel = torch.squeeze(mel, 0)
|
||||
mel=self.norm_spec(mel)
|
||||
# print(1111111,spec.shape,mel.shape)
|
||||
return spec, mel
|
||||
|
||||
def get_sid(self, sid):
|
||||
sid = torch.LongTensor([int(sid)])
|
||||
return sid
|
||||
|
||||
def __getitem__(self, index):
|
||||
# with torch.no_grad():
|
||||
return self.get_audio_text_speaker_pair(self.audiopaths_sid_text[index])
|
||||
|
||||
def __len__(self):
|
||||
return len(self.audiopaths_sid_text)
|
||||
class TextAudioSpeakerCollateV3():
|
||||
""" Zero-pads model inputs and targets
|
||||
"""
|
||||
|
||||
def __init__(self, return_ids=False):
|
||||
self.return_ids = return_ids
|
||||
|
||||
def __call__(self, batch):
|
||||
"""Collate's training batch from normalized text, audio and speaker identities
|
||||
PARAMS
|
||||
------
|
||||
batch: [text_normalized, spec_normalized, wav_normalized, sid]
|
||||
"""
|
||||
#ssl, spec, wav,mel, text
|
||||
# Right zero-pad all one-hot text sequences to max input length
|
||||
_, ids_sorted_decreasing = torch.sort(
|
||||
torch.LongTensor([x[1].size(1) for x in batch]),
|
||||
dim=0, descending=True)
|
||||
#(ssl, spec,mel, text)
|
||||
max_ssl_len = max([x[0].size(2) for x in batch])
|
||||
|
||||
max_ssl_len1 = int(8 * ((max_ssl_len // 8) + 1))
|
||||
max_ssl_len = int(2 * ((max_ssl_len // 2) + 1))
|
||||
|
||||
# max_ssl_len = int(8 * ((max_ssl_len // 8) + 1))
|
||||
# max_ssl_len1=max_ssl_len
|
||||
|
||||
max_spec_len = max([x[1].size(1) for x in batch])
|
||||
max_spec_len = int(2 * ((max_spec_len // 2) + 1))
|
||||
# max_wav_len = max([x[2].size(1) for x in batch])
|
||||
|
||||
max_text_len = max([x[3].size(0) for x in batch])
|
||||
max_mel_len=int(max_ssl_len1*1.25*1.5)###24000/256,32000/640=16000/320
|
||||
|
||||
ssl_lengths = torch.LongTensor(len(batch))
|
||||
spec_lengths = torch.LongTensor(len(batch))
|
||||
text_lengths = torch.LongTensor(len(batch))
|
||||
# wav_lengths = torch.LongTensor(len(batch))
|
||||
mel_lengths = torch.LongTensor(len(batch))
|
||||
|
||||
spec_padded = torch.FloatTensor(len(batch), batch[0][1].size(0), max_spec_len)
|
||||
mel_padded = torch.FloatTensor(len(batch), batch[0][2].size(0), max_mel_len)
|
||||
ssl_padded = torch.FloatTensor(len(batch), batch[0][0].size(1), max_ssl_len)
|
||||
text_padded = torch.LongTensor(len(batch), max_text_len)
|
||||
# wav_padded = torch.FloatTensor(len(batch), 1, max_wav_len)
|
||||
|
||||
spec_padded.zero_()
|
||||
mel_padded.zero_()
|
||||
ssl_padded.zero_()
|
||||
text_padded.zero_()
|
||||
# wav_padded.zero_()
|
||||
|
||||
for i in range(len(ids_sorted_decreasing)):
|
||||
row = batch[ids_sorted_decreasing[i]]
|
||||
# ssl, spec, wav,mel, text
|
||||
ssl = row[0]
|
||||
ssl_padded[i, :, :ssl.size(2)] = ssl[0, :, :]
|
||||
ssl_lengths[i] = ssl.size(2)
|
||||
|
||||
spec = row[1]
|
||||
spec_padded[i, :, :spec.size(1)] = spec
|
||||
spec_lengths[i] = spec.size(1)
|
||||
|
||||
# wav = row[2]
|
||||
# wav_padded[i, :, :wav.size(1)] = wav
|
||||
# wav_lengths[i] = wav.size(1)
|
||||
|
||||
mel = row[2]
|
||||
mel_padded[i, :, :mel.size(1)] = mel
|
||||
mel_lengths[i] = mel.size(1)
|
||||
|
||||
text = row[3]
|
||||
text_padded[i, :text.size(0)] = text
|
||||
text_lengths[i] = text.size(0)
|
||||
|
||||
# return ssl_padded, spec_padded,mel_padded, ssl_lengths, spec_lengths, text_padded, text_lengths, wav_padded, wav_lengths,mel_lengths
|
||||
return ssl_padded, spec_padded,mel_padded, ssl_lengths, spec_lengths, text_padded, text_lengths,mel_lengths
|
||||
class TextAudioSpeakerLoaderV3b(torch.utils.data.Dataset):
|
||||
"""
|
||||
1) loads audio, speaker_id, text pairs
|
||||
2) normalizes text and converts them to sequences of integers
|
||||
3) computes spectrograms from audio files.
|
||||
"""
|
||||
|
||||
def __init__(self, hparams, val=False):
|
||||
exp_dir = hparams.exp_dir
|
||||
self.path2 = "%s/2-name2text.txt" % exp_dir
|
||||
self.path4 = "%s/4-cnhubert" % exp_dir
|
||||
self.path5 = "%s/5-wav32k" % exp_dir
|
||||
assert os.path.exists(self.path2)
|
||||
assert os.path.exists(self.path4)
|
||||
assert os.path.exists(self.path5)
|
||||
names4 = set([name[:-3] for name in list(os.listdir(self.path4))]) # 去除.pt后缀
|
||||
names5 = set(os.listdir(self.path5))
|
||||
self.phoneme_data = {}
|
||||
with open(self.path2, "r", encoding="utf8") as f:
|
||||
lines = f.read().strip("\n").split("\n")
|
||||
|
||||
for line in lines:
|
||||
tmp = line.split("\t")
|
||||
if (len(tmp) != 4):
|
||||
continue
|
||||
self.phoneme_data[tmp[0]] = [tmp[1]]
|
||||
|
||||
self.audiopaths_sid_text = list(set(self.phoneme_data) & names4 & names5)
|
||||
tmp = self.audiopaths_sid_text
|
||||
leng = len(tmp)
|
||||
min_num = 100
|
||||
if (leng < min_num):
|
||||
self.audiopaths_sid_text = []
|
||||
for _ in range(max(2, int(min_num / leng))):
|
||||
self.audiopaths_sid_text += tmp
|
||||
self.max_wav_value = hparams.max_wav_value
|
||||
self.sampling_rate = hparams.sampling_rate
|
||||
self.filter_length = hparams.filter_length
|
||||
self.hop_length = hparams.hop_length
|
||||
self.win_length = hparams.win_length
|
||||
self.sampling_rate = hparams.sampling_rate
|
||||
self.val = val
|
||||
|
||||
random.seed(1234)
|
||||
random.shuffle(self.audiopaths_sid_text)
|
||||
|
||||
print("phoneme_data_len:", len(self.phoneme_data.keys()))
|
||||
print("wav_data_len:", len(self.audiopaths_sid_text))
|
||||
|
||||
audiopaths_sid_text_new = []
|
||||
lengths = []
|
||||
skipped_phone = 0
|
||||
skipped_dur = 0
|
||||
for audiopath in tqdm(self.audiopaths_sid_text):
|
||||
try:
|
||||
phoneme = self.phoneme_data[audiopath][0]
|
||||
phoneme = phoneme.split(' ')
|
||||
phoneme_ids = cleaned_text_to_sequence(phoneme, version)
|
||||
except Exception:
|
||||
print(f"{audiopath} not in self.phoneme_data !")
|
||||
skipped_phone += 1
|
||||
continue
|
||||
|
||||
size = os.path.getsize("%s/%s" % (self.path5, audiopath))
|
||||
duration = size / self.sampling_rate / 2
|
||||
|
||||
if duration == 0:
|
||||
print(f"Zero duration for {audiopath}, skipping...")
|
||||
skipped_dur += 1
|
||||
continue
|
||||
|
||||
if 54 > duration > 0.6 or self.val:
|
||||
audiopaths_sid_text_new.append([audiopath, phoneme_ids])
|
||||
lengths.append(size // (2 * self.hop_length))
|
||||
else:
|
||||
skipped_dur += 1
|
||||
continue
|
||||
|
||||
print("skipped_phone: ", skipped_phone, ", skipped_dur: ", skipped_dur)
|
||||
print("total left: ", len(audiopaths_sid_text_new))
|
||||
assert len(audiopaths_sid_text_new) > 1 # 至少能凑够batch size,这里todo
|
||||
self.audiopaths_sid_text = audiopaths_sid_text_new
|
||||
self.lengths = lengths
|
||||
self.spec_min=-12
|
||||
self.spec_max=2
|
||||
|
||||
self.filter_length_mel=self.win_length_mel=1024
|
||||
self.hop_length_mel=256
|
||||
self.n_mel_channels=100
|
||||
self.sampling_rate_mel=24000
|
||||
self.mel_fmin=0
|
||||
self.mel_fmax=None
|
||||
def norm_spec(self, x):
|
||||
return (x - self.spec_min) / (self.spec_max - self.spec_min) * 2 - 1
|
||||
|
||||
def get_audio_text_speaker_pair(self, audiopath_sid_text):
|
||||
audiopath, phoneme_ids = audiopath_sid_text
|
||||
text = torch.FloatTensor(phoneme_ids)
|
||||
try:
|
||||
spec, mel,wav = self.get_audio("%s/%s" % (self.path5, audiopath))
|
||||
with torch.no_grad():
|
||||
ssl = torch.load("%s/%s.pt" % (self.path4, audiopath), map_location="cpu")
|
||||
if (ssl.shape[-1] != spec.shape[-1]):
|
||||
typee = ssl.dtype
|
||||
ssl = F.pad(ssl.float(), (0, 1), mode="replicate").to(typee)
|
||||
ssl.requires_grad = False
|
||||
except:
|
||||
traceback.print_exc()
|
||||
mel = torch.zeros(100, 180)
|
||||
wav = torch.zeros(1, 96 * self.hop_length)
|
||||
spec = torch.zeros(1025, 96)
|
||||
ssl = torch.zeros(1, 768, 96)
|
||||
text = text[-1:]
|
||||
print("load audio or ssl error!!!!!!", audiopath)
|
||||
return (ssl, spec, wav, mel, text)
|
||||
|
||||
def get_audio(self, filename):
|
||||
audio_array = load_audio(filename,self.sampling_rate)#load_audio的方法是已经归一化到-1~1之间的,不用再/32768
|
||||
audio=torch.FloatTensor(audio_array)#/32768
|
||||
audio_norm = audio
|
||||
audio_norm = audio_norm.unsqueeze(0)
|
||||
audio_array24 = load_audio(filename,24000)#load_audio的方法是已经归一化到-1~1之间的,不用再/32768######这里可以用GPU重采样加速
|
||||
audio24=torch.FloatTensor(audio_array24)#/32768
|
||||
audio_norm24 = audio24
|
||||
audio_norm24 = audio_norm24.unsqueeze(0)
|
||||
|
||||
spec = spectrogram_torch(audio_norm, self.filter_length,
|
||||
self.sampling_rate, self.hop_length, self.win_length,
|
||||
center=False)
|
||||
spec = torch.squeeze(spec, 0)
|
||||
|
||||
|
||||
spec1 = spectrogram_torch(audio_norm24, self.filter_length_mel,self.sampling_rate_mel, self.hop_length_mel, self.win_length_mel,center=False)
|
||||
mel = spec_to_mel_torch(spec1, self.filter_length_mel, self.n_mel_channels, self.sampling_rate_mel, self.mel_fmin, self.mel_fmax)
|
||||
mel = torch.squeeze(mel, 0)
|
||||
mel=self.norm_spec(mel)
|
||||
# print(1111111,spec.shape,mel.shape)
|
||||
return spec, mel,audio_norm
|
||||
|
||||
def get_sid(self, sid):
|
||||
sid = torch.LongTensor([int(sid)])
|
||||
return sid
|
||||
|
||||
def __getitem__(self, index):
|
||||
# with torch.no_grad():
|
||||
return self.get_audio_text_speaker_pair(self.audiopaths_sid_text[index])
|
||||
|
||||
def __len__(self):
|
||||
return len(self.audiopaths_sid_text)
|
||||
class TextAudioSpeakerCollateV3b():
|
||||
""" Zero-pads model inputs and targets
|
||||
"""
|
||||
|
||||
def __init__(self, return_ids=False):
|
||||
self.return_ids = return_ids
|
||||
|
||||
def __call__(self, batch):
|
||||
"""Collate's training batch from normalized text, audio and speaker identities
|
||||
PARAMS
|
||||
------
|
||||
batch: [text_normalized, spec_normalized, wav_normalized, sid]
|
||||
"""
|
||||
#ssl, spec, wav,mel, text
|
||||
# Right zero-pad all one-hot text sequences to max input length
|
||||
_, ids_sorted_decreasing = torch.sort(
|
||||
torch.LongTensor([x[1].size(1) for x in batch]),
|
||||
dim=0, descending=True)
|
||||
#(ssl, spec,mel, text)
|
||||
max_ssl_len = max([x[0].size(2) for x in batch])
|
||||
|
||||
max_ssl_len1 = int(8 * ((max_ssl_len // 8) + 1))
|
||||
max_ssl_len = int(2 * ((max_ssl_len // 2) + 1))
|
||||
|
||||
# max_ssl_len = int(8 * ((max_ssl_len // 8) + 1))
|
||||
# max_ssl_len1=max_ssl_len
|
||||
|
||||
max_spec_len = max([x[1].size(1) for x in batch])
|
||||
max_spec_len = int(2 * ((max_spec_len // 2) + 1))
|
||||
max_wav_len = max([x[2].size(1) for x in batch])
|
||||
max_text_len = max([x[4].size(0) for x in batch])
|
||||
max_mel_len=int(max_ssl_len1*1.25*1.5)###24000/256,32000/640=16000/320
|
||||
|
||||
ssl_lengths = torch.LongTensor(len(batch))
|
||||
spec_lengths = torch.LongTensor(len(batch))
|
||||
text_lengths = torch.LongTensor(len(batch))
|
||||
wav_lengths = torch.LongTensor(len(batch))
|
||||
mel_lengths = torch.LongTensor(len(batch))
|
||||
|
||||
spec_padded = torch.FloatTensor(len(batch), batch[0][1].size(0), max_spec_len)
|
||||
mel_padded = torch.FloatTensor(len(batch), batch[0][3].size(0), max_mel_len)
|
||||
ssl_padded = torch.FloatTensor(len(batch), batch[0][0].size(1), max_ssl_len)
|
||||
text_padded = torch.LongTensor(len(batch), max_text_len)
|
||||
wav_padded = torch.FloatTensor(len(batch), 1, max_wav_len)
|
||||
|
||||
spec_padded.zero_()
|
||||
mel_padded.zero_()
|
||||
ssl_padded.zero_()
|
||||
text_padded.zero_()
|
||||
wav_padded.zero_()
|
||||
|
||||
for i in range(len(ids_sorted_decreasing)):
|
||||
row = batch[ids_sorted_decreasing[i]]
|
||||
# ssl, spec, wav,mel, text
|
||||
ssl = row[0]
|
||||
ssl_padded[i, :, :ssl.size(2)] = ssl[0, :, :]
|
||||
ssl_lengths[i] = ssl.size(2)
|
||||
|
||||
spec = row[1]
|
||||
spec_padded[i, :, :spec.size(1)] = spec
|
||||
spec_lengths[i] = spec.size(1)
|
||||
|
||||
wav = row[2]
|
||||
wav_padded[i, :, :wav.size(1)] = wav
|
||||
wav_lengths[i] = wav.size(1)
|
||||
|
||||
mel = row[3]
|
||||
mel_padded[i, :, :mel.size(1)] = mel
|
||||
mel_lengths[i] = mel.size(1)
|
||||
|
||||
text = row[4]
|
||||
text_padded[i, :text.size(0)] = text
|
||||
text_lengths[i] = text.size(0)
|
||||
|
||||
return ssl_padded, spec_padded,mel_padded, ssl_lengths, spec_lengths, text_padded, text_lengths, wav_padded, wav_lengths,mel_lengths
|
||||
# return ssl_padded, spec_padded,mel_padded, ssl_lengths, spec_lengths, text_padded, text_lengths,mel_lengths
|
||||
|
||||
class DistributedBucketSampler(torch.utils.data.distributed.DistributedSampler):
|
||||
"""
|
||||
|
@ -145,7 +145,7 @@ def mel_spectrogram_torch(
|
||||
return_complex=False,
|
||||
)
|
||||
|
||||
spec = torch.sqrt(spec.pow(2).sum(-1) + 1e-6)
|
||||
spec = torch.sqrt(spec.pow(2).sum(-1) + 1e-9)
|
||||
|
||||
spec = torch.matmul(mel_basis[fmax_dtype_device], spec)
|
||||
spec = spectral_normalize_torch(spec)
|
||||
|
@ -1,5 +1,10 @@
|
||||
import warnings
|
||||
warnings.filterwarnings("ignore")
|
||||
import copy
|
||||
import math
|
||||
import os
|
||||
import pdb
|
||||
|
||||
import torch
|
||||
from torch import nn
|
||||
from torch.nn import functional as F
|
||||
@ -7,14 +12,17 @@ from torch.nn import functional as F
|
||||
from module import commons
|
||||
from module import modules
|
||||
from module import attentions
|
||||
|
||||
from f5_tts.model import DiT
|
||||
from torch.nn import Conv1d, ConvTranspose1d, AvgPool1d, Conv2d
|
||||
from torch.nn.utils import weight_norm, remove_weight_norm, spectral_norm
|
||||
from module.commons import init_weights, get_padding
|
||||
from module.mrte_model import MRTE
|
||||
from module.quantize import ResidualVectorQuantizer
|
||||
from text import symbols
|
||||
# from text import symbols
|
||||
from text import symbols as symbols_v1
|
||||
from text import symbols2 as symbols_v2
|
||||
from torch.cuda.amp import autocast
|
||||
import contextlib,random
|
||||
|
||||
|
||||
class StochasticDurationPredictor(nn.Module):
|
||||
@ -182,6 +190,7 @@ class TextEncoder(nn.Module):
|
||||
kernel_size,
|
||||
p_dropout,
|
||||
latent_channels=192,
|
||||
version = "v2",
|
||||
):
|
||||
super().__init__()
|
||||
self.out_channels = out_channels
|
||||
@ -192,6 +201,7 @@ class TextEncoder(nn.Module):
|
||||
self.kernel_size = kernel_size
|
||||
self.p_dropout = p_dropout
|
||||
self.latent_channels = latent_channels
|
||||
self.version = version
|
||||
|
||||
self.ssl_proj = nn.Conv1d(768, hidden_channels, 1)
|
||||
|
||||
@ -207,6 +217,11 @@ class TextEncoder(nn.Module):
|
||||
self.encoder_text = attentions.Encoder(
|
||||
hidden_channels, filter_channels, n_heads, n_layers, kernel_size, p_dropout
|
||||
)
|
||||
|
||||
if self.version == "v1":
|
||||
symbols = symbols_v1.symbols
|
||||
else:
|
||||
symbols = symbols_v2.symbols
|
||||
self.text_embedding = nn.Embedding(len(symbols), hidden_channels)
|
||||
|
||||
self.mrte = MRTE()
|
||||
@ -222,13 +237,13 @@ class TextEncoder(nn.Module):
|
||||
|
||||
self.proj = nn.Conv1d(hidden_channels, out_channels * 2, 1)
|
||||
|
||||
def forward(self, y, y_lengths, text, text_lengths, ge, test=None):
|
||||
def forward(self, y, y_lengths, text, text_lengths, ge, speed=1,test=None):
