mirror of
https://github.com/RVC-Boss/GPT-SoVITS.git
synced 2025-04-05 04:22:46 +08:00
support cpu training, use cpu training on mac
This commit is contained in:
parent
931781774d
commit
1963eb01cc
@ -49,7 +49,7 @@ is_share = os.environ.get("is_share", "False")
|
||||
is_share = eval(is_share)
|
||||
if "_CUDA_VISIBLE_DEVICES" in os.environ:
|
||||
os.environ["CUDA_VISIBLE_DEVICES"] = os.environ["_CUDA_VISIBLE_DEVICES"]
|
||||
is_half = eval(os.environ.get("is_half", "True")) and not torch.backends.mps.is_available()
|
||||
is_half = eval(os.environ.get("is_half", "True")) and torch.cuda.is_available()
|
||||
import gradio as gr
|
||||
from transformers import AutoModelForMaskedLM, AutoTokenizer
|
||||
import numpy as np
|
||||
@ -69,7 +69,7 @@ from tools.i18n.i18n import I18nAuto
|
||||
|
||||
i18n = I18nAuto()
|
||||
|
||||
os.environ['PYTORCH_ENABLE_MPS_FALLBACK'] = '1' # 确保直接启动推理UI时也能够设置。
|
||||
# os.environ['PYTORCH_ENABLE_MPS_FALLBACK'] = '1' # 确保直接启动推理UI时也能够设置。
|
||||
|
||||
if torch.cuda.is_available():
|
||||
device = "cuda"
|
||||
|
@ -49,8 +49,8 @@ if os.path.exists(txt_path) == False:
|
||||
os.makedirs(bert_dir, exist_ok=True)
|
||||
if torch.cuda.is_available():
|
||||
device = "cuda:0"
|
||||
elif torch.backends.mps.is_available():
|
||||
device = "mps"
|
||||
# elif torch.backends.mps.is_available():
|
||||
# device = "mps"
|
||||
else:
|
||||
device = "cpu"
|
||||
tokenizer = AutoTokenizer.from_pretrained(bert_pretrained_dir)
|
||||
|
@ -50,8 +50,8 @@ maxx=0.95
|
||||
alpha=0.5
|
||||
if torch.cuda.is_available():
|
||||
device = "cuda:0"
|
||||
elif torch.backends.mps.is_available():
|
||||
device = "mps"
|
||||
# elif torch.backends.mps.is_available():
|
||||
# device = "mps"
|
||||
else:
|
||||
device = "cpu"
|
||||
model=cnhubert.get_model()
|
||||
|
@ -40,8 +40,8 @@ if os.path.exists(semantic_path) == False:
|
||||
|
||||
if torch.cuda.is_available():
|
||||
device = "cuda"
|
||||
elif torch.backends.mps.is_available():
|
||||
device = "mps"
|
||||
# elif torch.backends.mps.is_available():
|
||||
# device = "mps"
|
||||
else:
|
||||
device = "cpu"
|
||||
hps = utils.get_hparams_from_file(s2config_path)
|
||||
|
@ -118,16 +118,16 @@ def main(args):
|
||||
os.environ["MASTER_ADDR"]="localhost"
|
||||
trainer: Trainer = Trainer(
|
||||
max_epochs=config["train"]["epochs"],
|
||||
accelerator="gpu",
|
||||
accelerator="gpu" if torch.cuda.is_available() else "cpu",
|
||||
# val_check_interval=9999999999999999999999,###不要验证
|
||||
# check_val_every_n_epoch=None,
|
||||
limit_val_batches=0,
|
||||
devices=-1,
|
||||
devices=-1 if torch.cuda.is_available() else 1,
|
||||
benchmark=False,
|
||||
fast_dev_run=False,
|
||||
strategy = "auto" if torch.backends.mps.is_available() else DDPStrategy(
|
||||
strategy = DDPStrategy(
|
||||
process_group_backend="nccl" if platform.system() != "Windows" else "gloo"
|
||||
), # mps 不支持多节点训练
|
||||
) if torch.cuda.is_available() else "auto",
|
||||
precision=config["train"]["precision"],
|
||||
logger=logger,
|
||||
num_sanity_val_steps=0,
|
||||
|
@ -41,15 +41,15 @@ torch.set_float32_matmul_precision("medium") # 最低精度但最快(也就
|
||||
# from config import pretrained_s2G,pretrained_s2D
|
||||
global_step = 0
|
||||
|
||||
device = "cpu" # cuda以外的设备,等mps优化后加入
|
||||
|
||||
|
||||
def main():
|
||||
"""Assume Single Node Multi GPUs Training Only"""
|
||||
assert torch.cuda.is_available() or torch.backends.mps.is_available(), "Only GPU training is allowed."
