mirror of
https://github.com/RVC-Boss/GPT-SoVITS.git
synced 2025-04-05 19:41:56 +08:00
gpt_sovits_v3
gpt_sovits_v3
This commit is contained in:
parent
21eaf84f23
commit
190dd6198c
@ -1 +1,65 @@
|
||||
# Copyright (c) 2024 NVIDIA CORPORATION.
|
||||
# Licensed under the MIT license.
|
||||
|
||||
import os
|
||||
import sys
|
||||
# to import modules from parent_dir
|
||||
parent_dir = os.path.abspath(os.path.join(os.path.dirname(__file__), ".."))
|
||||
sys.path.append(parent_dir)
|
||||
|
||||
import torch
|
||||
from alias_free_activation.cuda import activation1d
|
||||
from activations import Snake
|
||||
|
||||
|
||||
def test_load_fused_kernels():
|
||||
try:
|
||||
print("[Success] load_fused_kernels")
|
||||
except ImportError as e:
|
||||
print("[Fail] load_fused_kernels")
|
||||
raise e
|
||||
|
||||
|
||||
def test_anti_alias_activation():
|
||||
data = torch.rand((10, 10, 200), device="cuda")
|
||||
|
||||
# Check activations.Snake cuda vs. torch
|
||||
fused_anti_alias_activation = activation1d.Activation1d(
|
||||
activation=Snake(10), fused=True
|
||||
).cuda()
|
||||
fused_activation_output = fused_anti_alias_activation(data)
|
||||
|
||||
torch_anti_alias_activation = activation1d.Activation1d(
|
||||
activation=Snake(10), fused=False
|
||||
).cuda()
|
||||
torch_activation_output = torch_anti_alias_activation(data)
|
||||
|
||||
test_result = (fused_activation_output - torch_activation_output).abs()
|
||||
|
||||
while test_result.dim() != 1:
|
||||
test_result = test_result.mean(dim=-1)
|
||||
|
||||
diff = test_result.mean(dim=-1)
|
||||
|
||||
if diff <= 1e-3:
|
||||
print(
|
||||
f"\n[Success] test_fused_anti_alias_activation"
|
||||
f"\n > mean_difference={diff}"
|
||||
f"\n > fused_values={fused_activation_output[-1][-1][:].tolist()}"
|
||||
f"\n > torch_values={torch_activation_output[-1][-1][:].tolist()}"
|
||||
)
|
||||
else:
|
||||
print(
|
||||
f"\n[Fail] test_fused_anti_alias_activation"
|
||||
f"\n > mean_difference={diff}, "
|
||||
f"\n > fused_values={fused_activation_output[-1][-1][:].tolist()}, "
|
||||
f"\n > torch_values={torch_activation_output[-1][-1][:].tolist()}"
|
||||
)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
from alias_free_activation.cuda import load
|
||||
|
||||
load.load()
|
||||
test_load_fused_kernels()
|
||||
test_anti_alias_activation()
|
||||
|
66
GPT_SoVITS/BigVGAN/tests/test_activation_snake_beta.py
Normal file
66
GPT_SoVITS/BigVGAN/tests/test_activation_snake_beta.py
Normal file
@ -0,0 +1,66 @@
|
||||
# Copyright (c) 2024 NVIDIA CORPORATION.
|
||||
# Licensed under the MIT license.
|
||||
|
||||
import os
|
||||
import sys
|
||||
# to import modules from parent_dir
|
||||
parent_dir = os.path.abspath(os.path.join(os.path.dirname(__file__), ".."))
|
||||
sys.path.append(parent_dir)
|
||||
|
||||
import torch
|
||||
from alias_free_activation.cuda import activation1d
|
||||
from activations import SnakeBeta
|
||||
|
||||
|
||||
def test_load_fused_kernels():
|
||||
try:
|
||||
print("[Success] load_fused_kernels")
|
||||
except ImportError as e:
|
||||
print("[Fail] load_fused_kernels")
|
||||
raise e
|
||||
|
||||
|
||||
def test_anti_alias_activation():
|
||||
data = torch.rand((10, 10, 200), device="cuda")
|
||||
|
||||
# Check activations, Snake CUDA vs. Torch
|
||||
fused_anti_alias_activation = activation1d.Activation1d(
|
||||
activation=SnakeBeta(10), fused=True
|
||||
).cuda()
|
||||
fused_activation_output = fused_anti_alias_activation(data)
|
||||
|
||||
torch_anti_alias_activation = activation1d.Activation1d(
|
||||
activation=SnakeBeta(10), fused=False
|
||||
).cuda()
|
||||
torch_activation_output = torch_anti_alias_activation(data)
|
||||
|
||||
test_result = (fused_activation_output - torch_activation_output).abs()
|
||||
|
||||
while test_result.dim() != 1:
|
||||
test_result = test_result.mean(dim=-1)
|
||||
|
||||
diff = test_result.mean(dim=-1)
|
||||
|
||||
if diff <= 1e-3:
|
||||
print(
|
||||
f"\n[Success] test_fused_anti_alias_activation"
|
||||
f"\n > mean_difference={diff}"
|
||||
f"\n > fused_values={fused_activation_output[-1][-1][:].tolist()}"
|
||||
f"\n > torch_values={torch_activation_output[-1][-1][:].tolist()}"
|
||||
)
|
||||
else:
|
||||
print(
|
||||
f"\n[Fail] test_fused_anti_alias_activation"
|
||||
f"\n > mean_difference={diff}, "
|
||||
f"\n > fused_values={fused_activation_output[-1][-1][:].tolist()}, "
|
||||
f"\n > torch_values={torch_activation_output[-1][-1][:].tolist()}"
|
||||
)
|
||||
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
from alias_free_activation.cuda import load
|
||||
|
||||
load.load()
|
||||
test_load_fused_kernels()
|
||||
test_anti_alias_activation()