|
||||
y_mask = torch.unsqueeze(commons.sequence_mask(y_lengths, y.size(2)), 1).to(
|
||||
y.dtype
|
||||
)
|
||||
|
||||
y = self.ssl_proj(y * y_mask) * y_mask
|
||||
|
||||
|
||||
y = self.encoder_ssl(y * y_mask, y_mask)
|
||||
|
||||
text_mask = torch.unsqueeze(
|
||||
@ -239,9 +254,10 @@ class TextEncoder(nn.Module):
|
||||
text = self.text_embedding(text).transpose(1, 2)
|
||||
text = self.encoder_text(text * text_mask, text_mask)
|
||||
y = self.mrte(y, y_mask, text, text_mask, ge)
|
||||
|
||||
y = self.encoder2(y * y_mask, y_mask)
|
||||
|
||||
if(speed!=1):
|
||||
y = F.interpolate(y, size=int(y.shape[-1] / speed)+1, mode="linear")
|
||||
y_mask = F.interpolate(y_mask, size=y.shape[-1], mode="nearest")
|
||||
stats = self.proj(y) * y_mask
|
||||
m, logs = torch.split(stats, self.out_channels, dim=1)
|
||||
return y, m, logs, y_mask
|
||||
@ -355,6 +371,37 @@ class PosteriorEncoder(nn.Module):
|
||||
return z, m, logs, x_mask
|
||||
|
||||
|
||||
class Encoder(nn.Module):
|
||||
def __init__(self,
|
||||
in_channels,
|
||||
out_channels,
|
||||
hidden_channels,
|
||||
kernel_size,
|
||||
dilation_rate,
|
||||
n_layers,
|
||||
gin_channels=0):
|
||||
super().__init__()
|
||||
self.in_channels = in_channels
|
||||
self.out_channels = out_channels
|
||||
self.hidden_channels = hidden_channels
|
||||
self.kernel_size = kernel_size
|
||||
self.dilation_rate = dilation_rate
|
||||
self.n_layers = n_layers
|
||||
self.gin_channels = gin_channels
|
||||
|
||||
self.pre = nn.Conv1d(in_channels, hidden_channels, 1)
|
||||
self.enc = modules.WN(hidden_channels, kernel_size, dilation_rate, n_layers, gin_channels=gin_channels)
|
||||
self.proj = nn.Conv1d(hidden_channels, out_channels, 1)
|
||||
|
||||
def forward(self, x, x_lengths, g=None):
|
||||
if(g!=None):
|
||||
g = g.detach()
|
||||
x_mask = torch.unsqueeze(commons.sequence_mask(x_lengths, x.size(2)), 1).to(x.dtype)
|
||||
x = self.pre(x) * x_mask
|
||||
x = self.enc(x, x_mask, g=g)
|
||||
stats = self.proj(x) * x_mask
|
||||
return stats, x_mask
|
||||
|
||||
class WNEncoder(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
@ -823,6 +870,7 @@ class SynthesizerTrn(nn.Module):
|
||||
use_sdp=True,
|
||||
semantic_frame_rate=None,
|
||||
freeze_quantizer=None,
|
||||
version = "v2",
|
||||
**kwargs
|
||||
):
|
||||
super().__init__()
|
||||
@ -843,6 +891,7 @@ class SynthesizerTrn(nn.Module):
|
||||
self.segment_size = segment_size
|
||||
self.n_speakers = n_speakers
|
||||
self.gin_channels = gin_channels
|
||||
self.version = version
|
||||
|
||||
self.use_sdp = use_sdp
|
||||
self.enc_p = TextEncoder(
|
||||
@ -853,6 +902,7 @@ class SynthesizerTrn(nn.Module):
|
||||
n_layers,
|
||||
kernel_size,
|
||||
p_dropout,
|
||||
version = version,
|
||||
)
|
||||
self.dec = Generator(
|
||||
inter_channels,
|
||||
@ -877,9 +927,11 @@ class SynthesizerTrn(nn.Module):
|
||||
inter_channels, hidden_channels, 5, 1, 4, gin_channels=gin_channels
|
||||
)
|
||||
|
||||
self.ref_enc = modules.MelStyleEncoder(
|
||||
spec_channels, style_vector_dim=gin_channels
|
||||
)
|
||||
# self.version=os.environ.get("version","v1")
|
||||
if(self.version=="v1"):
|
||||
self.ref_enc = modules.MelStyleEncoder(spec_channels, style_vector_dim=gin_channels)
|
||||
else:
|
||||
self.ref_enc = modules.MelStyleEncoder(704, style_vector_dim=gin_channels)
|
||||
|
||||
ssl_dim = 768
|
||||
assert semantic_frame_rate in ["25hz", "50hz"]
|
||||
@ -890,21 +942,22 @@ class SynthesizerTrn(nn.Module):
|
||||
self.ssl_proj = nn.Conv1d(ssl_dim, ssl_dim, 1, stride=1)
|
||||
|
||||
self.quantizer = ResidualVectorQuantizer(dimension=ssl_dim, n_q=1, bins=1024)
|
||||
if freeze_quantizer:
|
||||
self.ssl_proj.requires_grad_(False)
|
||||
self.quantizer.requires_grad_(False)
|
||||
#self.quantizer.eval()
|
||||
# self.enc_p.text_embedding.requires_grad_(False)
|
||||
# self.enc_p.encoder_text.requires_grad_(False)
|
||||
# self.enc_p.mrte.requires_grad_(False)
|
||||
self.freeze_quantizer = freeze_quantizer
|
||||
|
||||
def forward(self, ssl, y, y_lengths, text, text_lengths):
|
||||
y_mask = torch.unsqueeze(commons.sequence_mask(y_lengths, y.size(2)), 1).to(
|
||||
y.dtype
|
||||
)
|
||||
ge = self.ref_enc(y * y_mask, y_mask)
|
||||
|
||||
if(self.version=="v1"):
|
||||
ge = self.ref_enc(y * y_mask, y_mask)
|
||||
else:
|
||||
ge = self.ref_enc(y[:,:704] * y_mask, y_mask)
|
||||
with autocast(enabled=False):
|
||||
maybe_no_grad = torch.no_grad() if self.freeze_quantizer else contextlib.nullcontext()
|
||||
with maybe_no_grad:
|
||||
if self.freeze_quantizer:
|
||||
self.ssl_proj.eval()
|
||||
self.quantizer.eval()
|
||||
ssl = self.ssl_proj(ssl)
|
||||
quantized, codes, commit_loss, quantized_list = self.quantizer(
|
||||
ssl, layers=[0]
|
||||
@ -939,7 +992,10 @@ class SynthesizerTrn(nn.Module):
|
||||
y_mask = torch.unsqueeze(commons.sequence_mask(y_lengths, y.size(2)), 1).to(
|
||||
y.dtype
|
||||
)
|
||||
ge = self.ref_enc(y * y_mask, y_mask)
|
||||
if(self.version=="v1"):
|
||||
ge = self.ref_enc(y * y_mask, y_mask)
|
||||
else:
|
||||
ge = self.ref_enc(y[:,:704] * y_mask, y_mask)
|
||||
|
||||
ssl = self.ssl_proj(ssl)
|
||||
quantized, codes, commit_loss, _ = self.quantizer(ssl, layers=[0])
|
||||
@ -959,14 +1015,27 @@ class SynthesizerTrn(nn.Module):
|
||||
return o, y_mask, (z, z_p, m_p, logs_p)
|
||||
|
||||
@torch.no_grad()
|
||||
def decode(self, codes, text, refer, noise_scale=0.5):
|
||||
ge = None
|
||||
if refer is not None:
|
||||
refer_lengths = torch.LongTensor([refer.size(2)]).to(refer.device)
|
||||
refer_mask = torch.unsqueeze(
|
||||
commons.sequence_mask(refer_lengths, refer.size(2)), 1
|
||||
).to(refer.dtype)
|
||||
ge = self.ref_enc(refer * refer_mask, refer_mask)
|
||||
def decode(self, codes, text, refer, noise_scale=0.5,speed=1):
|
||||
def get_ge(refer):
|
||||
ge = None
|
||||
if refer is not None:
|
||||
refer_lengths = torch.LongTensor([refer.size(2)]).to(refer.device)
|
||||
refer_mask = torch.unsqueeze(
|
||||
commons.sequence_mask(refer_lengths, refer.size(2)), 1
|
||||
).to(refer.dtype)
|
||||
if (self.version == "v1"):
|
||||
ge = self.ref_enc(refer * refer_mask, refer_mask)
|
||||
else:
|
||||
ge = self.ref_enc(refer[:, :704] * refer_mask, refer_mask)
|
||||
return ge
|
||||
if(type(refer)==list):
|
||||
ges=[]
|
||||
for _refer in refer:
|
||||
ge=get_ge(_refer)
|
||||
ges.append(ge)
|
||||
ge=torch.stack(ges,0).mean(0)
|
||||
else:
|
||||
ge=get_ge(refer)
|
||||
|
||||
y_lengths = torch.LongTensor([codes.size(2) * 2]).to(codes.device)
|
||||
text_lengths = torch.LongTensor([text.size(-1)]).to(text.device)
|
||||
@ -976,9 +1045,8 @@ class SynthesizerTrn(nn.Module):
|
||||
quantized = F.interpolate(
|
||||
quantized, size=int(quantized.shape[-1] * 2), mode="nearest"
|
||||
)
|
||||
|
||||
x, m_p, logs_p, y_mask = self.enc_p(
|
||||
quantized, y_lengths, text, text_lengths, ge
|
||||
quantized, y_lengths, text, text_lengths, ge,speed
|
||||
)
|
||||
z_p = m_p + torch.randn_like(m_p) * torch.exp(logs_p) * noise_scale
|
||||
|
||||
@ -991,3 +1059,371 @@ class SynthesizerTrn(nn.Module):
|
||||
ssl = self.ssl_proj(x)
|
||||
quantized, codes, commit_loss, quantized_list = self.quantizer(ssl)
|
||||
return codes.transpose(0, 1)
|
||||
class CFM(torch.nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
in_channels,dit
|
||||
):
|
||||
super().__init__()
|
||||
self.sigma_min = 1e-6
|
||||
|
||||
self.estimator = dit
|
||||
|
||||
self.in_channels = in_channels
|
||||
|
||||
self.criterion = torch.nn.MSELoss()
|
||||
|
||||
@torch.inference_mode()
|
||||
def inference(self, mu, x_lens, prompt, n_timesteps, temperature=1.0, inference_cfg_rate=0):
|
||||
"""Forward diffusion"""
|
||||
B, T = mu.size(0), mu.size(1)
|
||||
x = torch.randn([B, self.in_channels, T], device=mu.device,dtype=mu.dtype) * temperature
|
||||
prompt_len = prompt.size(-1)
|
||||
prompt_x = torch.zeros_like(x,dtype=mu.dtype)
|
||||
prompt_x[..., :prompt_len] = prompt[..., :prompt_len]
|
||||
x[..., :prompt_len] = 0
|
||||
mu=mu.transpose(2,1)
|
||||
t = 0
|
||||
d = 1 / n_timesteps
|
||||
for j in range(n_timesteps):
|
||||
t_tensor = torch.ones(x.shape[0], device=x.device,dtype=mu.dtype) * t
|
||||
d_tensor = torch.ones(x.shape[0], device=x.device,dtype=mu.dtype) * d
|
||||
# v_pred = model(x, t_tensor, d_tensor, **extra_args)
|
||||
v_pred = self.estimator(x, prompt_x, x_lens, t_tensor,d_tensor, mu, use_grad_ckpt=False,drop_audio_cond=False,drop_text=False).transpose(2, 1)
|
||||
if inference_cfg_rate>1e-5:
|
||||
neg = self.estimator(x, prompt_x, x_lens, t_tensor, d_tensor, mu, use_grad_ckpt=False, drop_audio_cond=True, drop_text=True).transpose(2, 1)
|
||||
v_pred=v_pred+(v_pred-neg)*inference_cfg_rate
|
||||
x = x + d * v_pred
|
||||
t = t + d
|
||||
x[:, :, :prompt_len] = 0
|
||||
return x
|
||||
def forward(self, x1, x_lens, prompt_lens, mu, use_grad_ckpt):
|
||||
b, _, t = x1.shape
|
||||
t = torch.rand([b], device=mu.device, dtype=x1.dtype)
|
||||
x0 = torch.randn_like(x1,device=mu.device)
|
||||
vt = x1 - x0
|
||||
xt = x0 + t[:, None, None] * vt
|
||||
dt = torch.zeros_like(t,device=mu.device)
|
||||
prompt = torch.zeros_like(x1)
|
||||
for i in range(b):
|
||||
prompt[i, :, :prompt_lens[i]] = x1[i, :, :prompt_lens[i]]
|
||||
xt[i, :, :prompt_lens[i]] = 0
|
||||
gailv=0.3# if ttime()>1736250488 else 0.1
|
||||
if random.random() < gailv:
|
||||
base = torch.randint(2, 8, (t.shape[0],), device=mu.device)
|
||||
d = 1/torch.pow(2, base)
|
||||
d_input = d.clone()
|
||||
d_input[d_input < 1e-2] = 0
|
||||
# with torch.no_grad():
|
||||
v_pred_1 = self.estimator(xt, prompt, x_lens, t, d_input, mu, use_grad_ckpt).transpose(2, 1).detach()
|
||||
# v_pred_1 = self.diffusion(xt, t, d_input, cond=conditioning).detach()
|
||||
x_mid = xt + d[:, None, None] * v_pred_1
|
||||
# v_pred_2 = self.diffusion(x_mid, t+d, d_input, cond=conditioning).detach()
|
||||
v_pred_2 = self.estimator(x_mid, prompt, x_lens, t+d, d_input, mu, use_grad_ckpt).transpose(2, 1).detach()
|
||||
vt = (v_pred_1 + v_pred_2) / 2
|
||||
vt = vt.detach()
|
||||
dt = 2*d
|
||||
|
||||
vt_pred = self.estimator(xt, prompt, x_lens, t,dt, mu, use_grad_ckpt).transpose(2,1)
|
||||
loss = 0
|
||||
for i in range(b):
|
||||
loss += self.criterion(vt_pred[i, :, prompt_lens[i]:x_lens[i]], vt[i, :, prompt_lens[i]:x_lens[i]])
|
||||
loss /= b
|
||||
|
||||
return loss
|
||||
|
||||
def set_no_grad(net_g):
|
||||
for name, param in net_g.named_parameters():
|
||||
param.requires_grad=False
|
||||
|
||||
class SynthesizerTrnV3(nn.Module):
|
||||
"""
|
||||
Synthesizer for Training
|
||||
"""
|
||||
|
||||
def __init__(self,
|
||||
spec_channels,
|
||||
segment_size,
|
||||
inter_channels,
|
||||
hidden_channels,
|
||||
filter_channels,
|
||||
n_heads,
|
||||
n_layers,
|
||||
kernel_size,
|
||||
p_dropout,
|
||||
resblock,
|
||||
resblock_kernel_sizes,
|
||||
resblock_dilation_sizes,
|
||||
upsample_rates,
|
||||
upsample_initial_channel,
|
||||
upsample_kernel_sizes,
|
||||
n_speakers=0,
|
||||
gin_channels=0,
|
||||
use_sdp=True,
|
||||
semantic_frame_rate=None,
|
||||
freeze_quantizer=None,
|
||||
version="v3",
|
||||
**kwargs):
|
||||
|
||||
super().__init__()
|
||||
self.spec_channels = spec_channels
|
||||
self.inter_channels = inter_channels
|
||||
self.hidden_channels = hidden_channels
|
||||
self.filter_channels = filter_channels
|
||||
self.n_heads = n_heads
|
||||
self.n_layers = n_layers
|
||||
self.kernel_size = kernel_size
|
||||
self.p_dropout = p_dropout
|
||||
self.resblock = resblock
|
||||
self.resblock_kernel_sizes = resblock_kernel_sizes
|
||||
self.resblock_dilation_sizes = resblock_dilation_sizes
|
||||
self.upsample_rates = upsample_rates
|
||||
self.upsample_initial_channel = upsample_initial_channel
|
||||
self.upsample_kernel_sizes = upsample_kernel_sizes
|
||||
self.segment_size = segment_size
|
||||
self.n_speakers = n_speakers
|
||||
self.gin_channels = gin_channels
|
||||
self.version = version
|
||||
|
||||
self.model_dim=512
|
||||
self.use_sdp = use_sdp
|
||||
self.enc_p = TextEncoder(inter_channels,hidden_channels,filter_channels,n_heads,n_layers,kernel_size,p_dropout)
|
||||
# self.ref_enc = modules.MelStyleEncoder(spec_channels, style_vector_dim=gin_channels)###Rollback
|
||||
self.ref_enc = modules.MelStyleEncoder(704, style_vector_dim=gin_channels)###Rollback
|
||||
# self.dec = Generator(inter_channels, resblock, resblock_kernel_sizes, resblock_dilation_sizes, upsample_rates,
|
||||
# upsample_initial_channel, upsample_kernel_sizes, gin_channels=gin_channels)
|
||||
# self.enc_q = PosteriorEncoder(spec_channels, inter_channels, hidden_channels, 5, 1, 16,
|
||||
# gin_channels=gin_channels)
|
||||
# self.flow = ResidualCouplingBlock(inter_channels, hidden_channels, 5, 1, 4, gin_channels=gin_channels)
|
||||
|
||||
|
||||
ssl_dim = 768
|
||||
assert semantic_frame_rate in ['25hz', "50hz"]
|
||||
self.semantic_frame_rate = semantic_frame_rate
|
||||
if semantic_frame_rate == '25hz':
|
||||
self.ssl_proj = nn.Conv1d(ssl_dim, ssl_dim, 2, stride=2)
|
||||
else:
|
||||
self.ssl_proj = nn.Conv1d(ssl_dim, ssl_dim, 1, stride=1)
|
||||
|
||||
self.quantizer = ResidualVectorQuantizer(
|
||||
dimension=ssl_dim,
|
||||
n_q=1,
|
||||
bins=1024
|
||||
)
|
||||
self.freeze_quantizer=freeze_quantizer
|
||||
inter_channels2=512
|
||||
self.bridge=nn.Sequential(
|
||||
nn.Conv1d(inter_channels, inter_channels2, 1, stride=1),
|
||||
nn.LeakyReLU()
|
||||
)
|
||||
self.wns1=Encoder(inter_channels2, inter_channels2, inter_channels2, 5, 1, 8,gin_channels=gin_channels)
|
||||
self.linear_mel=nn.Conv1d(inter_channels2,100,1,stride=1)
|
||||
self.cfm = CFM(100,DiT(**dict(dim=1024, depth=22, heads=16, ff_mult=2, text_dim=inter_channels2, conv_layers=4)),)#text_dim is condition feature dim
|
||||
if self.freeze_quantizer==True:
|
||||
set_no_grad(self.ssl_proj)
|
||||
set_no_grad(self.quantizer)
|
||||
set_no_grad(self.enc_p)
|
||||
|
||||
def forward(self, ssl, y, mel,ssl_lengths,y_lengths, text, text_lengths,mel_lengths, use_grad_ckpt):#ssl_lengths no need now
|
||||
with autocast(enabled=False):
|
||||
y_mask = torch.unsqueeze(commons.sequence_mask(y_lengths, y.size(2)), 1).to(y.dtype)
|
||||
ge = self.ref_enc(y[:,:704] * y_mask, y_mask)
|
||||
maybe_no_grad = torch.no_grad() if self.freeze_quantizer else contextlib.nullcontext()
|
||||
with maybe_no_grad:
|
||||
if self.freeze_quantizer:
|
||||
self.ssl_proj.eval()#
|
||||
self.quantizer.eval()
|
||||
self.enc_p.eval()
|
||||
ssl = self.ssl_proj(ssl)
|
||||
quantized, codes, commit_loss, quantized_list = self.quantizer(
|
||||
ssl, layers=[0]
|
||||
)
|
||||
quantized = F.interpolate(quantized, scale_factor=2, mode="nearest")##BCT
|
||||
x, m_p, logs_p, y_mask = self.enc_p(quantized, y_lengths, text, text_lengths, ge)
|
||||
fea=self.bridge(x)
|
||||
fea = F.interpolate(fea, scale_factor=1.875, mode="nearest")##BCT
|
||||
fea, y_mask_ = self.wns1(fea, mel_lengths, ge)##If the 1-minute fine-tuning works fine, no need to manually adjust the learning rate.