|
||||
|
||||
if torch.backends.mps.is_available():
|
||||
n_gpus = 1
|
||||
else:
|
||||
if torch.cuda.is_available():
|
||||
n_gpus = torch.cuda.device_count()
|
||||
else:
|
||||
n_gpus = 1
|
||||
os.environ["MASTER_ADDR"] = "localhost"
|
||||
os.environ["MASTER_PORT"] = str(randint(20000, 55555))
|
||||
|
||||
@ -73,7 +73,7 @@ def run(rank, n_gpus, hps):
|
||||
writer_eval = SummaryWriter(log_dir=os.path.join(hps.s2_ckpt_dir, "eval"))
|
||||
|
||||
dist.init_process_group(
|
||||
backend = "gloo" if os.name == "nt" or torch.backends.mps.is_available() else "nccl",
|
||||
backend = "gloo" if os.name == "nt" or not torch.cuda.is_available() else "nccl",
|
||||
init_method="env://",
|
||||
world_size=n_gpus,
|
||||
rank=rank,
|
||||
@ -137,9 +137,9 @@ def run(rank, n_gpus, hps):
|
||||
hps.train.segment_size // hps.data.hop_length,
|
||||
n_speakers=hps.data.n_speakers,
|
||||
**hps.model,
|
||||
).to("mps")
|
||||
).to(device)
|
||||
|
||||
net_d = MultiPeriodDiscriminator(hps.model.use_spectral_norm).cuda(rank) if torch.cuda.is_available() else MultiPeriodDiscriminator(hps.model.use_spectral_norm).to("mps")
|
||||
net_d = MultiPeriodDiscriminator(hps.model.use_spectral_norm).cuda(rank) if torch.cuda.is_available() else MultiPeriodDiscriminator(hps.model.use_spectral_norm).to(device)
|
||||
for name, param in net_g.named_parameters():
|
||||
if not param.requires_grad:
|
||||
print(name, "not requires_grad")
|
||||
@ -187,8 +187,8 @@ def run(rank, n_gpus, hps):
|
||||
net_g = DDP(net_g, device_ids=[rank], find_unused_parameters=True)
|
||||
net_d = DDP(net_d, device_ids=[rank], find_unused_parameters=True)
|
||||
else:
|
||||
net_g = net_g.to("mps")
|
||||
net_d = net_d.to("mps")
|
||||
net_g = net_g.to(device)
|
||||
net_d = net_d.to(device)
|
||||
|
||||
try: # 如果能加载自动resume
|
||||
_, _, _, epoch_str = utils.load_checkpoint(
|
||||
@ -320,12 +320,12 @@ def train_and_evaluate(
|
||||
rank, non_blocking=True
|
||||
)
|
||||
else:
|
||||
spec, spec_lengths = spec.to("mps"), spec_lengths.to("mps")
|
||||
y, y_lengths = y.to("mps"), y_lengths.to("mps")
|
||||
ssl = ssl.to("mps")
|
||||
spec, spec_lengths = spec.to(device), spec_lengths.to(device)
|
||||
y, y_lengths = y.to(device), y_lengths.to(device)
|
||||
ssl = ssl.to(device)
|
||||
ssl.requires_grad = False
|
||||
# ssl_lengths = ssl_lengths.cuda(rank, non_blocking=True)
|
||||
text, text_lengths = text.to("mps"), text_lengths.to("mps")
|
||||
text, text_lengths = text.to(device), text_lengths.to(device)
|
||||
|
||||
with autocast(enabled=hps.train.fp16_run):
|
||||
(
|
||||
@ -532,10 +532,10 @@ def evaluate(hps, generator, eval_loader, writer_eval):
|
||||
ssl = ssl.cuda()
|
||||
text, text_lengths = text.cuda(), text_lengths.cuda()
|
||||
else:
|
||||
spec, spec_lengths = spec.to("mps"), spec_lengths.to("mps")
|
||||
y, y_lengths = y.to("mps"), y_lengths.to("mps")
|
||||
ssl = ssl.to("mps")
|
||||
text, text_lengths = text.to("mps"), text_lengths.to("mps")
|
||||
spec, spec_lengths = spec.to(device), spec_lengths.to(device)
|
||||
y, y_lengths = y.to(device), y_lengths.to(device)
|
||||
ssl = ssl.to(device)
|
||||
text, text_lengths = text.to(device), text_lengths.to(device)
|
||||
for test in [0, 1]:
|
||||
y_hat, mask, *_ = generator.module.infer(
|