|
221
GPT_SoVITS/BigVGAN/tests/test_cuda_vs_torch_model.py
Normal file
221
GPT_SoVITS/BigVGAN/tests/test_cuda_vs_torch_model.py
Normal file
@ -0,0 +1,221 @@
|
||||
# Copyright (c) 2024 NVIDIA CORPORATION.
|
||||
# Licensed under the MIT license.
|
||||
|
||||
import os
|
||||
import sys
|
||||
|
||||
# to import modules from parent_dir
|
||||
parent_dir = os.path.abspath(os.path.join(os.path.dirname(__file__), ".."))
|
||||
sys.path.append(parent_dir)
|
||||
|
||||
import torch
|
||||
import json
|
||||
from env import AttrDict
|
||||
from bigvgan import BigVGAN
|
||||
from time import time
|
||||
from tqdm import tqdm
|
||||
from meldataset import mel_spectrogram, MAX_WAV_VALUE
|
||||
from scipy.io.wavfile import write
|
||||
import numpy as np
|
||||
|
||||
import argparse
|
||||
|
||||
torch.backends.cudnn.benchmark = True
|
||||
|
||||
# For easier debugging
|
||||
torch.set_printoptions(linewidth=200, threshold=10_000)
|
||||
|
||||
|
||||
def generate_soundwave(duration=5.0, sr=24000):
|
||||
t = np.linspace(0, duration, int(sr * duration), False, dtype=np.float32)
|
||||
|
||||
modulation = np.sin(2 * np.pi * t / duration)
|
||||
|
||||
min_freq = 220
|
||||
max_freq = 1760
|
||||
frequencies = min_freq + (max_freq - min_freq) * (modulation + 1) / 2
|
||||
soundwave = np.sin(2 * np.pi * frequencies * t)
|
||||
|
||||
soundwave = soundwave / np.max(np.abs(soundwave)) * 0.95
|
||||
|
||||
return soundwave, sr
|
||||
|
||||
|
||||
def get_mel(x, h):
|
||||
return mel_spectrogram(
|
||||
x, h.n_fft, h.num_mels, h.sampling_rate, h.hop_size, h.win_size, h.fmin, h.fmax
|
||||
)
|
||||
|
||||
|
||||
def load_checkpoint(filepath, device):
|
||||
assert os.path.isfile(filepath)
|
||||
print(f"Loading '{filepath}'")
|
||||
checkpoint_dict = torch.load(filepath, map_location=device)
|
||||
print("Complete.")
|
||||
return checkpoint_dict
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
parser = argparse.ArgumentParser(
|
||||
description="Test script to check CUDA kernel correctness."
|
||||
)
|
||||
parser.add_argument(
|
||||
"--checkpoint_file",
|
||||
type=str,
|
||||
required=True,
|
||||
help="Path to the checkpoint file. Assumes config.json exists in the directory.",
|
||||
)
|
||||
|
||||
args = parser.parse_args()
|
||||
|
||||
config_file = os.path.join(os.path.split(args.checkpoint_file)[0], "config.json")
|
||||
with open(config_file) as f:
|
||||
config = f.read()
|
||||
json_config = json.loads(config)
|
||||
h = AttrDict({**json_config})
|
||||
|
||||
print("loading plain Pytorch BigVGAN")
|
||||
generator_original = BigVGAN(h).to("cuda")
|
||||
print("loading CUDA kernel BigVGAN with auto-build")
|
||||
generator_cuda_kernel = BigVGAN(h, use_cuda_kernel=True).to("cuda")
|
||||
|
||||
state_dict_g = load_checkpoint(args.checkpoint_file, "cuda")
|
||||
generator_original.load_state_dict(state_dict_g["generator"])
|
||||
generator_cuda_kernel.load_state_dict(state_dict_g["generator"])
|
||||
|
||||
generator_original.remove_weight_norm()
|
||||
generator_original.eval()
|
||||
generator_cuda_kernel.remove_weight_norm()
|
||||
generator_cuda_kernel.eval()
|
||||
|
||||
# define number of samples and length of mel frame to benchmark
|
||||
num_sample = 10
|
||||
num_mel_frame = 16384
|
||||
|
||||
# CUDA kernel correctness check
|
||||
diff = 0.0
|
||||
for i in tqdm(range(num_sample)):
|
||||
# Random mel
|
||||
data = torch.rand((1, h.num_mels, num_mel_frame), device="cuda")
|
||||
|
||||
with torch.inference_mode():
|
||||
audio_original = generator_original(data)
|
||||
|
||||
with torch.inference_mode():
|
||||
audio_cuda_kernel = generator_cuda_kernel(data)
|
||||
|
||||
# Both outputs should be (almost) the same
|
||||