|
||||
B=ssl.shape[0]
|
||||
prompt_len_max = mel_lengths*2/3
|
||||
prompt_len = (torch.rand([B], device=fea.device) * prompt_len_max).floor().to(dtype=torch.long)
|
||||
minn=min(mel.shape[-1],fea.shape[-1])
|
||||
mel=mel[:,:,:minn]
|
||||
fea=fea[:,:,:minn]
|
||||
cfm_loss= self.cfm(mel, mel_lengths, prompt_len, fea, use_grad_ckpt)
|
||||
return cfm_loss
|
||||
|
||||
@torch.no_grad()
|
||||
def decode_encp(self, codes,text, refer,ge=None,speed=1):
|
||||
# print(2333333,refer.shape)
|
||||
# ge=None
|
||||
if(ge==None):
|
||||
refer_lengths = torch.LongTensor([refer.size(2)]).to(refer.device)
|
||||
refer_mask = torch.unsqueeze(commons.sequence_mask(refer_lengths, refer.size(2)), 1).to(refer.dtype)
|
||||
ge = self.ref_enc(refer[:,:704] * refer_mask, refer_mask)
|
||||
y_lengths = torch.LongTensor([int(codes.size(2)*2)]).to(codes.device)
|
||||
if speed==1:
|
||||
sizee=int(codes.size(2)*2.5*1.5)
|
||||
else:
|
||||
sizee=int(codes.size(2)*2.5*1.5/speed)+1
|
||||
y_lengths1 = torch.LongTensor([sizee]).to(codes.device)
|
||||
text_lengths = torch.LongTensor([text.size(-1)]).to(text.device)
|
||||
|
||||
quantized = self.quantizer.decode(codes)
|
||||
if self.semantic_frame_rate == '25hz':
|
||||
quantized = F.interpolate(quantized, scale_factor=2, mode="nearest")##BCT
|
||||
x, m_p, logs_p, y_mask = self.enc_p(quantized, y_lengths, text, text_lengths, ge,speed)
|
||||
fea=self.bridge(x)
|
||||
fea = F.interpolate(fea, scale_factor=1.875, mode="nearest")##BCT
|
||||
####more wn paramter to learn mel
|
||||
fea, y_mask_ = self.wns1(fea, y_lengths1, ge)
|
||||
return fea,ge
|
||||
|
||||
def extract_latent(self, x):
|
||||
ssl = self.ssl_proj(x)
|
||||
quantized, codes, commit_loss, quantized_list = self.quantizer(ssl)
|
||||
return codes.transpose(0,1)
|
||||
|
||||
class SynthesizerTrnV3b(nn.Module):
|
||||
"""
|
||||
Synthesizer for Training
|
||||
"""
|
||||
|
||||
def __init__(self,
|
||||
spec_channels,
|
||||
segment_size,
|
||||
inter_channels,
|
||||
hidden_channels,
|
||||
filter_channels,
|
||||
n_heads,
|
||||
n_layers,
|
||||
kernel_size,
|
||||
p_dropout,
|
||||
resblock,
|
||||
resblock_kernel_sizes,
|
||||
resblock_dilation_sizes,
|
||||
upsample_rates,
|
||||
upsample_initial_channel,
|
||||
upsample_kernel_sizes,
|
||||
n_speakers=0,
|
||||
gin_channels=0,
|
||||
use_sdp=True,
|
||||
semantic_frame_rate=None,
|
||||
freeze_quantizer=None,
|
||||
**kwargs):
|
||||
|
||||
super().__init__()
|
||||
self.spec_channels = spec_channels
|
||||
self.inter_channels = inter_channels
|
||||
self.hidden_channels = hidden_channels
|
||||
self.filter_channels = filter_channels
|
||||
self.n_heads = n_heads
|
||||
self.n_layers = n_layers
|
||||
self.kernel_size = kernel_size
|
||||
self.p_dropout = p_dropout
|
||||
self.resblock = resblock
|
||||
self.resblock_kernel_sizes = resblock_kernel_sizes
|
||||
self.resblock_dilation_sizes = resblock_dilation_sizes
|
||||
self.upsample_rates = upsample_rates
|
||||
self.upsample_initial_channel = upsample_initial_channel
|
||||
self.upsample_kernel_sizes = upsample_kernel_sizes
|
||||
self.segment_size = segment_size
|
||||
self.n_speakers = n_speakers
|
||||
self.gin_channels = gin_channels
|
||||
|
||||
self.model_dim=512
|
||||
self.use_sdp = use_sdp
|
||||
self.enc_p = TextEncoder(inter_channels,hidden_channels,filter_channels,n_heads,n_layers,kernel_size,p_dropout)
|
||||
# self.ref_enc = modules.MelStyleEncoder(spec_channels, style_vector_dim=gin_channels)###Rollback
|
||||
self.ref_enc = modules.MelStyleEncoder(704, style_vector_dim=gin_channels)###Rollback
|
||||
self.dec = Generator(inter_channels, resblock, resblock_kernel_sizes, resblock_dilation_sizes, upsample_rates,
|
||||
upsample_initial_channel, upsample_kernel_sizes, gin_channels=gin_channels)
|
||||
self.enc_q = PosteriorEncoder(spec_channels, inter_channels, hidden_channels, 5, 1, 16,
|
||||
gin_channels=gin_channels)
|
||||
self.flow = ResidualCouplingBlock(inter_channels, hidden_channels, 5, 1, 4, gin_channels=gin_channels)
|
||||
|
||||
|
||||
ssl_dim = 768
|
||||
assert semantic_frame_rate in ['25hz', "50hz"]
|
||||
self.semantic_frame_rate = semantic_frame_rate
|
||||
if semantic_frame_rate == '25hz':
|
||||
self.ssl_proj = nn.Conv1d(ssl_dim, ssl_dim, 2, stride=2)
|
||||
else:
|
||||
self.ssl_proj = nn.Conv1d(ssl_dim, ssl_dim, 1, stride=1)
|
||||
|
||||
self.quantizer = ResidualVectorQuantizer(
|
||||
dimension=ssl_dim,
|
||||
n_q=1,
|
||||
bins=1024
|
||||
)
|
||||
self.freeze_quantizer=freeze_quantizer
|
||||
|
||||
inter_channels2=512
|
||||
self.bridge=nn.Sequential(
|
||||
nn.Conv1d(inter_channels, inter_channels2, 1, stride=1),
|
||||
nn.LeakyReLU()
|
||||
)
|
||||
self.wns1=Encoder(inter_channels2, inter_channels2, inter_channels2, 5, 1, 8,gin_channels=gin_channels)
|
||||
self.linear_mel=nn.Conv1d(inter_channels2,100,1,stride=1)
|
||||
self.cfm = CFM(100,DiT(**dict(dim=1024, depth=22, heads=16, ff_mult=2, text_dim=inter_channels2, conv_layers=4)),)#text_dim is condition feature dim
|
||||
|
||||
|
||||
def forward(self, ssl, y, mel,ssl_lengths,y_lengths, text, text_lengths,mel_lengths):#ssl_lengths no need now
|
||||
with autocast(enabled=False):
|
||||
y_mask = torch.unsqueeze(commons.sequence_mask(y_lengths, y.size(2)), 1).to(y.dtype)
|
||||
ge = self.ref_enc(y[:,:704] * y_mask, y_mask)
|
||||
# ge = self.ref_enc(y * y_mask, y_mask)#change back, new spec setting is whole 24k
|
||||
# ge=None
|
||||
maybe_no_grad = torch.no_grad() if self.freeze_quantizer else contextlib.nullcontext()
|
||||
with maybe_no_grad:
|
||||
if self.freeze_quantizer:
|
||||
self.ssl_proj.eval()
|
||||
self.quantizer.eval()
|
||||
ssl = self.ssl_proj(ssl)
|
||||
quantized, codes, commit_loss, quantized_list = self.quantizer(
|
||||
ssl, layers=[0]
|
||||
)
|
||||
quantized = F.interpolate(quantized, scale_factor=2, mode="nearest")##BCT
|
||||
x, m_p, logs_p, y_mask = self.enc_p(quantized, y_lengths, text, text_lengths, ge)
|
||||
z, m_q, logs_q, y_mask = self.enc_q(y, y_lengths, g=ge)
|
||||
z_p = self.flow(z, y_mask, g=ge)
|
||||
z_slice, ids_slice = commons.rand_slice_segments(z, y_lengths, self.segment_size)
|
||||
o = self.dec(z_slice, g=ge)
|
||||
fea=self.bridge(x)
|
||||
fea = F.interpolate(fea, scale_factor=1.875, mode="nearest")##BCT
|
||||
fea, y_mask_ = self.wns1(fea, mel_lengths, ge)
|
||||
learned_mel = self.linear_mel(fea)
|
||||
B=ssl.shape[0]
|
||||
prompt_len_max = mel_lengths*2/3
|
||||
prompt_len = (torch.rand([B], device=fea.device) * prompt_len_max).floor().to(dtype=torch.long)#
|
||||
minn=min(mel.shape[-1],fea.shape[-1])
|
||||
mel=mel[:,:,:minn]
|
||||
fea=fea[:,:,:minn]
|
||||
cfm_loss= self.cfm(mel, mel_lengths, prompt_len, fea)#fea==cond,y_lengths==target_mel_lengths#ge not need
|
||||
return commit_loss,cfm_loss,F.mse_loss(learned_mel, mel),o, ids_slice, y_mask, y_mask, (z, z_p, m_p, logs_p, m_q, logs_q), quantized
|
||||
|
||||
@torch.no_grad()
|
||||
def decode_encp(self, codes,text, refer,ge=None):
|
||||
# print(2333333,refer.shape)
|
||||
# ge=None
|
||||
if(ge==None):
|
||||
refer_lengths = torch.LongTensor([refer.size(2)]).to(refer.device)
|
||||
refer_mask = torch.unsqueeze(commons.sequence_mask(refer_lengths, refer.size(2)), 1).to(refer.dtype)
|
||||
ge = self.ref_enc(refer[:,:704] * refer_mask, refer_mask)
|
||||
y_lengths = torch.LongTensor([int(codes.size(2)*2)]).to(codes.device)
|
||||
y_lengths1 = torch.LongTensor([int(codes.size(2)*2.5*1.5)]).to(codes.device)
|
||||
text_lengths = torch.LongTensor([text.size(-1)]).to(text.device)
|
||||
|
||||
quantized = self.quantizer.decode(codes)
|
||||
if self.semantic_frame_rate == '25hz':
|
||||
quantized = F.interpolate(quantized, scale_factor=2, mode="nearest")##BCT
|
||||
x, m_p, logs_p, y_mask = self.enc_p(quantized, y_lengths, text, text_lengths, ge)
|
||||
fea=self.bridge(x)
|
||||
fea = F.interpolate(fea, scale_factor=1.875, mode="nearest")##BCT
|
||||
####more wn paramter to learn mel
|
||||
fea, y_mask_ = self.wns1(fea, y_lengths1, ge)
|
||||
return fea,ge
|
||||
|
||||
def extract_latent(self, x):
|
||||
ssl = self.ssl_proj(x)
|
||||
quantized, codes, commit_loss, quantized_list = self.quantizer(ssl)
|
||||
return codes.transpose(0,1)
|
||||
|
@ -1,5 +1,6 @@
|
||||
import copy
|
||||
import math
|
||||
from typing import Optional
|
||||
import torch
|
||||
from torch import nn
|
||||
from torch.nn import functional as F
|
||||
@ -8,12 +9,15 @@ from module import commons
|
||||
from module import modules
|
||||
from module import attentions_onnx as attentions
|
||||
|
||||
from f5_tts.model import DiT
|
||||
|
||||
from torch.nn import Conv1d, ConvTranspose1d, AvgPool1d, Conv2d
|
||||
from torch.nn.utils import weight_norm, remove_weight_norm, spectral_norm
|
||||
from module.commons import init_weights, get_padding
|
||||
from module.mrte_model import MRTE
|
||||
from module.quantize import ResidualVectorQuantizer
|
||||
from text import symbols
|
||||
# from text import symbols
|
||||
from text import symbols as symbols_v1
|
||||
from text import symbols2 as symbols_v2
|
||||
from torch.cuda.amp import autocast
|
||||
|
||||
|
||||
@ -182,6 +186,7 @@ class TextEncoder(nn.Module):
|
||||
kernel_size,
|
||||
p_dropout,
|
||||
latent_channels=192,
|
||||
version="v2",
|
||||
):
|
||||
super().__init__()
|
||||
self.out_channels = out_channels
|
||||
@ -192,6 +197,7 @@ class TextEncoder(nn.Module):
|
||||
self.kernel_size = kernel_size
|
||||
self.p_dropout = p_dropout
|
||||
self.latent_channels = latent_channels
|
||||
self.version = version
|
||||
|
||||
self.ssl_proj = nn.Conv1d(768, hidden_channels, 1)
|
||||
|
||||
@ -207,9 +213,14 @@ class TextEncoder(nn.Module):
|
||||
self.encoder_text = attentions.Encoder(
|
||||
hidden_channels, filter_channels, n_heads, n_layers, kernel_size, p_dropout
|
||||
)
|
||||
|
||||
if self.version == "v1":
|
||||
symbols = symbols_v1.symbols
|
||||
else:
|
||||
symbols = symbols_v2.symbols
|
||||
self.text_embedding = nn.Embedding(len(symbols), hidden_channels)
|
||||
|
||||
self.mrte = MRTE()
|
||||
self.mrte = attentions.MRTE()
|
||||
|
||||
self.encoder2 = attentions.Encoder(
|
||||
hidden_channels,
|
||||
@ -222,7 +233,7 @@ class TextEncoder(nn.Module):
|
||||
|
||||
self.proj = nn.Conv1d(hidden_channels, out_channels * 2, 1)
|
||||
|
||||
def forward(self, y, text, ge):
|
||||
def forward(self, y, text, ge, speed=1):
|
||||
y_mask = torch.ones_like(y[:1,:1,:])
|
||||
|
||||
y = self.ssl_proj(y * y_mask) * y_mask
|
||||
@ -235,30 +246,14 @@ class TextEncoder(nn.Module):
|
||||
y = self.mrte(y, y_mask, text, text_mask, ge)
|
||||
|
||||
y = self.encoder2(y * y_mask, y_mask)
|
||||
if(speed!=1):
|
||||
y = F.interpolate(y, size=int(y.shape[-1] / speed)+1, mode="linear")
|
||||
y_mask = F.interpolate(y_mask, size=y.shape[-1], mode="nearest")
|
||||
|
||||
stats = self.proj(y) * y_mask
|
||||
m, logs = torch.split(stats, self.out_channels, dim=1)
|
||||
return y, m, logs, y_mask
|
||||
|
||||
def extract_latent(self, x):
|
||||
x = self.ssl_proj(x)
|
||||
quantized, codes, commit_loss, quantized_list = self.quantizer(x)
|
||||
return codes.transpose(0, 1)
|
||||
|
||||
def decode_latent(self, codes, y_mask, refer, refer_mask, ge):
|
||||
quantized = self.quantizer.decode(codes)
|
||||
|
||||
y = self.vq_proj(quantized) * y_mask
|
||||
y = self.encoder_ssl(y * y_mask, y_mask)
|
||||
|
||||
y = self.mrte(y, y_mask, refer, refer_mask, ge)
|
||||
|
||||
y = self.encoder2(y * y_mask, y_mask)
|
||||
|
||||
stats = self.proj(y) * y_mask
|
||||
m, logs = torch.split(stats, self.out_channels, dim=1)
|
||||
return y, m, logs, y_mask, quantized
|
||||
|
||||
|
||||
class ResidualCouplingBlock(nn.Module):
|
||||
def __init__(
|
||||
@ -349,6 +344,37 @@ class PosteriorEncoder(nn.Module):
|
||||
return z, m, logs, x_mask
|
||||
|
||||
|
||||
class Encoder(nn.Module):
|
||||
def __init__(self,
|
||||
in_channels,
|
||||
out_channels,
|
||||
hidden_channels,
|
||||
kernel_size,
|
||||
dilation_rate,
|
||||
n_layers,
|
||||
gin_channels=0):
|
||||
super().__init__()
|
||||
self.in_channels = in_channels
|
||||
self.out_channels = out_channels
|
||||
self.hidden_channels = hidden_channels
|
||||
self.kernel_size = kernel_size
|
||||
self.dilation_rate = dilation_rate
|
||||
self.n_layers = n_layers
|
||||
self.gin_channels = gin_channels
|
||||
|
||||
self.pre = nn.Conv1d(in_channels, hidden_channels, 1)
|
||||
self.enc = modules.WN(hidden_channels, kernel_size, dilation_rate, n_layers, gin_channels=gin_channels)
|
||||
self.proj = nn.Conv1d(hidden_channels, out_channels, 1)
|
||||
|
||||
def forward(self, x, x_lengths, g=None):
|
||||
if(g!=None):
|
||||
g = g.detach()
|
||||
x_mask = torch.unsqueeze(commons.sequence_mask(x_lengths, x.size(2)), 1).to(x.dtype)
|
||||
x = self.pre(x) * x_mask
|
||||
x = self.enc(x, x_mask, g=g)
|
||||
stats = self.proj(x) * x_mask
|
||||
return stats, x_mask
|
||||
|
||||
class WNEncoder(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
@ -439,7 +465,7 @@ class Generator(torch.nn.Module):
|
||||
if gin_channels != 0:
|
||||
self.cond = nn.Conv1d(gin_channels, upsample_initial_channel, 1)
|
||||
|
||||
def forward(self, x, g=None):
|
||||
def forward(self, x, g:Optional[torch.Tensor]=None):
|
||||
x = self.conv_pre(x)
|
||||
if g is not None:
|
||||
x = x + self.cond(g)
|
||||
@ -817,6 +843,7 @@ class SynthesizerTrn(nn.Module):
|
||||
use_sdp=True,
|
||||
semantic_frame_rate=None,
|
||||
freeze_quantizer=None,
|
||||
version="v2",
|
||||
**kwargs
|
||||
):
|
||||
super().__init__()
|
||||
@ -837,6 +864,7 @@ class SynthesizerTrn(nn.Module):
|
||||
self.segment_size = segment_size
|
||||
self.n_speakers = n_speakers
|
||||
self.gin_channels = gin_channels
|
||||
self.version = version
|
||||
|
||||
self.use_sdp = use_sdp
|
||||
self.enc_p = TextEncoder(
|
||||
@ -847,6 +875,7 @@ class SynthesizerTrn(nn.Module):
|
||||
n_layers,
|
||||
kernel_size,
|
||||
p_dropout,
|
||||
version=version,
|
||||
)
|
||||
self.dec = Generator(
|
||||
inter_channels,
|
||||
@ -858,22 +887,24 @@ class SynthesizerTrn(nn.Module):
|
||||
upsample_kernel_sizes,
|
||||
gin_channels=gin_channels,
|
||||
)
|
||||
self.enc_q = PosteriorEncoder(
|
||||
spec_channels,
|
||||
inter_channels,
|
||||
hidden_channels,
|
||||
5,
|
||||
1,
|
||||
16,
|
||||
gin_channels=gin_channels,
|
||||
)
|
||||
# self.enc_q = PosteriorEncoder(
|
||||
# spec_channels,
|
||||
# inter_channels,
|
||||
# hidden_channels,
|
||||
# 5,
|
||||
# 1,
|
||||
# 16,
|
||||
# gin_channels=gin_channels,
|
||||
# )
|
||||
self.flow = ResidualCouplingBlock(
|
||||
inter_channels, hidden_channels, 5, 1, 4, gin_channels=gin_channels
|
||||
)
|
||||
|
||||
self.ref_enc = modules.MelStyleEncoder(
|
||||
spec_channels, style_vector_dim=gin_channels
|
||||
)
|
||||
# self.version=os.environ.get("version","v1")
|
||||
if self.version == "v1":
|
||||
self.ref_enc = modules.MelStyleEncoder(spec_channels, style_vector_dim=gin_channels)
|
||||
else:
|
||||
self.ref_enc = modules.MelStyleEncoder(704, style_vector_dim=gin_channels)
|
||||
|
||||
ssl_dim = 768
|
||||
self.ssl_dim = ssl_dim
|
||||
@ -892,9 +923,12 @@ class SynthesizerTrn(nn.Module):