||||
ssl, spec, spec_lengths, text, text_lengths, test=test
|
||||
|
7
api.py
7
api.py
@ -13,7 +13,7 @@
|
||||
`-dt` - `默认参考音频文本`
|
||||
`-dl` - `默认参考音频语种, "中文","英文","日文","zh","en","ja"`
|
||||
|
||||
`-d` - `推理设备, "cuda","cpu","mps"`
|
||||
`-d` - `推理设备, "cuda","cpu"`
|
||||
`-a` - `绑定地址, 默认"127.0.0.1"`
|
||||
`-p` - `绑定端口, 默认9880, 可在 config.py 中指定`
|
||||
`-fp` - `覆盖 config.py 使用全精度`
|
||||
@ -143,7 +143,7 @@ parser.add_argument("-dr", "--default_refer_path", type=str, default="", help="
|
||||
parser.add_argument("-dt", "--default_refer_text", type=str, default="", help="默认参考音频文本")
|
||||
parser.add_argument("-dl", "--default_refer_language", type=str, default="", help="默认参考音频语种")
|
||||
|
||||
parser.add_argument("-d", "--device", type=str, default=g_config.infer_device, help="cuda / cpu / mps")
|
||||
parser.add_argument("-d", "--device", type=str, default=g_config.infer_device, help="cuda / cpu")
|
||||
parser.add_argument("-a", "--bind_addr", type=str, default="0.0.0.0", help="default: 0.0.0.0")
|
||||
parser.add_argument("-p", "--port", type=int, default=g_config.api_port, help="default: 9880")
|
||||
parser.add_argument("-fp", "--full_precision", action="store_true", default=False, help="覆盖config.is_half为False, 使用全精度")
|
||||
@ -482,9 +482,6 @@ def handle(refer_wav_path, prompt_text, prompt_language, text, text_language):
|
||||
wav.seek(0)
|
||||
|
||||
torch.cuda.empty_cache()
|
||||
if device == "mps":
|
||||
print('executed torch.mps.empty_cache()')
|
||||
torch.mps.empty_cache()
|
||||
return StreamingResponse(wav, media_type="audio/wav")
|
||||
|
||||
|
||||
|
17
webui.py
17
webui.py
@ -55,7 +55,7 @@ from scipy.io import wavfile
|
||||
from tools.my_utils import load_audio
|
||||
from multiprocessing import cpu_count
|
||||
|
||||
os.environ['PYTORCH_ENABLE_MPS_FALLBACK'] = '1' # 当遇到mps不支持的步骤时使用cpu
|
||||
# os.environ['PYTORCH_ENABLE_MPS_FALLBACK'] = '1' # 当遇到mps不支持的步骤时使用cpu
|
||||
|
||||
n_cpu=cpu_count()
|
||||
|
||||
@ -73,18 +73,19 @@ if torch.cuda.is_available() or ngpu != 0:
|
||||
if_gpu_ok = True # 至少有一张能用的N卡
|
||||
gpu_infos.append("%s\t%s" % (i, gpu_name))
|
||||
mem.append(int(torch.cuda.get_device_properties(i).total_memory/ 1024/ 1024/ 1024+ 0.4))
|
||||
# 判断是否支持mps加速
|
||||
if torch.backends.mps.is_available():
|
||||
if_gpu_ok = True
|
||||
gpu_infos.append("%s\t%s" % ("0", "Apple GPU"))
|
||||
mem.append(psutil.virtual_memory().total/ 1024 / 1024 / 1024) # 实测使用系统内存作为显存不会爆显存
|
||||
# # 判断是否支持mps加速
|
||||
# if torch.backends.mps.is_available():
|
||||
# if_gpu_ok = True
|
||||
# gpu_infos.append("%s\t%s" % ("0", "Apple GPU"))
|
||||
# mem.append(psutil.virtual_memory().total/ 1024 / 1024 / 1024) # 实测使用系统内存作为显存不会爆显存
|
||||
|
||||
if if_gpu_ok and len(gpu_infos) > 0:
|
||||
gpu_info = "\n".join(gpu_infos)
|
||||
default_batch_size = min(mem) // 2
|
||||
else:
|
||||
gpu_info = i18n("很遗憾您这没有能用的显卡来支持您训练")
|
||||
default_batch_size = 1
|
||||
gpu_info = ("%s\t%s" % ("0", "CPU"))
|
||||
gpu_infos.append("%s\t%s" % ("0", "CPU"))
|
||||
default_batch_size = psutil.virtual_memory().total/ 1024 / 1024 / 1024 / 2
|
||||
gpus = "-".join([i[0] for i in gpu_infos])
|
||||
|
||||
pretrained_sovits_name="GPT_SoVITS/pretrained_models/s2G488k.pth"
|
||||
|
Loading…
x
Reference in New Issue
Block a user