support cpu training, use cpu training on mac

This commit is contained in:
Lion 2024-03-13 22:09:24 +08:00
parent 931781774d
commit 1963eb01cc
8 changed files with 41 additions and 43 deletions

View File

@ -49,7 +49,7 @@ is_share = os.environ.get("is_share", "False")
is_share = eval(is_share)
if "_CUDA_VISIBLE_DEVICES" in os.environ:
os.environ["CUDA_VISIBLE_DEVICES"] = os.environ["_CUDA_VISIBLE_DEVICES"]
is_half = eval(os.environ.get("is_half", "True")) and not torch.backends.mps.is_available()
is_half = eval(os.environ.get("is_half", "True")) and torch.cuda.is_available()
import gradio as gr
from transformers import AutoModelForMaskedLM, AutoTokenizer
import numpy as np
@ -69,7 +69,7 @@ from tools.i18n.i18n import I18nAuto
i18n = I18nAuto()
os.environ['PYTORCH_ENABLE_MPS_FALLBACK'] = '1' # 确保直接启动推理UI时也能够设置。
# os.environ['PYTORCH_ENABLE_MPS_FALLBACK'] = '1' # 确保直接启动推理UI时也能够设置。
if torch.cuda.is_available():
device = "cuda"

View File

@ -49,8 +49,8 @@ if os.path.exists(txt_path) == False:
os.makedirs(bert_dir, exist_ok=True)
if torch.cuda.is_available():
device = "cuda:0"
elif torch.backends.mps.is_available():
device = "mps"
# elif torch.backends.mps.is_available():
# device = "mps"
else:
device = "cpu"
tokenizer = AutoTokenizer.from_pretrained(bert_pretrained_dir)

View File

@ -50,8 +50,8 @@ maxx=0.95
alpha=0.5
if torch.cuda.is_available():
device = "cuda:0"
elif torch.backends.mps.is_available():
device = "mps"
# elif torch.backends.mps.is_available():
# device = "mps"
else:
device = "cpu"
model=cnhubert.get_model()

View File

@ -40,8 +40,8 @@ if os.path.exists(semantic_path) == False:
if torch.cuda.is_available():
device = "cuda"
elif torch.backends.mps.is_available():
device = "mps"
# elif torch.backends.mps.is_available():
# device = "mps"
else:
device = "cpu"
hps = utils.get_hparams_from_file(s2config_path)

View File

@ -118,16 +118,16 @@ def main(args):
os.environ["MASTER_ADDR"]="localhost"
trainer: Trainer = Trainer(
max_epochs=config["train"]["epochs"],
accelerator="gpu",
accelerator="gpu" if torch.cuda.is_available() else "cpu",
# val_check_interval=9999999999999999999999,###不要验证
# check_val_every_n_epoch=None,
limit_val_batches=0,
devices=-1,
devices=-1 if torch.cuda.is_available() else 1,
benchmark=False,
fast_dev_run=False,
strategy = "auto" if torch.backends.mps.is_available() else DDPStrategy(
strategy = DDPStrategy(
process_group_backend="nccl" if platform.system() != "Windows" else "gloo"
), # mps 不支持多节点训练
) if torch.cuda.is_available() else "auto",
precision=config["train"]["precision"],
logger=logger,
num_sanity_val_steps=0,

View File

@ -41,15 +41,15 @@ torch.set_float32_matmul_precision("medium") # 最低精度但最快(也就
# from config import pretrained_s2G,pretrained_s2D
global_step = 0
device = "cpu" # cuda以外的设备等mps优化后加入
def main():
"""Assume Single Node Multi GPUs Training Only"""
assert torch.cuda.is_available() or torch.backends.mps.is_available(), "Only GPU training is allowed."
if torch.backends.mps.is_available():
n_gpus = 1
else:
if torch.cuda.is_available():
n_gpus = torch.cuda.device_count()
else:
n_gpus = 1
os.environ["MASTER_ADDR"] = "localhost"
os.environ["MASTER_PORT"] = str(randint(20000, 55555))
@ -73,7 +73,7 @@ def run(rank, n_gpus, hps):
writer_eval = SummaryWriter(log_dir=os.path.join(hps.s2_ckpt_dir, "eval"))
dist.init_process_group(
backend = "gloo" if os.name == "nt" or torch.backends.mps.is_available() else "nccl",
backend = "gloo" if os.name == "nt" or not torch.cuda.is_available() else "nccl",
init_method="env://",
world_size=n_gpus,
rank=rank,
@ -137,9 +137,9 @@ def run(rank, n_gpus, hps):
hps.train.segment_size // hps.data.hop_length,
n_speakers=hps.data.n_speakers,
**hps.model,
).to("mps")
).to(device)
net_d = MultiPeriodDiscriminator(hps.model.use_spectral_norm).cuda(rank) if torch.cuda.is_available() else MultiPeriodDiscriminator(hps.model.use_spectral_norm).to("mps")
net_d = MultiPeriodDiscriminator(hps.model.use_spectral_norm).cuda(rank) if torch.cuda.is_available() else MultiPeriodDiscriminator(hps.model.use_spectral_norm).to(device)
for name, param in net_g.named_parameters():
if not param.requires_grad:
print(name, "not requires_grad")
@ -187,8 +187,8 @@ def run(rank, n_gpus, hps):
net_g = DDP(net_g, device_ids=[rank], find_unused_parameters=True)
net_d = DDP(net_d, device_ids=[rank], find_unused_parameters=True)
else:
net_g = net_g.to("mps")
net_d = net_d.to("mps")
net_g = net_g.to(device)
net_d = net_d.to(device)
try: # 如果能加载自动resume
_, _, _, epoch_str = utils.load_checkpoint(
@ -320,12 +320,12 @@ def train_and_evaluate(
rank, non_blocking=True
)
else:
spec, spec_lengths = spec.to("mps"), spec_lengths.to("mps")
y, y_lengths = y.to("mps"), y_lengths.to("mps")
ssl = ssl.to("mps")
spec, spec_lengths = spec.to(device), spec_lengths.to(device)
y, y_lengths = y.to(device), y_lengths.to(device)
ssl = ssl.to(device)
ssl.requires_grad = False
# ssl_lengths = ssl_lengths.cuda(rank, non_blocking=True)
text, text_lengths = text.to("mps"), text_lengths.to("mps")
text, text_lengths = text.to(device), text_lengths.to(device)
with autocast(enabled=hps.train.fp16_run):
(
@ -532,10 +532,10 @@ def evaluate(hps, generator, eval_loader, writer_eval):
ssl = ssl.cuda()
text, text_lengths = text.cuda(), text_lengths.cuda()
else:
spec, spec_lengths = spec.to("mps"), spec_lengths.to("mps")
y, y_lengths = y.to("mps"), y_lengths.to("mps")
ssl = ssl.to("mps")
text, text_lengths = text.to("mps"), text_lengths.to("mps")
spec, spec_lengths = spec.to(device), spec_lengths.to(device)
y, y_lengths = y.to(device), y_lengths.to(device)
ssl = ssl.to(device)
text, text_lengths = text.to(device), text_lengths.to(device)
for test in [0, 1]:
y_hat, mask, *_ = generator.module.infer(
ssl, spec, spec_lengths, text, text_lengths, test=test