|
||||
# self.enc_p.encoder_text.requires_grad_(False)
|
||||
# self.enc_p.mrte.requires_grad_(False)
|
||||
|
||||
def forward(self, codes, text, refer):
|
||||
def forward(self, codes, text, refer,noise_scale=0.5, speed=1):
|
||||
refer_mask = torch.ones_like(refer[:1,:1,:])
|
||||
ge = self.ref_enc(refer * refer_mask, refer_mask)
|
||||
if (self.version == "v1"):
|
||||
ge = self.ref_enc(refer * refer_mask, refer_mask)
|
||||
else:
|
||||
ge = self.ref_enc(refer[:, :704] * refer_mask, refer_mask)
|
||||
|
||||
quantized = self.quantizer.decode(codes)
|
||||
if self.semantic_frame_rate == "25hz":
|
||||
@ -902,10 +936,10 @@ class SynthesizerTrn(nn.Module):
|
||||
quantized = dquantized.contiguous().view(1, self.ssl_dim, -1)
|
||||
|
||||
x, m_p, logs_p, y_mask = self.enc_p(
|
||||
quantized, text, ge
|
||||
quantized, text, ge, speed
|
||||
)
|
||||
|
||||
z_p = m_p + torch.randn_like(m_p) * torch.exp(logs_p)
|
||||
z_p = m_p + torch.randn_like(m_p) * torch.exp(logs_p) * noise_scale
|
||||
|
||||
z = self.flow(z_p, y_mask, g=ge, reverse=True)
|
||||
|
||||
@ -915,4 +949,175 @@ class SynthesizerTrn(nn.Module):
|
||||
def extract_latent(self, x):
|
||||
ssl = self.ssl_proj(x)
|
||||
quantized, codes, commit_loss, quantized_list = self.quantizer(ssl)
|
||||
return codes.transpose(0, 1)
|
||||
return codes.transpose(0, 1)
|
||||
|
||||
class CFM(torch.nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
in_channels,dit
|
||||
):
|
||||
super().__init__()
|
||||
# self.sigma_min = 1e-6
|
||||
|
||||
self.estimator = dit
|
||||
|
||||
self.in_channels = in_channels
|
||||
|
||||
# self.criterion = torch.nn.MSELoss()
|
||||
|
||||
def forward(self, mu:torch.Tensor, x_lens:torch.LongTensor, prompt:torch.Tensor, n_timesteps:torch.LongTensor, temperature:float=1.0):
|
||||
"""Forward diffusion"""
|
||||
B, T = mu.size(0), mu.size(1)
|
||||
x = torch.randn([B, self.in_channels, T], device=mu.device,dtype=mu.dtype)
|
||||
|
||||
ntimesteps = int(n_timesteps)
|
||||
|
||||
prompt_len = prompt.size(-1)
|
||||
prompt_x = torch.zeros_like(x,dtype=mu.dtype)
|
||||
prompt_x[..., :prompt_len] = prompt[..., :prompt_len]
|
||||
x[..., :prompt_len] = 0.0
|
||||
mu=mu.transpose(2,1)
|
||||
t = torch.tensor(0.0,dtype=x.dtype,device=x.device)
|
||||
d = torch.tensor(1.0/ntimesteps,dtype=x.dtype,device=x.device)
|
||||
d_tensor = torch.ones(x.shape[0], device=x.device,dtype=mu.dtype) * d
|
||||
|
||||
for j in range(ntimesteps):
|
||||
t_tensor = torch.ones(x.shape[0], device=x.device,dtype=mu.dtype) * t
|
||||
# d_tensor = torch.ones(x.shape[0], device=x.device,dtype=mu.dtype) * d
|
||||
# v_pred = model(x, t_tensor, d_tensor, **extra_args)
|
||||
v_pred = self.estimator(x, prompt_x, x_lens, t_tensor,d_tensor, mu).transpose(2, 1)
|
||||
# if inference_cfg_rate>1e-5:
|
||||
# neg = self.estimator(x, prompt_x, x_lens, t_tensor, d_tensor, mu, use_grad_ckpt=False, drop_audio_cond=True, drop_text=True).transpose(2, 1)
|
||||
# v_pred=v_pred+(v_pred-neg)*inference_cfg_rate
|
||||
x = x + d * v_pred
|
||||
t = t + d
|
||||
x[:, :, :prompt_len] = 0.0
|
||||
return x
|
||||
|
||||
|
||||
def set_no_grad(net_g):
|
||||
for name, param in net_g.named_parameters():
|
||||
param.requires_grad=False
|
||||
|
||||
@torch.jit.script_if_tracing
|
||||
def compile_codes_length(codes):
|
||||
y_lengths1 = torch.LongTensor([codes.size(2)]).to(codes.device)
|
||||
return y_lengths1 * 2.5 * 1.5
|
||||
|
||||
@torch.jit.script_if_tracing
|
||||
def compile_ref_length(refer):
|
||||
refer_lengths = torch.LongTensor([refer.size(2)]).to(refer.device)
|
||||
return refer_lengths
|
||||
|
||||
class SynthesizerTrnV3(nn.Module):
|
||||
"""
|
||||
Synthesizer for Training
|
||||
"""
|
||||
|
||||
def __init__(self,
|
||||
spec_channels,
|
||||
segment_size,
|
||||
inter_channels,
|
||||
hidden_channels,
|
||||
filter_channels,
|
||||
n_heads,
|
||||
n_layers,
|
||||
kernel_size,
|
||||
p_dropout,
|
||||
resblock,
|
||||
resblock_kernel_sizes,
|
||||
resblock_dilation_sizes,
|
||||
upsample_rates,
|
||||
upsample_initial_channel,
|
||||
upsample_kernel_sizes,
|
||||
n_speakers=0,
|
||||
gin_channels=0,
|
||||
use_sdp=True,
|
||||
semantic_frame_rate=None,
|
||||
freeze_quantizer=None,
|
||||
version="v3",
|
||||
**kwargs):
|
||||
|
||||
super().__init__()
|
||||
self.spec_channels = spec_channels
|
||||
self.inter_channels = inter_channels
|
||||
self.hidden_channels = hidden_channels
|
||||
self.filter_channels = filter_channels
|
||||
self.n_heads = n_heads
|
||||
self.n_layers = n_layers
|
||||
self.kernel_size = kernel_size
|
||||
self.p_dropout = p_dropout
|
||||
self.resblock = resblock
|
||||
self.resblock_kernel_sizes = resblock_kernel_sizes
|
||||
self.resblock_dilation_sizes = resblock_dilation_sizes
|
||||
self.upsample_rates = upsample_rates
|
||||
self.upsample_initial_channel = upsample_initial_channel
|
||||
self.upsample_kernel_sizes = upsample_kernel_sizes
|
||||
self.segment_size = segment_size
|
||||
self.n_speakers = n_speakers
|
||||
self.gin_channels = gin_channels
|
||||
self.version = version
|
||||
|
||||
self.model_dim=512
|
||||
self.use_sdp = use_sdp
|
||||
self.enc_p = TextEncoder(inter_channels,hidden_channels,filter_channels,n_heads,n_layers,kernel_size,p_dropout)
|
||||
# self.ref_enc = modules.MelStyleEncoder(spec_channels, style_vector_dim=gin_channels)###Rollback
|
||||
self.ref_enc = modules.MelStyleEncoder(704, style_vector_dim=gin_channels)###Rollback
|
||||
# self.dec = Generator(inter_channels, resblock, resblock_kernel_sizes, resblock_dilation_sizes, upsample_rates,
|
||||
# upsample_initial_channel, upsample_kernel_sizes, gin_channels=gin_channels)
|
||||
# self.enc_q = PosteriorEncoder(spec_channels, inter_channels, hidden_channels, 5, 1, 16,
|
||||
# gin_channels=gin_channels)
|
||||
# self.flow = ResidualCouplingBlock(inter_channels, hidden_channels, 5, 1, 4, gin_channels=gin_channels)
|
||||
|
||||
|
||||
ssl_dim = 768
|
||||
assert semantic_frame_rate in ['25hz', "50hz"]
|
||||
self.semantic_frame_rate = semantic_frame_rate
|
||||
if semantic_frame_rate == '25hz':
|
||||
self.ssl_proj = nn.Conv1d(ssl_dim, ssl_dim, 2, stride=2)
|
||||
else:
|
||||
self.ssl_proj = nn.Conv1d(ssl_dim, ssl_dim, 1, stride=1)
|
||||
|
||||
self.quantizer = ResidualVectorQuantizer(
|
||||
dimension=ssl_dim,
|
||||
n_q=1,
|
||||
bins=1024
|
||||
)
|
||||
freeze_quantizer
|
||||
inter_channels2=512
|
||||
self.bridge=nn.Sequential(
|
||||
nn.Conv1d(inter_channels, inter_channels2, 1, stride=1),
|
||||
nn.LeakyReLU()
|
||||
)
|
||||
self.wns1=Encoder(inter_channels2, inter_channels2, inter_channels2, 5, 1, 8,gin_channels=gin_channels)
|
||||
self.linear_mel=nn.Conv1d(inter_channels2,100,1,stride=1)
|
||||
self.cfm = CFM(100,DiT(**dict(dim=1024, depth=22, heads=16, ff_mult=2, text_dim=inter_channels2, conv_layers=4)),)#text_dim is condition feature dim
|
||||
if freeze_quantizer==True:
|
||||
set_no_grad(self.ssl_proj)
|
||||
set_no_grad(self.quantizer)
|
||||
set_no_grad(self.enc_p)
|
||||
|
||||
def create_ge(self, refer):
|
||||
refer_lengths = compile_ref_length(refer)
|
||||
refer_mask = torch.unsqueeze(commons.sequence_mask(refer_lengths, refer.size(2)), 1).to(refer.dtype)
|
||||
ge = self.ref_enc(refer[:,:704] * refer_mask, refer_mask)
|
||||
return ge
|
||||
|
||||
def forward(self, codes, text,ge,speed=1):
|
||||
|
||||
y_lengths1=compile_codes_length(codes)
|
||||
|
||||
quantized = self.quantizer.decode(codes)
|
||||
if self.semantic_frame_rate == '25hz':
|
||||
quantized = F.interpolate(quantized, scale_factor=2, mode="nearest")##BCT
|
||||
x, m_p, logs_p, y_mask = self.enc_p(quantized, text, ge,speed)
|
||||
fea=self.bridge(x)
|
||||
fea = F.interpolate(fea, scale_factor=1.875, mode="nearest")##BCT
|
||||
####more wn paramter to learn mel
|
||||
fea, y_mask_ = self.wns1(fea, y_lengths1, ge)
|
||||
return fea
|
||||
|
||||
def extract_latent(self, x):
|
||||
ssl = self.ssl_proj(x)
|
||||
quantized, codes, commit_loss, quantized_list = self.quantizer(ssl)
|
||||
return codes.transpose(0,1)
|
@ -1,21 +0,0 @@
|
||||
import ffmpeg
|
||||
import numpy as np
|
||||
|
||||
|
||||
def load_audio(file, sr):
|
||||
try:
|
||||
# https://github.com/openai/whisper/blob/main/whisper/audio.py#L26
|
||||
# This launches a subprocess to decode audio while down-mixing and resampling as necessary.
|
||||
# Requires the ffmpeg CLI and `ffmpeg-python` package to be installed.
|
||||
file = (
|
||||
file.strip(" ").strip('"').strip("\n").strip('"').strip(" ")
|
||||
) # 防止小白拷路径头尾带了空格和"和回车
|
||||
out, _ = (
|
||||
ffmpeg.input(file, threads=0)
|
||||
.output("-", format="f32le", acodec="pcm_f32le", ac=1, ar=sr)
|
||||
.run(cmd=["ffmpeg", "-nostdin"], capture_stdout=True, capture_stderr=True)
|
||||
)
|
||||
except Exception as e:
|
||||
raise RuntimeError(f"Failed to load audio: {e}")
|
||||
|
||||
return np.frombuffer(out, np.float32).flatten()
|
@ -1,15 +1,16 @@
|
||||
from module.models_onnx import SynthesizerTrn, symbols
|
||||
from module.models_onnx import SynthesizerTrn, symbols_v1, symbols_v2
|
||||
from AR.models.t2s_lightning_module_onnx import Text2SemanticLightningModule
|
||||
import torch
|
||||
import torchaudio
|
||||
from torch import nn
|
||||
from feature_extractor import cnhubert
|
||||
cnhubert_base_path = "pretrained_models/chinese-hubert-base"
|
||||
cnhubert.cnhubert_base_path=cnhubert_base_path
|
||||
|
||||
cnhubert_base_path = "GPT_SoVITS/pretrained_models/chinese-hubert-base"
|
||||
cnhubert.cnhubert_base_path = cnhubert_base_path
|
||||
ssl_model = cnhubert.get_model()
|
||||
from text import cleaned_text_to_sequence
|
||||
import soundfile
|
||||
from my_utils import load_audio
|
||||
from tools.my_utils import load_audio
|
||||
import os
|
||||
import json
|
||||
|
||||
@ -196,6 +197,11 @@ class VitsModel(nn.Module):
|
||||
super().__init__()
|
||||
dict_s2 = torch.load(vits_path,map_location="cpu")
|
||||
self.hps = dict_s2["config"]
|
||||
if dict_s2['weight']['enc_p.text_embedding.weight'].shape[0] == 322:
|
||||
self.hps["model"]["version"] = "v1"
|
||||
else:
|
||||
self.hps["model"]["version"] = "v2"
|
||||
|
||||
self.hps = DictToAttrRecursive(self.hps)
|
||||
self.hps.model.semantic_frame_rate = "25hz"
|
||||
self.vq_model = SynthesizerTrn(
|
||||
@ -267,13 +273,13 @@ class SSLModel(nn.Module):
|
||||
return self.ssl.model(ref_audio_16k)["last_hidden_state"].transpose(1, 2)
|
||||
|
||||
|
||||
def export(vits_path, gpt_path, project_name):
|
||||
def export(vits_path, gpt_path, project_name, vits_model="v2"):
|
||||
vits = VitsModel(vits_path)
|
||||
gpt = T2SModel(gpt_path, vits)
|
||||
gpt_sovits = GptSoVits(vits, gpt)
|
||||
ssl = SSLModel()
|
||||
ref_seq = torch.LongTensor([cleaned_text_to_sequence(["n", "i2", "h", "ao3", ",", "w", "o3", "sh", "i4", "b", "ai2", "y", "e4"])])
|
||||
text_seq = torch.LongTensor([cleaned_text_to_sequence(["w", "o3", "sh", "i4", "b", "ai2", "y", "e4", "w", "o3", "sh", "i4", "b", "ai2", "y", "e4", "w", "o3", "sh", "i4", "b", "ai2", "y", "e4"])])
|
||||
ref_seq = torch.LongTensor([cleaned_text_to_sequence(["n", "i2", "h", "ao3", ",", "w", "o3", "sh", "i4", "b", "ai2", "y", "e4"],version=vits_model)])
|
||||
text_seq = torch.LongTensor([cleaned_text_to_sequence(["w", "o3", "sh", "i4", "b", "ai2", "y", "e4", "w", "o3", "sh", "i4", "b", "ai2", "y", "e4", "w", "o3", "sh", "i4", "b", "ai2", "y", "e4"],version=vits_model)])
|
||||
ref_bert = torch.randn((ref_seq.shape[1], 1024)).float()
|
||||
text_bert = torch.randn((text_seq.shape[1], 1024)).float()
|
||||
ref_audio = torch.randn((1, 48000 * 5)).float()
|
||||
@ -287,34 +293,38 @@ def export(vits_path, gpt_path, project_name):
|
||||
pass
|
||||
|
||||
ssl_content = ssl(ref_audio_16k).float()
|
||||
|
||||
debug = False
|
||||
|
||||
# debug = False
|
||||
debug = True
|
||||
|
||||
# gpt_sovits.export(ref_seq, text_seq, ref_bert, text_bert, ref_audio_sr, ssl_content, project_name)
|
||||
|
||||
if debug:
|
||||
a, b = gpt_sovits(ref_seq, text_seq, ref_bert, text_bert, ref_audio_sr, ssl_content, debug=debug)
|
||||
soundfile.write("out1.wav", a.cpu().detach().numpy(), vits.hps.data.sampling_rate)
|
||||
soundfile.write("out2.wav", b[0], vits.hps.data.sampling_rate)
|
||||
return
|
||||
|
||||
a = gpt_sovits(ref_seq, text_seq, ref_bert, text_bert, ref_audio_sr, ssl_content).detach().cpu().numpy()
|
||||
else:
|
||||
a = gpt_sovits(ref_seq, text_seq, ref_bert, text_bert, ref_audio_sr, ssl_content).detach().cpu().numpy()
|
||||
soundfile.write("out.wav", a, vits.hps.data.sampling_rate)
|
||||
|
||||
soundfile.write("out.wav", a, vits.hps.data.sampling_rate)
|
||||
|
||||
gpt_sovits.export(ref_seq, text_seq, ref_bert, text_bert, ref_audio_sr, ssl_content, project_name)
|
||||
if vits_model == "v1":
|
||||
symbols = symbols_v1
|
||||
else:
|
||||
symbols = symbols_v2
|
||||
|
||||
MoeVSConf = {
|
||||
"Folder" : f"{project_name}",
|
||||
"Name" : f"{project_name}",
|
||||
"Type" : "GPT-SoVits",
|
||||
"Rate" : vits.hps.data.sampling_rate,
|
||||
"NumLayers": gpt.t2s_model.num_layers,
|
||||
"EmbeddingDim": gpt.t2s_model.embedding_dim,
|
||||
"Dict": "BasicDict",
|
||||
"BertPath": "chinese-roberta-wwm-ext-large",
|
||||
"Symbol": symbols,
|
||||
"AddBlank": False
|
||||
}
|
||||
|
||||
"Folder": f"{project_name}",
|
||||
"Name": f"{project_name}",
|
||||
"Type": "GPT-SoVits",
|
||||
"Rate": vits.hps.data.sampling_rate,
|
||||
"NumLayers": gpt.t2s_model.num_layers,
|
||||
"EmbeddingDim": gpt.t2s_model.embedding_dim,
|
||||
"Dict": "BasicDict",
|
||||
"BertPath": "chinese-roberta-wwm-ext-large",
|
||||
# "Symbol": symbols,
|
||||
"AddBlank": False,
|
||||
}
|
||||
|
||||
MoeVSConfJson = json.dumps(MoeVSConf)
|
||||
with open(f"onnx/{project_name}.json", 'w') as MoeVsConfFile:
|
||||
json.dump(MoeVSConf, MoeVsConfFile, indent = 4)
|
||||
|
@ -7,18 +7,21 @@ inp_wav_dir = os.environ.get("inp_wav_dir")
|
||||
exp_name = os.environ.get("exp_name")
|
||||
i_part = os.environ.get("i_part")
|
||||
all_parts = os.environ.get("all_parts")
|
||||
os.environ["CUDA_VISIBLE_DEVICES"] = os.environ.get("_CUDA_VISIBLE_DEVICES")
|
||||
if "_CUDA_VISIBLE_DEVICES" in os.environ:
|
||||
os.environ["CUDA_VISIBLE_DEVICES"] = os.environ["_CUDA_VISIBLE_DEVICES"]
|
||||
opt_dir = os.environ.get("opt_dir")
|
||||
bert_pretrained_dir = os.environ.get("bert_pretrained_dir")
|
||||
is_half = eval(os.environ.get("is_half", "True"))
|
||||
import torch
|
||||
is_half = eval(os.environ.get("is_half", "True")) and torch.cuda.is_available()
|
||||
version = os.environ.get('version', None)
|
||||
import sys, numpy as np, traceback, pdb
|
||||
import os.path
|
||||
from glob import glob
|
||||
from tqdm import tqdm
|
||||
from text.cleaner import clean_text
|
||||
import torch
|
||||
from transformers import AutoModelForMaskedLM, AutoTokenizer
|
||||
import numpy as np
|
||||
from tools.my_utils import clean_path
|
||||
|
||||
# inp_text=sys.argv[1]
|
||||
# inp_wav_dir=sys.argv[2]
|
||||
@ -53,6 +56,8 @@ if os.path.exists(txt_path) == False:
|
||||
# device = "mps"
|
||||
else:
|
||||
device = "cpu"
|
||||
if os.path.exists(bert_pretrained_dir):...
|
||||
else:raise FileNotFoundError(bert_pretrained_dir)
|
||||
tokenizer = AutoTokenizer.from_pretrained(bert_pretrained_dir)
|
||||
bert_model = AutoModelForMaskedLM.from_pretrained(bert_pretrained_dir)
|
||||
if is_half == True:
|
||||
@ -81,9 +86,11 @@ if os.path.exists(txt_path) == False:
|
||||
def process(data, res):
|
||||
for name, text, lan in data:
|
||||
try:
|
||||
name=clean_path(name)
|
||||
name = os.path.basename(name)
|
||||
print(name)
|
||||
phones, word2ph, norm_text = clean_text(
|
||||
text.replace("%", "-").replace("¥", ","), lan
|
||||
text.replace("%", "-").replace("¥", ","), lan, version
|
||||
)
|
||||
path_bert = "%s/%s.pt" % (bert_dir, name)
|
||||
if os.path.exists(path_bert) == False and lan == "zh":
|
||||
@ -112,14 +119,23 @@ if os.path.exists(txt_path) == False:
|
||||
"EN": "en",
|
||||
"en": "en",
|
||||
"En": "en",
|
||||
"KO": "ko",
|
||||
"Ko": "ko",
|
||||
"ko": "ko",
|
||||
"yue": "yue",
|
||||
"YUE": "yue",
|
||||
"Yue": "yue",
|
||||
}
|
||||
for line in lines[int(i_part) :: int(all_parts)]:
|
||||
try:
|
||||
wav_name, spk_name, language, text = line.split("|")
|
||||
# todo.append([name,text,"zh"])
|
||||
todo.append(
|
||||
[wav_name, text, language_v1_to_language_v2.get(language, language)]
|
||||
)
|
||||
if language in language_v1_to_language_v2.keys():
|
||||
todo.append(
|
||||
[wav_name, text, language_v1_to_language_v2.get(language, language)]
|
||||
)
|
||||
else:
|
||||
print(f"\033[33m[Waring] The {language = } of {wav_name} is not supported for training.\033[0m")
|
||||
except:
|
||||
print(line, traceback.format_exc())
|
||||
|
||||
|
@ -6,18 +6,20 @@ inp_wav_dir= os.environ.get("inp_wav_dir")
|
||||
exp_name= os.environ.get("exp_name")
|
||||
i_part= os.environ.get("i_part")
|
||||
all_parts= os.environ.get("all_parts")
|
||||
os.environ["CUDA_VISIBLE_DEVICES"]= os.environ.get("_CUDA_VISIBLE_DEVICES")
|
||||
if "_CUDA_VISIBLE_DEVICES" in os.environ:
|
||||
os.environ["CUDA_VISIBLE_DEVICES"] = os.environ["_CUDA_VISIBLE_DEVICES"]
|
||||
from feature_extractor import cnhubert
|
||||
opt_dir= os.environ.get("opt_dir")
|
||||
cnhubert.cnhubert_base_path= os.environ.get("cnhubert_base_dir")
|
||||
is_half=eval(os.environ.get("is_half","True"))
|
||||
import torch
|
||||
is_half = eval(os.environ.get("is_half", "True")) and torch.cuda.is_available()
|
||||
|
||||
import pdb,traceback,numpy as np,logging
|
||||
from scipy.io import wavfile
|
||||
import librosa,torch
|
||||
import librosa
|
||||
now_dir = os.getcwd()
|
||||
sys.path.append(now_dir)
|
||||
from my_utils import load_audio
|
||||
from tools.my_utils import load_audio,clean_path
|
||||
|
||||
# from config import cnhubert_base_path
|
||||
# cnhubert.cnhubert_base_path=cnhubert_base_path
|
||||
@ -82,7 +84,7 @@ def name2go(wav_name,wav_path):
|
||||
tensor_wav16 = tensor_wav16.to(device)
|
||||
ssl=model.model(tensor_wav16.unsqueeze(0))["last_hidden_state"].transpose(1,2).cpu()#torch.Size([1, 768, 215])
|
||||
if np.isnan(ssl.detach().numpy()).sum()!= 0:
|
||||
nan_fails.append(wav_name)
|
||||
nan_fails.append((wav_name,wav_path))
|
||||
print("nan filtered:%s"%wav_name)
|
||||
return
|
||||
wavfile.write(
|
||||
@ -90,7 +92,7 @@ def name2go(wav_name,wav_path):
|
||||
32000,
|
||||
tmp_audio32.astype("int16"),
|
||||
)
|
||||
my_save(ssl,hubert_path )
|
||||
my_save(ssl,hubert_path)
|
||||
|
||||
with open(inp_text,"r",encoding="utf8")as f:
|
||||
lines=f.read().strip("\n").split("\n")
|
||||
@ -99,6 +101,7 @@ for line in lines[int(i_part)::int(all_parts)]:
|
||||
try:
|
||||
# wav_name,text=line.split("\t")
|
||||
wav_name, spk_name, language, text = line.split("|")
|
||||
wav_name=clean_path(wav_name)
|
||||
if (inp_wav_dir != "" and inp_wav_dir != None):
|
||||
wav_name = os.path.basename(wav_name)
|
||||
wav_path = "%s/%s"%(inp_wav_dir, wav_name)
|
||||
@ -113,8 +116,8 @@ for line in lines[int(i_part)::int(all_parts)]:
|
||||
if(len(nan_fails)>0 and is_half==True):
|
||||
is_half=False
|
||||
model=model.float()
|
||||
for wav_name in nan_fails:
|
||||
for wav in nan_fails:
|
||||
try:
|
||||
name2go(wav_name)
|
||||
name2go(wav[0],wav[1])
|
||||
except:
|
||||
print(wav_name,traceback.format_exc())
|
||||
|
@ -4,11 +4,28 @@ inp_text = os.environ.get("inp_text")
|
||||
exp_name = os.environ.get("exp_name")
|
||||
i_part = os.environ.get("i_part")
|
||||
all_parts = os.environ.get("all_parts")
|
||||
os.environ["CUDA_VISIBLE_DEVICES"] = os.environ.get("_CUDA_VISIBLE_DEVICES")
|
||||
if "_CUDA_VISIBLE_DEVICES" in os.environ:
|
||||
os.environ["CUDA_VISIBLE_DEVICES"] = os.environ["_CUDA_VISIBLE_DEVICES"]
|
||||
opt_dir = os.environ.get("opt_dir")
|
||||
pretrained_s2G = os.environ.get("pretrained_s2G")
|
||||
s2config_path = os.environ.get("s2config_path")
|
||||
is_half = eval(os.environ.get("is_half", "True"))
|
||||
|
||||
if os.path.exists(pretrained_s2G):...
|
||||
else:raise FileNotFoundError(pretrained_s2G)
|
||||
# version=os.environ.get("version","v2")
|
||||
size = os.path.getsize(pretrained_s2G)
|
||||
if size < 82978 * 1024:
|
||||
version = "v1"
|
||||
elif size < 100 * 1024 * 1024:
|
||||
version = "v2"
|
||||
elif size < 103520 * 1024:
|
||||
version = "v1"
|
||||
elif size < 700 * 1024 * 1024:
|
||||
version = "v2"
|
||||
else:
|
||||
version = "v3"
|
||||
import torch
|
||||
is_half = eval(os.environ.get("is_half", "True")) and torch.cuda.is_available()
|
||||
import math, traceback
|
||||
import multiprocessing
|
||||
import sys, pdb
|
||||
@ -19,9 +36,12 @@ from random import shuffle
|
||||
import torch.multiprocessing as mp
|
||||
from glob import glob
|
||||
from tqdm import tqdm
|
||||
import logging, librosa, utils, torch
|
||||
from module.models import SynthesizerTrn
|
||||
|
||||
import logging, librosa, utils
|
||||
if version!="v3":
|
||||
from module.models import SynthesizerTrn
|
||||
else:
|
||||
from module.models import SynthesizerTrnV3 as SynthesizerTrn
|
||||
from tools.my_utils import clean_path
|
||||
logging.getLogger("numba").setLevel(logging.WARNING)
|
||||
# from config import pretrained_s2G
|
||||
|
||||
@ -49,6 +69,7 @@ if os.path.exists(semantic_path) == False:
|
||||
hps.data.filter_length // 2 + 1,
|
||||
hps.train.segment_size // hps.data.hop_length,
|
||||
n_speakers=hps.data.n_speakers,
|
||||
version=version,
|
||||
**hps.model
|
||||
)
|
||||
if is_half == True:
|
||||
@ -60,7 +81,7 @@ if os.path.exists(semantic_path) == False:
|
||||
# utils.load_checkpoint(pretrained_s2G, vq_model, None, True)
|
||||
print(
|
||||
vq_model.load_state_dict(
|
||||
torch.load(pretrained_s2G, map_location="cpu")["weight"], strict=False
|
||||
torch.load(pretrained_s2G, map_location="cpu", weights_only=False)["weight"], strict=False
|
||||
)
|
||||
)
|
||||
|
||||
@ -86,6 +107,7 @@ if os.path.exists(semantic_path) == False:
|
||||
try:
|
||||
# wav_name,text=line.split("\t")
|
||||
wav_name, spk_name, language, text = line.split("|")
|
||||
wav_name=clean_path(wav_name)
|
||||
wav_name = os.path.basename(wav_name)
|
||||
# name2go(name,lines1)
|
||||
name2go(wav_name, lines1)
|
||||
|
@ -14,7 +14,24 @@ def my_save(fea,path):#####fix issue: torch.save doesn't support chinese path
|
||||
torch.save(fea,tmp_path)
|
||||
shutil.move(tmp_path,"%s/%s"%(dir,name))
|
||||
|
||||
def savee(ckpt, name, epoch, steps, hps):
|
||||
'''
|
||||
00:v1
|
||||
01:v2
|
||||
02:v3
|
||||
03:v3lora
|
||||
|
||||
|
||||
'''
|
||||
from io import BytesIO
|
||||
def my_save2(fea,path):
|
||||
bio = BytesIO()
|
||||
torch.save(fea, bio)
|
||||
bio.seek(0)
|
||||
data = bio.getvalue()
|
||||
data = b'03' + data[2:]###temp for v3lora only, todo
|
||||
with open(path, "wb") as f: f.write(data)
|
||||
|
||||
def savee(ckpt, name, epoch, steps, hps,lora_rank=None):
|
||||
try:
|
||||
opt = OrderedDict()
|
||||
opt["weight"] = {}
|
||||
@ -24,8 +41,66 @@ def savee(ckpt, name, epoch, steps, hps):
|
||||
opt["weight"][key] = ckpt[key].half()
|
||||
opt["config"] = hps
|
||||
opt["info"] = "%sepoch_%siteration" % (epoch, steps)
|
||||
# torch.save(opt, "%s/%s.pth" % (hps.save_weight_dir, name))
|
||||
my_save(opt, "%s/%s.pth" % (hps.save_weight_dir, name))
|
||||
if lora_rank:
|
||||
opt["lora_rank"]=lora_rank
|
||||
my_save2(opt, "%s/%s.pth" % (hps.save_weight_dir, name))
|
||||
else:
|
||||
my_save(opt, "%s/%s.pth" % (hps.save_weight_dir, name))
|
||||
return "Success."
|
||||
except:
|
||||
return traceback.format_exc()
|
||||
|
||||
head2version={
|
||||
b'00':["v1","v1",False],
|
||||
b'01':["v2","v2",False],
|
||||
b'02':["v2","v3",False],
|
||||
b'03':["v2","v3",True],
|
||||
}
|
||||
hash_pretrained_dict={
|
||||
"dc3c97e17592963677a4a1681f30c653":["v2","v2",False],#s2G488k.pth#sovits_v1_pretrained
|
||||
"43797be674a37c1c83ee81081941ed0f":["v2","v3",False],#s2Gv3.pth#sovits_v3_pretrained
|
||||
"6642b37f3dbb1f76882b69937c95a5f3":["v2","v2",False],#s2G2333K.pth#sovits_v2_pretrained
|
||||
}
|
||||
import hashlib
|
||||
def get_hash_from_file(sovits_path):
|
||||
with open(sovits_path,"rb")as f:data=f.read(8192)
|
||||
hash_md5 = hashlib.md5()
|
||||
hash_md5.update(data)
|
||||
return hash_md5.hexdigest()
|
||||
def get_sovits_version_from_path_fast(sovits_path):
|
||||
###1-if it is pretrained sovits models, by hash
|
||||
hash=get_hash_from_file(sovits_path)
|
||||
if hash in hash_pretrained_dict:
|
||||
return hash_pretrained_dict[hash]
|
||||
###2-new weights or old weights, by head
|
||||
with open(sovits_path,"rb")as f:version=f.read(2)
|
||||
if version!=b"PK":
|
||||
return head2version[version]
|
||||
###3-old weights, by file size
|
||||
if_lora_v3=False
|
||||
size=os.path.getsize(sovits_path)
|
||||
'''
|
||||
v1weights:about 82942KB
|
||||
half thr:82978KB
|
||||
v2weights:about 83014KB
|
||||
v3weights:about 750MB
|
||||
'''
|
||||
if size < 82978 * 1024:
|
||||
model_version = version = "v1"
|
||||
elif size < 700 * 1024 * 1024:
|
||||
model_version = version = "v2"
|
||||
else:
|
||||
version = "v2"
|
||||
model_version = "v3"
|
||||
return version,model_version,if_lora_v3
|
||||
|
||||
def load_sovits_new(sovits_path):
|
||||
f=open(sovits_path,"rb")
|
||||
meta=f.read(2)
|
||||
if meta!="PK":
|
||||
data = b'PK' + f.read()
|
||||
bio = BytesIO()
|
||||
bio.write(data)
|
||||
bio.seek(0)
|
||||
return torch.load(bio, map_location="cpu", weights_only=False)
|
||||
return torch.load(sovits_path,map_location="cpu", weights_only=False)
|
@ -26,12 +26,7 @@ from AR.utils import get_newest_ckpt
|
||||
from collections import OrderedDict
|
||||
from time import time as ttime
|
||||
import shutil
|
||||
def my_save(fea,path):#####fix issue: torch.save doesn't support chinese path
|
||||
dir=os.path.dirname(path)
|
||||
name=os.path.basename(path)
|
||||
tmp_path="%s.pth"%(ttime())
|
||||
torch.save(fea,tmp_path)
|
||||
shutil.move(tmp_path,"%s/%s"%(dir,name))
|
||||
from process_ckpt import my_save
|
||||
|
||||
|
||||
class my_model_ckpt(ModelCheckpoint):
|
||||
@ -79,15 +74,17 @@ class my_model_ckpt(ModelCheckpoint):
|
||||
to_save_od["config"] = self.config
|
||||
to_save_od["info"] = "GPT-e%s" % (trainer.current_epoch + 1)
|
||||
# torch.save(
|
||||
my_save(
|
||||
to_save_od,
|
||||
"%s/%s-e%s.ckpt"
|
||||
% (
|
||||
self.half_weights_save_dir,
|
||||
self.exp_name,
|
||||
trainer.current_epoch + 1,
|
||||
),
|
||||
)
|
||||
# print(os.environ)
|
||||
if(os.environ.get("LOCAL_RANK","0")=="0"):
|
||||
my_save(
|
||||
to_save_od,
|
||||
"%s/%s-e%s.ckpt"
|
||||
% (
|
||||
self.half_weights_save_dir,
|
||||
self.exp_name,
|
||||
trainer.current_epoch + 1,
|
||||
),
|
||||
)
|
||||
self._save_last_checkpoint(trainer, monitor_candidates)
|
||||
|
||||
|
||||
@ -116,6 +113,7 @@ def main(args):
|
||||
)
|
||||
logger = TensorBoardLogger(name=output_dir.stem, save_dir=output_dir)
|
||||
os.environ["MASTER_ADDR"]="localhost"
|
||||
os.environ["USE_LIBUV"] = "0"
|
||||
trainer: Trainer = Trainer(
|
||||
max_epochs=config["train"]["epochs"],
|
||||
accelerator="gpu" if torch.cuda.is_available() else "cpu",
|
||||
@ -132,6 +130,7 @@ def main(args):
|
||||
logger=logger,
|
||||
num_sanity_val_steps=0,
|
||||
callbacks=[ckpt_callback],
|
||||
use_distributed_sampler=False, # 非常简单的修改,但解决了采用自定义的 bucket_sampler 下训练步数不一致的问题!