7
api.py
View File

@ -13,7 +13,7 @@
`-dt` - `默认参考音频文本`
`-dl` - `默认参考音频语种, "中文","英文","日文","zh","en","ja"`
`-d` - `推理设备, "cuda","cpu","mps"`
`-d` - `推理设备, "cuda","cpu"`
`-a` - `绑定地址, 默认"127.0.0.1"`
`-p` - `绑定端口, 默认9880, 可在 config.py 中指定`
`-fp` - `覆盖 config.py 使用全精度`
@ -143,7 +143,7 @@ parser.add_argument("-dr", "--default_refer_path", type=str, default="", help="
parser.add_argument("-dt", "--default_refer_text", type=str, default="", help="默认参考音频文本")
parser.add_argument("-dl", "--default_refer_language", type=str, default="", help="默认参考音频语种")
parser.add_argument("-d", "--device", type=str, default=g_config.infer_device, help="cuda / cpu / mps")
parser.add_argument("-d", "--device", type=str, default=g_config.infer_device, help="cuda / cpu")
parser.add_argument("-a", "--bind_addr", type=str, default="0.0.0.0", help="default: 0.0.0.0")
parser.add_argument("-p", "--port", type=int, default=g_config.api_port, help="default: 9880")
parser.add_argument("-fp", "--full_precision", action="store_true", default=False, help="覆盖config.is_half为False, 使用全精度")
@ -482,9 +482,6 @@ def handle(refer_wav_path, prompt_text, prompt_language, text, text_language):
wav.seek(0)
torch.cuda.empty_cache()
if device == "mps":
print('executed torch.mps.empty_cache()')
torch.mps.empty_cache()
return StreamingResponse(wav, media_type="audio/wav")

View File

@ -55,7 +55,7 @@ from scipy.io import wavfile
from tools.my_utils import load_audio
from multiprocessing import cpu_count
os.environ['PYTORCH_ENABLE_MPS_FALLBACK'] = '1' # 当遇到mps不支持的步骤时使用cpu
# os.environ['PYTORCH_ENABLE_MPS_FALLBACK'] = '1' # 当遇到mps不支持的步骤时使用cpu
n_cpu=cpu_count()
@ -73,18 +73,19 @@ if torch.cuda.is_available() or ngpu != 0:
if_gpu_ok = True # 至少有一张能用的N卡
gpu_infos.append("%s\t%s" % (i, gpu_name))
mem.append(int(torch.cuda.get_device_properties(i).total_memory/ 1024/ 1024/ 1024+ 0.4))
# 判断是否支持mps加速
if torch.backends.mps.is_available():
if_gpu_ok = True
gpu_infos.append("%s\t%s" % ("0", "Apple GPU"))
mem.append(psutil.virtual_memory().total/ 1024 / 1024 / 1024) # 实测使用系统内存作为显存不会爆显存
# # 判断是否支持mps加速
# if torch.backends.mps.is_available():
# if_gpu_ok = True
# gpu_infos.append("%s\t%s" % ("0", "Apple GPU"))
# mem.append(psutil.virtual_memory().total/ 1024 / 1024 / 1024) # 实测使用系统内存作为显存不会爆显存
if if_gpu_ok and len(gpu_infos) > 0:
gpu_info = "\n".join(gpu_infos)
default_batch_size = min(mem) // 2
else:
gpu_info = i18n("很遗憾您这没有能用的显卡来支持您训练")
default_batch_size = 1
gpu_info = ("%s\t%s" % ("0", "CPU"))
gpu_infos.append("%s\t%s" % ("0", "CPU"))
default_batch_size = psutil.virtual_memory().total/ 1024 / 1024 / 1024 / 2
gpus = "-".join([i[0] for i in gpu_infos])
pretrained_sovits_name="GPT_SoVITS/pretrained_models/s2G488k.pth"