|
||||
)
|
||||
|
||||
model: Text2SemanticLightningModule = Text2SemanticLightningModule(
|
||||
|
@ -1,5 +1,6 @@
|
||||
import warnings
|
||||
warnings.filterwarnings("ignore")
|
||||
import utils, os
|
||||
|
||||
hps = utils.get_hparams(stage=2)
|
||||
os.environ["CUDA_VISIBLE_DEVICES"] = hps.train.gpu_numbers.replace("-", ",")
|
||||
import torch
|
||||
@ -74,7 +75,7 @@ def run(rank, n_gpus, hps):
|
||||
|
||||
dist.init_process_group(
|
||||
backend = "gloo" if os.name == "nt" or not torch.cuda.is_available() else "nccl",
|
||||
init_method="env://",
|
||||
init_method="env://?use_libuv=False",
|
||||
world_size=n_gpus,
|
||||
rank=rank,
|
||||
)
|
||||
@ -119,7 +120,7 @@ def run(rank, n_gpus, hps):
|
||||
collate_fn=collate_fn,
|
||||
batch_sampler=train_sampler,
|
||||
persistent_workers=True,
|
||||
prefetch_factor=16,
|
||||
prefetch_factor=4,
|
||||
)
|
||||
# if rank == 0:
|
||||
# eval_dataset = TextAudioSpeakerLoader(hps.data.validation_files, hps.data, val=True)
|
||||
@ -192,7 +193,7 @@ def run(rank, n_gpus, hps):
|
||||
|
||||
try: # 如果能加载自动resume
|
||||
_, _, _, epoch_str = utils.load_checkpoint(
|
||||
utils.latest_checkpoint_path("%s/logs_s2" % hps.data.exp_dir, "D_*.pth"),
|
||||
utils.latest_checkpoint_path("%s/logs_s2_%s" % (hps.data.exp_dir,hps.model.version), "D_*.pth"),
|
||||
net_d,
|
||||
optim_d,
|
||||
) # D多半加载没事
|
||||
@ -200,10 +201,11 @@ def run(rank, n_gpus, hps):
|
||||
logger.info("loaded D")
|
||||
# _, _, _, epoch_str = utils.load_checkpoint(utils.latest_checkpoint_path(hps.model_dir, "G_*.pth"), net_g, optim_g,load_opt=0)
|
||||
_, _, _, epoch_str = utils.load_checkpoint(
|
||||
utils.latest_checkpoint_path("%s/logs_s2" % hps.data.exp_dir, "G_*.pth"),
|
||||
utils.latest_checkpoint_path("%s/logs_s2_%s" % (hps.data.exp_dir,hps.model.version), "G_*.pth"),
|
||||
net_g,
|
||||
optim_g,
|
||||
)
|
||||
epoch_str+=1
|
||||
global_step = (epoch_str - 1) * len(train_loader)
|
||||
# epoch_str = 1
|
||||
# global_step = 0
|
||||
@ -211,10 +213,10 @@ def run(rank, n_gpus, hps):
|
||||
# traceback.print_exc()
|
||||
epoch_str = 1
|
||||
global_step = 0
|
||||
if hps.train.pretrained_s2G != "":
|
||||
if hps.train.pretrained_s2G != ""and hps.train.pretrained_s2G != None and os.path.exists(hps.train.pretrained_s2G):
|
||||
if rank == 0:
|
||||
logger.info("loaded pretrained %s" % hps.train.pretrained_s2G)
|
||||
print(
|
||||
print("loaded pretrained %s" % hps.train.pretrained_s2G,
|
||||
net_g.module.load_state_dict(
|
||||
torch.load(hps.train.pretrained_s2G, map_location="cpu")["weight"],
|
||||
strict=False,
|
||||
@ -223,10 +225,10 @@ def run(rank, n_gpus, hps):
|
||||
strict=False,
|
||||
)
|
||||
) ##测试不加载优化器
|
||||
if hps.train.pretrained_s2D != "":
|
||||
if hps.train.pretrained_s2D != ""and hps.train.pretrained_s2D != None and os.path.exists(hps.train.pretrained_s2D):
|
||||
if rank == 0:
|
||||
logger.info("loaded pretrained %s" % hps.train.pretrained_s2D)
|
||||
print(
|
||||
print("loaded pretrained %s" % hps.train.pretrained_s2D,
|
||||
net_d.module.load_state_dict(
|
||||
torch.load(hps.train.pretrained_s2D, map_location="cpu")["weight"]
|
||||
) if torch.cuda.is_available() else net_d.load_state_dict(
|
||||
@ -249,6 +251,7 @@ def run(rank, n_gpus, hps):
|
||||
|
||||
scaler = GradScaler(enabled=hps.train.fp16_run)
|
||||
|
||||
print("start training from epoch %s" % epoch_str)
|
||||
for epoch in range(epoch_str, hps.train.epochs + 1):
|
||||
if rank == 0:
|
||||
train_and_evaluate(
|
||||
@ -279,6 +282,7 @@ def run(rank, n_gpus, hps):
|
||||
)
|
||||
scheduler_g.step()
|
||||
scheduler_d.step()
|
||||
print("training done")
|
||||
|
||||
|
||||
def train_and_evaluate(
|
||||
@ -305,7 +309,7 @@ def train_and_evaluate(
|
||||
y_lengths,
|
||||
text,
|
||||
text_lengths,
|
||||
) in tqdm(enumerate(train_loader)):
|
||||
) in enumerate(tqdm(train_loader)):
|
||||
if torch.cuda.is_available():
|
||||
spec, spec_lengths = spec.cuda(rank, non_blocking=True), spec_lengths.cuda(
|
||||
rank, non_blocking=True
|
||||
@ -425,26 +429,25 @@ def train_and_evaluate(
|
||||
# scalar_dict.update({"loss/g/{}".format(i): v for i, v in enumerate(losses_gen)})
|
||||
# scalar_dict.update({"loss/d_r/{}".format(i): v for i, v in enumerate(losses_disc_r)})
|
||||
# scalar_dict.update({"loss/d_g/{}".format(i): v for i, v in enumerate(losses_disc_g)})
|
||||
image_dict = {
|
||||
"slice/mel_org": utils.plot_spectrogram_to_numpy(
|
||||
y_mel[0].data.cpu().numpy()
|
||||
),
|
||||
"slice/mel_gen": utils.plot_spectrogram_to_numpy(
|
||||
y_hat_mel[0].data.cpu().numpy()
|
||||
),
|
||||
"all/mel": utils.plot_spectrogram_to_numpy(
|
||||
mel[0].data.cpu().numpy()
|
||||
),
|
||||
"all/stats_ssl": utils.plot_spectrogram_to_numpy(
|
||||
stats_ssl[0].data.cpu().numpy()
|
||||
),
|
||||
}
|
||||
utils.summarize(
|
||||
writer=writer,
|
||||
global_step=global_step,
|
||||
images=image_dict,
|
||||
scalars=scalar_dict,
|
||||
)
|
||||
image_dict=None
|
||||
try:###Some people installed the wrong version of matplotlib.
|
||||
image_dict = {
|
||||
"slice/mel_org": utils.plot_spectrogram_to_numpy(
|
||||
y_mel[0].data.cpu().numpy()
|
||||
),
|
||||
"slice/mel_gen": utils.plot_spectrogram_to_numpy(
|
||||
y_hat_mel[0].data.cpu().numpy()
|
||||
),
|
||||
"all/mel": utils.plot_spectrogram_to_numpy(
|
||||
mel[0].data.cpu().numpy()
|
||||
),
|
||||
"all/stats_ssl": utils.plot_spectrogram_to_numpy(
|
||||
stats_ssl[0].data.cpu().numpy()
|
||||
),
|
||||
}
|
||||
except:pass
|
||||
if image_dict:utils.summarize(writer=writer,global_step=global_step,images=image_dict,scalars=scalar_dict,)
|
||||
else:utils.summarize(writer=writer,global_step=global_step,scalars=scalar_dict,)
|
||||
global_step += 1
|
||||
if epoch % hps.train.save_every_epoch == 0 and rank == 0:
|
||||
if hps.train.if_save_latest == 0:
|
||||
@ -454,7 +457,7 @@ def train_and_evaluate(
|
||||
hps.train.learning_rate,
|
||||
epoch,
|
||||
os.path.join(
|
||||
"%s/logs_s2" % hps.data.exp_dir, "G_{}.pth".format(global_step)
|
||||
"%s/logs_s2_%s" % (hps.data.exp_dir,hps.model.version), "G_{}.pth".format(global_step)
|
||||
),
|
||||
)
|
||||
utils.save_checkpoint(
|
||||
@ -463,7 +466,7 @@ def train_and_evaluate(
|
||||
hps.train.learning_rate,
|
||||
epoch,
|
||||
os.path.join(
|
||||
"%s/logs_s2" % hps.data.exp_dir, "D_{}.pth".format(global_step)
|
||||
"%s/logs_s2_%s" % (hps.data.exp_dir,hps.model.version), "D_{}.pth".format(global_step)
|
||||
),
|
||||
)
|
||||
else:
|
||||
@ -473,7 +476,7 @@ def train_and_evaluate(
|
||||
hps.train.learning_rate,
|
||||
epoch,
|
||||
os.path.join(
|
||||
"%s/logs_s2" % hps.data.exp_dir, "G_{}.pth".format(233333333333)
|
||||
"%s/logs_s2_%s" % (hps.data.exp_dir,hps.model.version), "G_{}.pth".format(233333333333)
|
||||
),
|
||||
)
|
||||
utils.save_checkpoint(
|
||||
@ -482,7 +485,7 @@ def train_and_evaluate(
|
||||
hps.train.learning_rate,
|
||||
epoch,
|
||||
os.path.join(
|
||||
"%s/logs_s2" % hps.data.exp_dir, "D_{}.pth".format(233333333333)
|
||||
"%s/logs_s2_%s" % (hps.data.exp_dir,hps.model.version), "D_{}.pth".format(233333333333)
|
||||
),
|
||||
)
|
||||
if rank == 0 and hps.train.if_save_every_weights == True:
|
||||
|
416
GPT_SoVITS/s2_train_v3.py
Normal file
416
GPT_SoVITS/s2_train_v3.py
Normal file
@ -0,0 +1,416 @@
|
||||
import warnings
|
||||
warnings.filterwarnings("ignore")
|
||||
import utils, os
|
||||
hps = utils.get_hparams(stage=2)
|
||||
os.environ["CUDA_VISIBLE_DEVICES"] = hps.train.gpu_numbers.replace("-", ",")
|
||||
import torch
|
||||
from torch.nn import functional as F
|
||||
from torch.utils.data import DataLoader
|
||||
from torch.utils.tensorboard import SummaryWriter
|
||||
import torch.multiprocessing as mp
|
||||
import torch.distributed as dist, traceback
|
||||
from torch.nn.parallel import DistributedDataParallel as DDP
|
||||
from torch.cuda.amp import autocast, GradScaler
|
||||
from tqdm import tqdm
|
||||
import logging, traceback
|
||||
|
||||
logging.getLogger("matplotlib").setLevel(logging.INFO)
|
||||
logging.getLogger("h5py").setLevel(logging.INFO)
|
||||
logging.getLogger("numba").setLevel(logging.INFO)
|
||||
from random import randint
|
||||
from module import commons
|
||||
|
||||
from module.data_utils import (
|
||||
TextAudioSpeakerLoaderV3 as TextAudioSpeakerLoader,
|
||||
TextAudioSpeakerCollateV3 as TextAudioSpeakerCollate,
|
||||
DistributedBucketSampler,
|
||||
)
|
||||
from module.models import (
|
||||
SynthesizerTrnV3 as SynthesizerTrn,
|
||||
MultiPeriodDiscriminator,
|
||||
)
|
||||
from module.losses import generator_loss, discriminator_loss, feature_loss, kl_loss
|
||||
from module.mel_processing import mel_spectrogram_torch, spec_to_mel_torch
|
||||
from process_ckpt import savee
|
||||
|
||||
torch.backends.cudnn.benchmark = False
|
||||
torch.backends.cudnn.deterministic = False
|
||||
###反正A100fp32更快,那试试tf32吧
|
||||
torch.backends.cuda.matmul.allow_tf32 = True
|
||||
torch.backends.cudnn.allow_tf32 = True
|
||||
torch.set_float32_matmul_precision("medium") # 最低精度但最快(也就快一丁点),对于结果造成不了影响
|
||||
# from config import pretrained_s2G,pretrained_s2D
|
||||
global_step = 0
|
||||
|
||||
device = "cpu" # cuda以外的设备,等mps优化后加入
|
||||
|
||||
|
||||
def main():
|
||||
|
||||
if torch.cuda.is_available():
|
||||
n_gpus = torch.cuda.device_count()
|
||||
else:
|
||||
n_gpus = 1
|
||||
os.environ["MASTER_ADDR"] = "localhost"
|
||||
os.environ["MASTER_PORT"] = str(randint(20000, 55555))
|
||||
|
||||
mp.spawn(
|
||||
run,
|
||||
nprocs=n_gpus,
|
||||
args=(
|
||||
n_gpus,
|
||||
hps,
|
||||
),
|
||||
)
|
||||
|
||||
|
||||
def run(rank, n_gpus, hps):
|
||||
global global_step
|
||||
if rank == 0:
|
||||
logger = utils.get_logger(hps.data.exp_dir)
|
||||
logger.info(hps)
|
||||
# utils.check_git_hash(hps.s2_ckpt_dir)
|
||||
writer = SummaryWriter(log_dir=hps.s2_ckpt_dir)
|
||||
writer_eval = SummaryWriter(log_dir=os.path.join(hps.s2_ckpt_dir, "eval"))
|
||||
|
||||
dist.init_process_group(
|
||||
backend = "gloo" if os.name == "nt" or not torch.cuda.is_available() else "nccl",
|
||||
init_method="env://?use_libuv=False",
|
||||
world_size=n_gpus,
|
||||
rank=rank,
|
||||
)
|
||||
torch.manual_seed(hps.train.seed)
|
||||
if torch.cuda.is_available():
|
||||
torch.cuda.set_device(rank)
|
||||
|
||||
train_dataset = TextAudioSpeakerLoader(hps.data) ########
|
||||
train_sampler = DistributedBucketSampler(
|
||||
train_dataset,
|
||||
hps.train.batch_size,
|
||||
[
|
||||
32,
|
||||
300,
|
||||
400,
|
||||
500,
|
||||
600,
|
||||
700,
|
||||
800,
|
||||
900,
|
||||
1000,
|
||||
# 1100,
|
||||
# 1200,
|
||||
# 1300,
|
||||
# 1400,
|
||||
# 1500,
|
||||
# 1600,
|
||||
# 1700,
|
||||
# 1800,
|
||||
# 1900,
|
||||
],
|
||||
num_replicas=n_gpus,
|
||||
rank=rank,
|
||||
shuffle=True,
|
||||
)
|
||||
collate_fn = TextAudioSpeakerCollate()
|
||||
train_loader = DataLoader(
|
||||
train_dataset,
|
||||
num_workers=6,
|
||||
shuffle=False,
|
||||
pin_memory=True,
|
||||
collate_fn=collate_fn,
|
||||
batch_sampler=train_sampler,
|
||||
persistent_workers=True,
|
||||
prefetch_factor=4,
|
||||
)
|
||||
# if rank == 0:
|
||||
# eval_dataset = TextAudioSpeakerLoader(hps.data.validation_files, hps.data, val=True)
|
||||
# eval_loader = DataLoader(eval_dataset, num_workers=0, shuffle=False,
|
||||
# batch_size=1, pin_memory=True,
|
||||
# drop_last=False, collate_fn=collate_fn)
|
||||
|
||||
net_g = SynthesizerTrn(
|
||||
hps.data.filter_length // 2 + 1,
|
||||
hps.train.segment_size // hps.data.hop_length,
|
||||
n_speakers=hps.data.n_speakers,
|
||||
**hps.model,
|
||||
).cuda(rank) if torch.cuda.is_available() else SynthesizerTrn(
|
||||
hps.data.filter_length // 2 + 1,
|
||||
hps.train.segment_size // hps.data.hop_length,
|
||||
n_speakers=hps.data.n_speakers,
|
||||
**hps.model,
|
||||
).to(device)
|
||||
|
||||
# net_d = MultiPeriodDiscriminator(hps.model.use_spectral_norm).cuda(rank) if torch.cuda.is_available() else MultiPeriodDiscriminator(hps.model.use_spectral_norm).to(device)
|
||||
# for name, param in net_g.named_parameters():
|
||||
# if not param.requires_grad:
|
||||
# print(name, "not requires_grad")
|
||||
|
||||
optim_g = torch.optim.AdamW(
|
||||
filter(lambda p: p.requires_grad, net_g.parameters()),###默认所有层lr一致
|
||||
hps.train.learning_rate,
|
||||
betas=hps.train.betas,
|
||||
eps=hps.train.eps,
|
||||
)
|
||||
# optim_d = torch.optim.AdamW(
|
||||
# net_d.parameters(),
|
||||
# hps.train.learning_rate,
|
||||
# betas=hps.train.betas,
|
||||
# eps=hps.train.eps,
|
||||
# )
|
||||
if torch.cuda.is_available():
|
||||
net_g = DDP(net_g, device_ids=[rank], find_unused_parameters=True)
|
||||
# net_d = DDP(net_d, device_ids=[rank], find_unused_parameters=True)
|
||||
else:
|
||||
net_g = net_g.to(device)
|
||||
# net_d = net_d.to(device)
|
||||
|
||||
try: # 如果能加载自动resume
|
||||
# _, _, _, epoch_str = utils.load_checkpoint(
|
||||
# utils.latest_checkpoint_path("%s/logs_s2_%s" % (hps.data.exp_dir,hps.model.version), "D_*.pth"),
|
||||
# net_d,
|
||||
# optim_d,
|
||||
# ) # D多半加载没事
|
||||
# if rank == 0:
|
||||
# logger.info("loaded D")
|
||||
# _, _, _, epoch_str = utils.load_checkpoint(utils.latest_checkpoint_path(hps.model_dir, "G_*.pth"), net_g, optim_g,load_opt=0)
|
||||
_, _, _, epoch_str = utils.load_checkpoint(
|
||||
utils.latest_checkpoint_path("%s/logs_s2_%s" % (hps.data.exp_dir,hps.model.version), "G_*.pth"),
|
||||
net_g,
|
||||
optim_g,
|
||||
)
|
||||
epoch_str+=1
|
||||
global_step = (epoch_str - 1) * len(train_loader)
|
||||
# epoch_str = 1
|
||||
# global_step = 0
|
||||
except: # 如果首次不能加载,加载pretrain
|
||||
# traceback.print_exc()
|
||||
epoch_str = 1
|
||||
global_step = 0
|
||||
if hps.train.pretrained_s2G != ""and hps.train.pretrained_s2G != None and os.path.exists(hps.train.pretrained_s2G):
|
||||
if rank == 0:
|
||||
logger.info("loaded pretrained %s" % hps.train.pretrained_s2G)
|
||||
print("loaded pretrained %s" % hps.train.pretrained_s2G,
|
||||
net_g.module.load_state_dict(
|
||||
torch.load(hps.train.pretrained_s2G, map_location="cpu")["weight"],
|
||||
strict=False,
|
||||
) if torch.cuda.is_available() else net_g.load_state_dict(
|
||||
torch.load(hps.train.pretrained_s2G, map_location="cpu")["weight"],
|
||||
strict=False,
|
||||
)
|
||||
) ##测试不加载优化器
|
||||
# if hps.train.pretrained_s2D != ""and hps.train.pretrained_s2D != None and os.path.exists(hps.train.pretrained_s2D):
|
||||
# if rank == 0:
|
||||
# logger.info("loaded pretrained %s" % hps.train.pretrained_s2D)
|
||||
# print(
|
||||
# net_d.module.load_state_dict(
|
||||
# torch.load(hps.train.pretrained_s2D, map_location="cpu")["weight"]
|
||||
# ) if torch.cuda.is_available() else net_d.load_state_dict(
|
||||
# torch.load(hps.train.pretrained_s2D, map_location="cpu")["weight"]
|
||||
# )
|
||||
# )
|
||||
|
||||
# scheduler_g = torch.optim.lr_scheduler.ExponentialLR(optim_g, gamma=hps.train.lr_decay, last_epoch=epoch_str - 2)
|
||||
# scheduler_d = torch.optim.lr_scheduler.ExponentialLR(optim_d, gamma=hps.train.lr_decay, last_epoch=epoch_str - 2)
|
||||
|
||||
scheduler_g = torch.optim.lr_scheduler.ExponentialLR(
|
||||
optim_g, gamma=hps.train.lr_decay, last_epoch=-1
|
||||
)
|
||||
# scheduler_d = torch.optim.lr_scheduler.ExponentialLR(
|
||||
# optim_d, gamma=hps.train.lr_decay, last_epoch=-1
|
||||
# )
|
||||
for _ in range(epoch_str):
|
||||
scheduler_g.step()
|
||||
# scheduler_d.step()
|
||||
|
||||
scaler = GradScaler(enabled=hps.train.fp16_run)
|
||||
|
||||
net_d=optim_d=scheduler_d=None
|
||||
print("start training from epoch %s" % epoch_str)
|
||||
for epoch in range(epoch_str, hps.train.epochs + 1):
|
||||
if rank == 0:
|
||||
train_and_evaluate(
|
||||
rank,
|
||||
epoch,
|
||||
hps,
|
||||
[net_g, net_d],
|
||||
[optim_g, optim_d],
|
||||
[scheduler_g, scheduler_d],
|
||||
scaler,
|
||||
# [train_loader, eval_loader], logger, [writer, writer_eval])
|
||||
[train_loader, None],
|
||||
logger,
|
||||
[writer, writer_eval],
|
||||
)
|
||||
else:
|
||||
train_and_evaluate(
|
||||
rank,
|
||||
epoch,
|
||||
hps,
|
||||
[net_g, net_d],
|
||||
[optim_g, optim_d],
|
||||
[scheduler_g, scheduler_d],
|
||||
scaler,
|
||||
[train_loader, None],
|
||||
None,
|
||||
None,
|
||||
)
|
||||
scheduler_g.step()
|
||||
# scheduler_d.step()
|
||||
print("training done")
|
||||
|
||||
|
||||
def train_and_evaluate(
|
||||
rank, epoch, hps, nets, optims, schedulers, scaler, loaders, logger, writers
|
||||
):
|
||||
net_g, net_d = nets
|
||||
optim_g, optim_d = optims
|
||||
# scheduler_g, scheduler_d = schedulers
|
||||
train_loader, eval_loader = loaders
|
||||
if writers is not None:
|
||||
writer, writer_eval = writers
|
||||
|
||||
train_loader.batch_sampler.set_epoch(epoch)
|
||||
global global_step
|
||||
|
||||
net_g.train()
|
||||
# net_d.train()
|
||||
# for batch_idx, (
|
||||
# ssl,
|
||||
# ssl_lengths,
|
||||
# spec,
|
||||
# spec_lengths,
|
||||
# y,
|
||||
# y_lengths,
|
||||
# text,
|
||||
# text_lengths,
|
||||
# ) in enumerate(tqdm(train_loader)):
|
||||
for batch_idx, (ssl, spec, mel, ssl_lengths, spec_lengths, text, text_lengths, mel_lengths) in enumerate(tqdm(train_loader)):
|
||||
if torch.cuda.is_available():
|
||||
spec, spec_lengths = spec.cuda(rank, non_blocking=True), spec_lengths.cuda(
|
||||
rank, non_blocking=True
|
||||
)
|
||||
mel, mel_lengths = mel.cuda(rank, non_blocking=True), mel_lengths.cuda(
|
||||
rank, non_blocking=True
|
||||
)
|
||||
ssl = ssl.cuda(rank, non_blocking=True)
|
||||
ssl.requires_grad = False
|
||||
# ssl_lengths = ssl_lengths.cuda(rank, non_blocking=True)
|
||||
text, text_lengths = text.cuda(rank, non_blocking=True), text_lengths.cuda(
|
||||
rank, non_blocking=True
|
||||
)
|
||||
else:
|
||||
spec, spec_lengths = spec.to(device), spec_lengths.to(device)
|
||||
mel, mel_lengths = mel.to(device), mel_lengths.to(device)
|
||||
ssl = ssl.to(device)
|
||||
ssl.requires_grad = False
|
||||
# ssl_lengths = ssl_lengths.cuda(rank, non_blocking=True)
|
||||
text, text_lengths = text.to(device), text_lengths.to(device)
|
||||
|
||||
with autocast(enabled=hps.train.fp16_run):
|
||||
cfm_loss = net_g(ssl, spec, mel,ssl_lengths,spec_lengths, text, text_lengths,mel_lengths, use_grad_ckpt=hps.train.grad_ckpt)
|
||||
loss_gen_all=cfm_loss
|
||||
optim_g.zero_grad()
|
||||
scaler.scale(loss_gen_all).backward()
|
||||
scaler.unscale_(optim_g)
|
||||
grad_norm_g = commons.clip_grad_value_(net_g.parameters(), None)
|
||||
scaler.step(optim_g)
|
||||
scaler.update()
|
||||
|
||||
if rank == 0:
|
||||
if global_step % hps.train.log_interval == 0:
|
||||
lr = optim_g.param_groups[0]['lr']
|
||||
# losses = [commit_loss,cfm_loss,mel_loss,loss_disc, loss_gen, loss_fm, loss_mel, loss_kl]
|
||||
losses = [cfm_loss]
|
||||
logger.info('Train Epoch: {} [{:.0f}%]'.format(
|
||||
epoch,
|
||||
100. * batch_idx / len(train_loader)))
|
||||
logger.info([x.item() for x in losses] + [global_step, lr])
|
||||
|
||||
scalar_dict = {"loss/g/total": loss_gen_all, "learning_rate": lr, "grad_norm_g": grad_norm_g}
|
||||
# image_dict = {
|
||||
# "slice/mel_org": utils.plot_spectrogram_to_numpy(y_mel[0].data.cpu().numpy()),
|
||||
# "slice/mel_gen": utils.plot_spectrogram_to_numpy(y_hat_mel[0].data.cpu().numpy()),
|
||||
# "all/mel": utils.plot_spectrogram_to_numpy(mel[0].data.cpu().numpy()),
|
||||
# "all/stats_ssl": utils.plot_spectrogram_to_numpy(stats_ssl[0].data.cpu().numpy()),
|
||||
# }
|
||||
utils.summarize(
|
||||
writer=writer,
|
||||
global_step=global_step,
|
||||
# images=image_dict,
|
||||
scalars=scalar_dict)
|
||||
|
||||
# if global_step % hps.train.eval_interval == 0:
|
||||
# # evaluate(hps, net_g, eval_loader, writer_eval)
|
||||
# utils.save_checkpoint(net_g, optim_g, hps.train.learning_rate, epoch,os.path.join(hps.s2_ckpt_dir, "G_{}.pth".format(global_step)),scaler)
|
||||
# # utils.save_checkpoint(net_d, optim_d, hps.train.learning_rate, epoch,os.path.join(hps.s2_ckpt_dir, "D_{}.pth".format(global_step)),scaler)
|
||||
# # keep_ckpts = getattr(hps.train, 'keep_ckpts', 3)
|
||||
# # if keep_ckpts > 0:
|
||||
# # utils.clean_checkpoints(path_to_models=hps.s2_ckpt_dir, n_ckpts_to_keep=keep_ckpts, sort_by_time=True)
|
||||
|
||||
|
||||
global_step += 1
|
||||
if epoch % hps.train.save_every_epoch == 0 and rank == 0:
|
||||
if hps.train.if_save_latest == 0:
|
||||
utils.save_checkpoint(
|
||||
net_g,
|
||||
optim_g,
|
||||
hps.train.learning_rate,
|
||||
epoch,
|
||||
os.path.join(
|
||||
"%s/logs_s2_%s" % (hps.data.exp_dir,hps.model.version), "G_{}.pth".format(global_step)
|
||||
),
|
||||
)
|
||||
# utils.save_checkpoint(
|
||||
# net_d,
|
||||
# optim_d,
|
||||
# hps.train.learning_rate,
|
||||
# epoch,
|
||||
# os.path.join(
|
||||
# "%s/logs_s2_%s" % (hps.data.exp_dir,hps.model.version), "D_{}.pth".format(global_step)
|
||||
# ),
|
||||
# )
|
||||
else:
|
||||
utils.save_checkpoint(
|
||||
net_g,
|
||||
optim_g,
|
||||
hps.train.learning_rate,
|
||||
epoch,
|
||||
os.path.join(
|
||||
"%s/logs_s2_%s" % (hps.data.exp_dir,hps.model.version), "G_{}.pth".format(233333333333)
|
||||
),
|
||||
)
|
||||
# utils.save_checkpoint(
|
||||
# net_d,
|
||||
# optim_d,
|
||||
# hps.train.learning_rate,
|
||||
# epoch,
|
||||
# os.path.join(
|
||||
# "%s/logs_s2_%s" % (hps.data.exp_dir,hps.model.version), "D_{}.pth".format(233333333333)
|
||||
# ),
|
||||
# )
|
||||
if rank == 0 and hps.train.if_save_every_weights == True:
|
||||
if hasattr(net_g, "module"):
|
||||
ckpt = net_g.module.state_dict()
|
||||
else:
|
||||
ckpt = net_g.state_dict()
|
||||
logger.info(
|
||||
"saving ckpt %s_e%s:%s"
|
||||
% (
|
||||
hps.name,
|
||||
epoch,
|
||||
savee(
|
||||
ckpt,
|
||||
hps.name + "_e%s_s%s" % (epoch, global_step),
|
||||
epoch,
|
||||
global_step,
|
||||
hps,
|
||||
),
|
||||
)
|
||||
)
|
||||
|
||||
if rank == 0:
|
||||
logger.info("====> Epoch: {}".format(epoch))
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
345
GPT_SoVITS/s2_train_v3_lora.py
Normal file
345
GPT_SoVITS/s2_train_v3_lora.py
Normal file
@ -0,0 +1,345 @@
|
||||
import warnings
|
||||
warnings.filterwarnings("ignore")
|
||||
import utils, os
|
||||
hps = utils.get_hparams(stage=2)
|
||||
os.environ["CUDA_VISIBLE_DEVICES"] = hps.train.gpu_numbers.replace("-", ",")
|
||||
import torch
|
||||
from torch.nn import functional as F
|
||||
from torch.utils.data import DataLoader
|
||||
from torch.utils.tensorboard import SummaryWriter
|
||||
import torch.multiprocessing as mp
|
||||
import torch.distributed as dist, traceback
|
||||
from torch.nn.parallel import DistributedDataParallel as DDP
|
||||
from torch.cuda.amp import autocast, GradScaler
|
||||
from tqdm import tqdm
|
||||
import logging, traceback
|
||||
|
||||
logging.getLogger("matplotlib").setLevel(logging.INFO)
|
||||
logging.getLogger("h5py").setLevel(logging.INFO)
|
||||
logging.getLogger("numba").setLevel(logging.INFO)
|
||||
from random import randint
|
||||
from module import commons
|
||||
from peft import LoraConfig, PeftModel, get_peft_model
|
||||
from module.data_utils import (
|
||||
TextAudioSpeakerLoaderV3 as TextAudioSpeakerLoader,
|
||||
TextAudioSpeakerCollateV3 as TextAudioSpeakerCollate,
|
||||
DistributedBucketSampler,
|
||||
)
|
||||
from module.models import (
|
||||
SynthesizerTrnV3 as SynthesizerTrn,
|
||||
MultiPeriodDiscriminator,
|
||||
)
|
||||
from module.losses import generator_loss, discriminator_loss, feature_loss, kl_loss
|
||||
from module.mel_processing import mel_spectrogram_torch, spec_to_mel_torch
|
||||
from process_ckpt import savee
|
||||
from collections import OrderedDict as od
|
||||
torch.backends.cudnn.benchmark = False
|
||||
torch.backends.cudnn.deterministic = False
|
||||
###反正A100fp32更快,那试试tf32吧
|
||||
torch.backends.cuda.matmul.allow_tf32 = True
|
||||
torch.backends.cudnn.allow_tf32 = True
|
||||
torch.set_float32_matmul_precision("medium") # 最低精度但最快(也就快一丁点),对于结果造成不了影响
|
||||
# from config import pretrained_s2G,pretrained_s2D
|
||||
global_step = 0
|
||||
|
||||
device = "cpu" # cuda以外的设备,等mps优化后加入
|
||||
|
||||
|
||||
def main():
|
||||
|
||||
if torch.cuda.is_available():
|
||||
n_gpus = torch.cuda.device_count()
|
||||
else:
|
||||
n_gpus = 1
|
||||
os.environ["MASTER_ADDR"] = "localhost"
|
||||
os.environ["MASTER_PORT"] = str(randint(20000, 55555))
|
||||
|
||||
mp.spawn(
|
||||
run,
|
||||
nprocs=n_gpus,
|
||||
args=(
|
||||
n_gpus,
|
||||
hps,
|
||||
),
|
||||
)
|
||||
|
||||
|
||||
def run(rank, n_gpus, hps):
|
||||
global global_step,no_grad_names,save_root,lora_rank
|
||||
if rank == 0:
|
||||
logger = utils.get_logger(hps.data.exp_dir)
|
||||
logger.info(hps)
|
||||
# utils.check_git_hash(hps.s2_ckpt_dir)
|
||||
writer = SummaryWriter(log_dir=hps.s2_ckpt_dir)
|
||||
writer_eval = SummaryWriter(log_dir=os.path.join(hps.s2_ckpt_dir, "eval"))
|
||||
|
||||
dist.init_process_group(
|
||||
backend = "gloo" if os.name == "nt" or not torch.cuda.is_available() else "nccl",
|
||||
init_method="env://?use_libuv=False",
|
||||
world_size=n_gpus,
|
||||
rank=rank,
|
||||
)
|
||||
torch.manual_seed(hps.train.seed)
|
||||
if torch.cuda.is_available():
|
||||
torch.cuda.set_device(rank)
|
||||
|
||||
train_dataset = TextAudioSpeakerLoader(hps.data) ########
|
||||
train_sampler = DistributedBucketSampler(
|
||||
train_dataset,
|
||||
hps.train.batch_size,
|
||||
[
|
||||
32,
|
||||
300,
|
||||
400,
|
||||
500,
|
||||
600,
|
||||
700,
|
||||
800,
|
||||
900,
|
||||
1000,
|
||||
# 1100,
|
||||
# 1200,
|
||||
# 1300,
|
||||
# 1400,
|
||||
# 1500,
|
||||
# 1600,
|
||||
# 1700,
|
||||
# 1800,
|
||||
# 1900,
|
||||
],
|
||||
num_replicas=n_gpus,
|
||||
rank=rank,
|
||||
shuffle=True,
|
||||
)
|
||||
collate_fn = TextAudioSpeakerCollate()
|
||||
train_loader = DataLoader(
|
||||
train_dataset,
|
||||
num_workers=6,
|
||||
shuffle=False,
|
||||
pin_memory=True,
|
||||
collate_fn=collate_fn,
|
||||
batch_sampler=train_sampler,
|
||||
persistent_workers=True,
|
||||
prefetch_factor=4,
|
||||
)
|
||||
save_root="%s/logs_s2_%s_lora_%s" % (hps.data.exp_dir,hps.model.version,hps.train.lora_rank)
|
||||
os.makedirs(save_root,exist_ok=True)
|
||||
lora_rank=int(hps.train.lora_rank)
|
||||
lora_config = LoraConfig(
|
||||
target_modules=["to_k", "to_q", "to_v", "to_out.0"],
|
||||
r=lora_rank,
|
||||
lora_alpha=lora_rank,
|
||||
init_lora_weights=True,
|
||||
)
|
||||
def get_model(hps):return SynthesizerTrn(
|
||||
hps.data.filter_length // 2 + 1,
|
||||
hps.train.segment_size // hps.data.hop_length,
|
||||
n_speakers=hps.data.n_speakers,
|
||||
**hps.model,
|
||||
)
|
||||
def get_optim(net_g):
|
||||
return torch.optim.AdamW(
|
||||
filter(lambda p: p.requires_grad, net_g.parameters()), ###默认所有层lr一致
|
||||
hps.train.learning_rate,
|
||||
betas=hps.train.betas,
|
||||
eps=hps.train.eps,
|
||||
)
|
||||
def model2cuda(net_g,rank):
|
||||
if torch.cuda.is_available():
|
||||
net_g = DDP(net_g.cuda(rank), device_ids=[rank], find_unused_parameters=True)
|
||||
else:
|
||||
net_g = net_g.to(device)
|
||||
return net_g
|
||||
try:# 如果能加载自动resume
|
||||
net_g = get_model(hps)
|
||||
net_g.cfm = get_peft_model(net_g.cfm, lora_config)
|
||||
net_g=model2cuda(net_g,rank)
|
||||
optim_g=get_optim(net_g)
|
||||
# _, _, _, epoch_str = utils.load_checkpoint(utils.latest_checkpoint_path(hps.model_dir, "G_*.pth"), net_g, optim_g,load_opt=0)
|
||||
_, _, _, epoch_str = utils.load_checkpoint(
|
||||
utils.latest_checkpoint_path(save_root, "G_*.pth"),
|
||||
net_g,
|
||||
optim_g,
|
||||
)
|
||||
epoch_str+=1
|
||||
global_step = (epoch_str - 1) * len(train_loader)
|
||||
except: # 如果首次不能加载,加载pretrain
|
||||
# traceback.print_exc()
|
||||
epoch_str = 1
|
||||
global_step = 0
|
||||
net_g = get_model(hps)
|
||||
if hps.train.pretrained_s2G != ""and hps.train.pretrained_s2G != None and os.path.exists(hps.train.pretrained_s2G):
|
||||
if rank == 0:
|
||||
logger.info("loaded pretrained %s" % hps.train.pretrained_s2G)
|
||||
print("loaded pretrained %s" % hps.train.pretrained_s2G,
|
||||
net_g.load_state_dict(
|
||||
torch.load(hps.train.pretrained_s2G, map_location="cpu")["weight"],
|
||||
strict=False,
|
||||
)
|
||||
)
|
||||
net_g.cfm = get_peft_model(net_g.cfm, lora_config)
|
||||
net_g=model2cuda(net_g,rank)
|
||||
optim_g = get_optim(net_g)
|
||||
|
||||
no_grad_names=set()
|
||||
for name, param in net_g.named_parameters():
|
||||
if not param.requires_grad:
|
||||
no_grad_names.add(name.replace("module.",""))
|
||||
# print(name, "not requires_grad")
|
||||
# print(no_grad_names)
|
||||
# os._exit(233333)
|
||||
|
||||
scheduler_g = torch.optim.lr_scheduler.ExponentialLR(
|
||||
optim_g, gamma=hps.train.lr_decay, last_epoch=-1
|
||||
)
|
||||
for _ in range(epoch_str):
|
||||
scheduler_g.step()
|
||||
|
||||
scaler = GradScaler(enabled=hps.train.fp16_run)
|
||||
|
||||
net_d=optim_d=scheduler_d=None
|
||||
print("start training from epoch %s"%epoch_str)
|
||||
for epoch in range(epoch_str, hps.train.epochs + 1):
|
||||
if rank == 0:
|
||||
train_and_evaluate(
|
||||
rank,
|
||||
epoch,
|
||||
hps,
|
||||
[net_g, net_d],
|
||||
[optim_g, optim_d],
|
||||
[scheduler_g, scheduler_d],
|
||||
scaler,
|
||||
# [train_loader, eval_loader], logger, [writer, writer_eval])
|
||||
[train_loader, None],
|
||||
logger,
|
||||
[writer, writer_eval],
|
||||
)
|
||||
else:
|
||||
train_and_evaluate(
|
||||
rank,
|
||||
epoch,
|
||||
hps,
|
||||
[net_g, net_d],
|
||||
[optim_g, optim_d],
|
||||
[scheduler_g, scheduler_d],
|
||||
scaler,
|
||||
[train_loader, None],
|
||||
None,
|
||||
None,
|
||||
)
|
||||
scheduler_g.step()
|
||||
print("training done")
|
||||
|
||||
def train_and_evaluate(
|
||||
rank, epoch, hps, nets, optims, schedulers, scaler, loaders, logger, writers
|
||||
):
|
||||
net_g, net_d = nets
|
||||
optim_g, optim_d = optims
|
||||
# scheduler_g, scheduler_d = schedulers
|
||||
train_loader, eval_loader = loaders
|
||||
if writers is not None:
|
||||
writer, writer_eval = writers
|
||||
|
||||
train_loader.batch_sampler.set_epoch(epoch)
|
||||
global global_step
|
||||
|
||||
net_g.train()
|
||||
for batch_idx, (ssl, spec, mel, ssl_lengths, spec_lengths, text, text_lengths, mel_lengths) in enumerate(tqdm(train_loader)):
|
||||
if torch.cuda.is_available():
|
||||
spec, spec_lengths = spec.cuda(rank, non_blocking=True), spec_lengths.cuda(
|
||||
rank, non_blocking=True
|
||||
)
|
||||
mel, mel_lengths = mel.cuda(rank, non_blocking=True), mel_lengths.cuda(
|
||||
rank, non_blocking=True
|
||||
)
|
||||
ssl = ssl.cuda(rank, non_blocking=True)
|
||||
ssl.requires_grad = False
|
||||
text, text_lengths = text.cuda(rank, non_blocking=True), text_lengths.cuda(
|
||||
rank, non_blocking=True
|
||||
)
|
||||
else:
|
||||
spec, spec_lengths = spec.to(device), spec_lengths.to(device)
|
||||
mel, mel_lengths = mel.to(device), mel_lengths.to(device)
|
||||
ssl = ssl.to(device)
|
||||
ssl.requires_grad = False
|
||||
text, text_lengths = text.to(device), text_lengths.to(device)
|
||||
|
||||
with autocast(enabled=hps.train.fp16_run):
|
||||
cfm_loss = net_g(ssl, spec, mel,ssl_lengths,spec_lengths, text, text_lengths,mel_lengths, use_grad_ckpt=hps.train.grad_ckpt)
|
||||
loss_gen_all=cfm_loss
|
||||
optim_g.zero_grad()
|
||||
scaler.scale(loss_gen_all).backward()
|
||||
scaler.unscale_(optim_g)
|
||||
grad_norm_g = commons.clip_grad_value_(net_g.parameters(), None)
|
||||
scaler.step(optim_g)
|
||||
scaler.update()
|
||||
|
||||
if rank == 0:
|
||||
if global_step % hps.train.log_interval == 0:
|
||||
lr = optim_g.param_groups[0]['lr']
|
||||
losses = [cfm_loss]
|
||||
logger.info('Train Epoch: {} [{:.0f}%]'.format(
|
||||
epoch,
|
||||
100. * batch_idx / len(train_loader)))
|
||||
logger.info([x.item() for x in losses] + [global_step, lr])
|
||||
|
||||
scalar_dict = {"loss/g/total": loss_gen_all, "learning_rate": lr, "grad_norm_g": grad_norm_g}
|
||||
utils.summarize(
|
||||
writer=writer,
|
||||
global_step=global_step,
|
||||
scalars=scalar_dict)
|
||||
|
||||
global_step += 1
|
||||
if epoch % hps.train.save_every_epoch == 0 and rank == 0:
|
||||
if hps.train.if_save_latest == 0:
|
||||
utils.save_checkpoint(
|
||||
net_g,
|
||||
optim_g,
|
||||
hps.train.learning_rate,
|
||||
epoch,
|
||||
os.path.join(
|
||||
save_root, "G_{}.pth".format(global_step)
|
||||
),
|
||||
)
|
||||
else:
|
||||
utils.save_checkpoint(
|
||||
net_g,
|
||||
optim_g,
|
||||
hps.train.learning_rate,
|
||||
epoch,
|
||||
os.path.join(
|
||||
save_root, "G_{}.pth".format(233333333333)
|
||||
),
|
||||
)
|
||||
if rank == 0 and hps.train.if_save_every_weights == True:
|
||||
if hasattr(net_g, "module"):
|
||||
ckpt = net_g.module.state_dict()
|
||||
else:
|
||||
ckpt = net_g.state_dict()
|
||||
sim_ckpt=od()
|
||||
for key in ckpt:
|
||||
# if "cfm"not in key:
|
||||
# print(key)
|
||||
if key not in no_grad_names:
|
||||
sim_ckpt[key]=ckpt[key].half().cpu()
|
||||
logger.info(
|
||||
"saving ckpt %s_e%s:%s"
|
||||
% (
|
||||
hps.name,
|
||||
epoch,
|
||||
savee(
|
||||
sim_ckpt,
|
||||
hps.name + "_e%s_s%s_l%s" % (epoch, global_step,lora_rank),
|
||||
epoch,
|
||||
global_step,
|
||||
hps,lora_rank=lora_rank
|
||||
),
|
||||
)
|
||||
)
|
||||
|
||||
if rank == 0:
|
||||
logger.info("====> Epoch: {}".format(epoch))
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
3
GPT_SoVITS/text/.gitignore
vendored
Normal file
3
GPT_SoVITS/text/.gitignore
vendored
Normal file
@ -0,0 +1,3 @@
|
||||
G2PWModel
|
||||
__pycache__
|
||||
*.zip
|
1
GPT_SoVITS/text/LangSegmenter/__init__.py
Normal file
1
GPT_SoVITS/text/LangSegmenter/__init__.py
Normal file
@ -0,0 +1 @@
|
||||
from .langsegmenter import LangSegmenter
|
158
GPT_SoVITS/text/LangSegmenter/langsegmenter.py
Normal file
158
GPT_SoVITS/text/LangSegmenter/langsegmenter.py
Normal file
@ -0,0 +1,158 @@
|
||||
import logging
|
||||
import re
|
||||
|
||||
# jieba静音
|
||||
import jieba
|
||||
jieba.setLogLevel(logging.CRITICAL)
|
||||
|
||||
# 更改fast_langdetect大模型位置
|
||||
from pathlib import Path
|
||||
import fast_langdetect
|
||||
fast_langdetect.infer._default_detector = fast_langdetect.infer.LangDetector(fast_langdetect.infer.LangDetectConfig(cache_dir=Path(__file__).parent.parent.parent / "pretrained_models" / "fast_langdetect"))
|
||||
|
||||
|
||||
from split_lang import LangSplitter
|
||||
|
||||
|
||||
def full_en(text):
|
||||
pattern = r'^[A-Za-z0-9\s\u0020-\u007E\u2000-\u206F\u3000-\u303F\uFF00-\uFFEF]+$'
|
||||
return bool(re.match(pattern, text))
|
||||
|
||||
|
||||
def full_cjk(text):
|
||||
# 来自wiki
|
||||
cjk_ranges = [
|
||||
(0x4E00, 0x9FFF), # CJK Unified Ideographs
|
||||
(0x3400, 0x4DB5), # CJK Extension A
|
||||
(0x20000, 0x2A6DD), # CJK Extension B
|
||||
(0x2A700, 0x2B73F), # CJK Extension C
|
||||
(0x2B740, 0x2B81F), # CJK Extension D
|
||||
(0x2B820, 0x2CEAF), # CJK Extension E
|
||||
(0x2CEB0, 0x2EBEF), # CJK Extension F
|
||||
(0x30000, 0x3134A), # CJK Extension G
|
||||
(0x31350, 0x323AF), # CJK Extension H
|
||||
(0x2EBF0, 0x2EE5D), # CJK Extension H
|
||||
]
|
||||
|
||||
pattern = r'[0-9、-〜。!?.!?… ]+$'
|
||||
|
||||
cjk_text = ""
|
||||
for char in text:
|
||||
code_point = ord(char)
|
||||
in_cjk = any(start <= code_point <= end for start, end in cjk_ranges)
|
||||
if in_cjk or re.match(pattern, char):
|
||||
cjk_text += char
|
||||
return cjk_text
|
||||
|
||||
|
||||
def split_jako(tag_lang,item):
|
||||
if tag_lang == "ja":
|
||||
pattern = r"([\u3041-\u3096\u3099\u309A\u30A1-\u30FA\u30FC]+(?:[0-9、-〜。!?.!?… ]+[\u3041-\u3096\u3099\u309A\u30A1-\u30FA\u30FC]*)*)"
|
||||
else:
|
||||
pattern = r"([\u1100-\u11FF\u3130-\u318F\uAC00-\uD7AF]+(?:[0-9、-〜。!?.!?… ]+[\u1100-\u11FF\u3130-\u318F\uAC00-\uD7AF]*)*)"
|
||||
|
||||
lang_list: list[dict] = []
|
||||
tag = 0
|
||||
for match in re.finditer(pattern, item['text']):
|
||||
if match.start() > tag:
|
||||
lang_list.append({'lang':item['lang'],'text':item['text'][tag:match.start()]})
|
||||
|
||||
tag = match.end()
|
||||
lang_list.append({'lang':tag_lang,'text':item['text'][match.start():match.end()]})
|
||||
|
||||
if tag < len(item['text']):
|
||||
lang_list.append({'lang':item['lang'],'text':item['text'][tag:len(item['text'])]})
|
||||
|
||||
return lang_list
|
||||
|
||||
|
||||
def merge_lang(lang_list, item):
|
||||
if lang_list and item['lang'] == lang_list[-1]['lang']:
|
||||
lang_list[-1]['text'] += item['text']
|
||||
else:
|
||||
lang_list.append(item)
|
||||
return lang_list
|
||||
|
||||
|
||||
class LangSegmenter():
|
||||
# 默认过滤器, 基于gsv目前四种语言
|
||||
DEFAULT_LANG_MAP = {
|
||||
"zh": "zh",
|
||||
"yue": "zh", # 粤语
|
||||
"wuu": "zh", # 吴语
|
||||
"zh-cn": "zh",
|
||||
"zh-tw": "x", # 繁体设置为x
|
||||
"ko": "ko",
|
||||
"ja": "ja",
|
||||
"en": "en",
|
||||
}
|
||||
|
||||
|
||||
def getTexts(text):
|
||||
lang_splitter = LangSplitter(lang_map=LangSegmenter.DEFAULT_LANG_MAP)
|
||||
substr = lang_splitter.split_by_lang(text=text)
|
||||
|
||||
lang_list: list[dict] = []
|
||||
|
||||
for _, item in enumerate(substr):
|
||||
dict_item = {'lang':item.lang,'text':item.text}
|
||||
|
||||
# 处理短英文被识别为其他语言的问题
|
||||
if full_en(dict_item['text']):
|
||||
dict_item['lang'] = 'en'
|
||||
lang_list = merge_lang(lang_list,dict_item)
|
||||
continue
|
||||
|
||||
# 处理非日语夹日文的问题(不包含CJK)
|
||||
ja_list: list[dict] = []
|
||||
if dict_item['lang'] != 'ja':
|
||||
ja_list = split_jako('ja',dict_item)
|
||||
|
||||
if not ja_list:
|
||||
ja_list.append(dict_item)
|
||||
|
||||
# 处理非韩语夹韩语的问题(不包含CJK)
|
||||
ko_list: list[dict] = []
|
||||
temp_list: list[dict] = []
|
||||
for _, ko_item in enumerate(ja_list):
|
||||
if ko_item["lang"] != 'ko':
|
||||
ko_list = split_jako('ko',ko_item)
|
||||
|
||||
if ko_list:
|
||||
temp_list.extend(ko_list)
|
||||
else:
|
||||
temp_list.append(ko_item)
|
||||
|
||||
# 未存在非日韩文夹日韩文
|
||||
if len(temp_list) == 1:
|
||||
# 未知语言检查是否为CJK
|
||||
if dict_item['lang'] == 'x':
|
||||
cjk_text = full_cjk(dict_item['text'])
|
||||
if cjk_text:
|
||||
dict_item = {'lang':'zh','text':cjk_text}
|
||||
lang_list = merge_lang(lang_list,dict_item)
|
||||
continue
|
||||
else:
|
||||
lang_list = merge_lang(lang_list,dict_item)
|
||||
continue
|
||||
|
||||
# 存在非日韩文夹日韩文
|
||||
for _, temp_item in enumerate(temp_list):
|
||||
# 未知语言检查是否为CJK
|
||||
if temp_item['lang'] == 'x':
|
||||
cjk_text = full_cjk(dict_item['text'])
|
||||
if cjk_text:
|
||||
dict_item = {'lang':'zh','text':cjk_text}
|
||||
lang_list = merge_lang(lang_list,dict_item)
|
||||
else:
|
||||
lang_list = merge_lang(lang_list,temp_item)
|
||||
return lang_list
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
text = "MyGO?,你也喜欢まいご吗?"
|
||||
print(LangSegmenter.getTexts(text))
|
||||
|
||||
text = "ねえ、知ってる?最近、僕は天文学を勉強してるんだ。君の瞳が星空みたいにキラキラしてるからさ。"
|
||||
print(LangSegmenter.getTexts(text))
|
||||
|
@ -1,15 +1,27 @@
|
||||
from text.symbols import *
|
||||
import os
|
||||
# if os.environ.get("version","v1")=="v1":
|
||||
# from text.symbols import symbols
|
||||
# else:
|
||||
# from text.symbols2 import symbols
|
||||
|
||||
from text import symbols as symbols_v1
|
||||
from text import symbols2 as symbols_v2
|
||||
|
||||
_symbol_to_id = {s: i for i, s in enumerate(symbols)}
|
||||
_symbol_to_id_v1 = {s: i for i, s in enumerate(symbols_v1.symbols)}
|
||||
_symbol_to_id_v2 = {s: i for i, s in enumerate(symbols_v2.symbols)}
|
||||
|
||||
def cleaned_text_to_sequence(cleaned_text):
|
||||
def cleaned_text_to_sequence(cleaned_text, version=None):
|
||||
'''Converts a string of text to a sequence of IDs corresponding to the symbols in the text.
|
||||
Args:
|
||||
text: string to convert to a sequence
|
||||
Returns:
|
||||
List of integers corresponding to the symbols in the text
|
||||
'''
|
||||
phones = [_symbol_to_id[symbol] for symbol in cleaned_text]
|
||||
if version is None:version=os.environ.get('version', 'v2')
|
||||
if version == "v1":
|
||||
phones = [_symbol_to_id_v1[symbol] for symbol in cleaned_text]
|
||||
else:
|
||||
phones = [_symbol_to_id_v2[symbol] for symbol in cleaned_text]
|
||||
|
||||
return phones
|
||||
|
||||
|
221
GPT_SoVITS/text/cantonese.py
Normal file
221
GPT_SoVITS/text/cantonese.py
Normal file
@ -0,0 +1,221 @@
|
||||
# reference: https://huggingface.co/spaces/Naozumi0512/Bert-VITS2-Cantonese-Yue/blob/main/text/chinese.py
|
||||
|
||||
import sys
|
||||
import re
|
||||
import cn2an
|
||||
import ToJyutping
|
||||
|
||||
from text.symbols import punctuation
|
||||
from text.zh_normalization.text_normlization import TextNormalizer
|
||||
|
||||
normalizer = lambda x: cn2an.transform(x, "an2cn")
|
||||
|
||||
INITIALS = [
|
||||
"aa",
|
||||
"aai",
|
||||
"aak",
|
||||
"aap",
|
||||
"aat",
|
||||
"aau",
|
||||
"ai",
|
||||
"au",
|
||||
"ap",
|
||||
"at",
|
||||
"ak",
|
||||
"a",
|
||||
"p",
|
||||
"b",
|
||||
"e",
|
||||
"ts",
|
||||
"t",
|
||||
"dz",
|
||||
"d",
|
||||
"kw",
|
||||
"k",
|
||||
"gw",
|
||||
"g",
|
||||
"f",
|
||||
"h",
|
||||
"l",
|
||||
"m",
|
||||
"ng",
|
||||
"n",
|
||||
"s",
|
||||
"y",
|
||||
"w",
|
||||
"c",
|
||||
"z",
|
||||
"j",
|
||||
"ong",
|
||||
"on",
|
||||
"ou",
|
||||
"oi",
|
||||
"ok",
|
||||
"o",
|
||||
"uk",
|
||||
"ung",
|
||||
]
|
||||
INITIALS += ["sp", "spl", "spn", "sil"]
|
||||
|
||||
|
||||
rep_map = {
|
||||
":": ",",
|
||||
";": ",",
|
||||
",": ",",
|
||||
"。": ".",
|
||||
"!": "!",
|
||||
"?": "?",
|
||||
"\n": ".",
|
||||
"·": ",",
|
||||
"、": ",",
|
||||
"...": "…",
|
||||
"$": ".",
|
||||
"“": "'",
|
||||
"”": "'",
|
||||
'"': "'",
|
||||
"‘": "'",
|
||||
"’": "'",
|
||||
"(": "'",
|
||||
")": "'",
|
||||
"(": "'",
|
||||
")": "'",
|
||||
"《": "'",
|
||||
"》": "'",
|
||||
"【": "'",
|
||||
"】": "'",
|
||||
"[": "'",
|
||||
"]": "'",
|
||||
"—": "-",
|
||||
"~": "-",
|
||||
"~": "-",
|
||||
"「": "'",
|
||||
"」": "'",
|
||||
}
|
||||
|
||||
|
||||
def replace_punctuation(text):
|
||||
# text = text.replace("嗯", "恩").replace("呣", "母")
|
||||
pattern = re.compile("|".join(re.escape(p) for p in rep_map.keys()))
|
||||
|
||||
replaced_text = pattern.sub(lambda x: rep_map[x.group()], text)
|
||||
|
||||
replaced_text = re.sub(
|
||||
r"[^\u4e00-\u9fa5" + "".join(punctuation) + r"]+", "", replaced_text
|
||||
)
|
||||
|
||||
return replaced_text
|
||||
|
||||
|
||||
def text_normalize(text):
|
||||
tx = TextNormalizer()
|
||||
sentences = tx.normalize(text)
|
||||
dest_text = ""
|
||||
for sentence in sentences:
|
||||
dest_text += replace_punctuation(sentence)
|
||||
return dest_text
|
||||
|
||||
|
||||
punctuation_set=set(punctuation)
|
||||
def jyuping_to_initials_finals_tones(jyuping_syllables):
|
||||
initials_finals = []
|
||||
tones = []
|
||||
word2ph = []
|
||||
|
||||
for syllable in jyuping_syllables:
|
||||
if syllable in punctuation:
|
||||
initials_finals.append(syllable)
|
||||
tones.append(0)
|
||||
word2ph.append(1) # Add 1 for punctuation
|
||||
elif syllable == "_":
|
||||
initials_finals.append(syllable)
|
||||
tones.append(0)
|
||||
word2ph.append(1) # Add 1 for underscore
|
||||
else:
|
||||
try:
|
||||
tone = int(syllable[-1])
|
||||
syllable_without_tone = syllable[:-1]
|
||||
except ValueError:
|
||||
tone = 0
|
||||
syllable_without_tone = syllable
|
||||
|
||||
for initial in INITIALS:
|
||||
if syllable_without_tone.startswith(initial):
|
||||
if syllable_without_tone.startswith("nga"):
|
||||
initials_finals.extend(
|
||||
[
|
||||
syllable_without_tone[:2],
|
||||
syllable_without_tone[2:] or syllable_without_tone[-1],
|
||||
]
|
||||
)
|
||||
# tones.extend([tone, tone])
|
||||
tones.extend([-1, tone])
|
||||
word2ph.append(2)
|
||||
else:
|
||||
final = syllable_without_tone[len(initial) :] or initial[-1]
|
||||
initials_finals.extend([initial, final])
|
||||
# tones.extend([tone, tone])
|
||||
tones.extend([-1, tone])
|
||||
word2ph.append(2)
|
||||
break
|
||||
assert len(initials_finals) == len(tones)
|
||||
|
||||
###魔改为辅音+带音调的元音
|
||||
phones=[]
|
||||
for a,b in zip(initials_finals,tones):
|
||||
if(b not in [-1,0]):###防止粤语和普通话重合开头加Y,如果是标点,不加。
|
||||
todo="%s%s"%(a,b)
|
||||
else:todo=a
|
||||
if(todo not in punctuation_set):todo="Y%s"%todo
|
||||
phones.append(todo)
|
||||
|
||||
# return initials_finals, tones, word2ph
|
||||
return phones, word2ph
|
||||
|
||||
|
||||
def get_jyutping(text):
|
||||
jyutping_array = []
|
||||
punct_pattern = re.compile(r"^[{}]+$".format(re.escape("".join(punctuation))))
|
||||
|
||||
syllables = ToJyutping.get_jyutping_list(text)
|
||||
|
||||
for word, syllable in syllables:
|
||||
if punct_pattern.match(word):
|
||||
puncts = re.split(r"([{}])".format(re.escape("".join(punctuation))), word)
|
||||
for punct in puncts:
|
||||
if len(punct) > 0:
|
||||
jyutping_array.append(punct)
|
||||
else:
|
||||
# match multple jyutping eg: liu4 ge3, or single jyutping eg: liu4
|
||||
if not re.search(r"^([a-z]+[1-6]+[ ]?)+$", syllable):
|
||||
raise ValueError(f"Failed to convert {word} to jyutping: {syllable}")
|
||||
jyutping_array.append(syllable)
|
||||
|
||||
return jyutping_array
|
||||
|
||||
|
||||
def get_bert_feature(text, word2ph):
|
||||
from text import chinese_bert
|
||||
|
||||
return chinese_bert.get_bert_feature(text, word2ph)
|
||||
|
||||
|
||||
def g2p(text):
|
||||
# word2ph = []
|
||||
jyuping = get_jyutping(text)
|
||||
# print(jyuping)
|
||||
# phones, tones, word2ph = jyuping_to_initials_finals_tones(jyuping)
|
||||
phones, word2ph = jyuping_to_initials_finals_tones(jyuping)
|
||||
# phones = ["_"] + phones + ["_"]
|
||||
# tones = [0] + tones + [0]
|
||||
# word2ph = [1] + word2ph + [1]
|
||||
return phones, word2ph
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
# text = "啊!但是《原神》是由,米哈\游自主, [研发]的一款全.新开放世界.冒险游戏"
|
||||
text = "佢個鋤頭太短啦。"
|
||||
text = text_normalize(text)
|
||||
# phones, tones, word2ph = g2p(text)
|
||||
phones, word2ph = g2p(text)
|
||||
# print(phones, tones, word2ph)
|
||||
print(phones, word2ph)
|
Some files were not shown because too many files have changed in this diff Show More
Loading…
x
Reference in New Issue
Block a user