test_result = (audio_original - audio_cuda_kernel).abs()
|
||||
diff += test_result.mean(dim=-1).item()
|
||||
|
||||
diff /= num_sample
|
||||
if (
|
||||
diff <= 2e-3
|
||||
): # We can expect a small difference (~1e-3) which does not affect perceptual quality
|
||||
print(
|
||||
f"\n[Success] test CUDA fused vs. plain torch BigVGAN inference"
|
||||
f"\n > mean_difference={diff}"
|
||||
f"\n > fused_values={audio_cuda_kernel[-1][-1][-30:].tolist()}"
|
||||
f"\n > torch_values={audio_original[-1][-1][-30:].tolist()}"
|
||||
)
|
||||
else:
|
||||
print(
|
||||
f"\n[Fail] test CUDA fused vs. plain torch BigVGAN inference"
|
||||
f"\n > mean_difference={diff}"
|
||||
f"\n > fused_values={audio_cuda_kernel[-1][-1][-30:].tolist()}, "
|
||||
f"\n > torch_values={audio_original[-1][-1][-30:].tolist()}"
|
||||
)
|
||||
|
||||
del data, audio_original, audio_cuda_kernel
|
||||
|
||||
# Variables for tracking total time and VRAM usage
|
||||
toc_total_original = 0
|
||||
toc_total_cuda_kernel = 0
|
||||
vram_used_original_total = 0
|
||||
vram_used_cuda_kernel_total = 0
|
||||
audio_length_total = 0
|
||||
|
||||
# Measure Original inference in isolation
|
||||
for i in tqdm(range(num_sample)):
|
||||
torch.cuda.reset_peak_memory_stats(device="cuda")
|
||||
data = torch.rand((1, h.num_mels, num_mel_frame), device="cuda")
|
||||
torch.cuda.synchronize()
|
||||
tic = time()
|
||||
with torch.inference_mode():
|
||||
audio_original = generator_original(data)
|
||||
torch.cuda.synchronize()
|
||||
toc = time() - tic
|
||||
toc_total_original += toc
|
||||
|
||||
vram_used_original_total += torch.cuda.max_memory_allocated(device="cuda")
|
||||
|
||||
del data, audio_original
|
||||
torch.cuda.empty_cache()
|
||||
|
||||
# Measure CUDA kernel inference in isolation
|
||||
for i in tqdm(range(num_sample)):
|
||||
torch.cuda.reset_peak_memory_stats(device="cuda")
|
||||
data = torch.rand((1, h.num_mels, num_mel_frame), device="cuda")
|
||||
torch.cuda.synchronize()
|
||||
tic = time()
|
||||
with torch.inference_mode():
|
||||
audio_cuda_kernel = generator_cuda_kernel(data)
|
||||
torch.cuda.synchronize()
|
||||
toc = time() - tic
|
||||
toc_total_cuda_kernel += toc
|
||||
|
||||
audio_length_total += audio_cuda_kernel.shape[-1]
|
||||
|
||||
vram_used_cuda_kernel_total += torch.cuda.max_memory_allocated(device="cuda")
|
||||
|
||||
del data, audio_cuda_kernel
|
||||
torch.cuda.empty_cache()
|
||||
|
||||
# Calculate metrics
|
||||
audio_second = audio_length_total / h.sampling_rate
|
||||
khz_original = audio_length_total / toc_total_original / 1000
|
||||
khz_cuda_kernel = audio_length_total / toc_total_cuda_kernel / 1000
|
||||
vram_used_original_gb = vram_used_original_total / num_sample / (1024 ** 3)
|
||||
vram_used_cuda_kernel_gb = vram_used_cuda_kernel_total / num_sample / (1024 ** 3)
|
||||
|
||||
# Print results
|
||||
print(
|
||||
f"Original BigVGAN: took {toc_total_original:.2f} seconds to generate {audio_second:.2f} seconds of audio, {khz_original:.1f}kHz, {audio_second / toc_total_original:.1f} faster than realtime, VRAM used {vram_used_original_gb:.1f} GB"
|
||||
)
|
||||
print(
|
||||
f"CUDA kernel BigVGAN: took {toc_total_cuda_kernel:.2f} seconds to generate {audio_second:.2f} seconds of audio, {khz_cuda_kernel:.1f}kHz, {audio_second / toc_total_cuda_kernel:.1f} faster than realtime, VRAM used {vram_used_cuda_kernel_gb:.1f} GB"
|
||||
)
|
||||
print(f"speedup of CUDA kernel: {khz_cuda_kernel / khz_original}")
|
||||
print(f"VRAM saving of CUDA kernel: {vram_used_original_gb / vram_used_cuda_kernel_gb}")
|
||||
|
||||
# Use artificial sine waves for inference test
|
||||
audio_real, sr = generate_soundwave(duration=5.0, sr=h.sampling_rate)
|
||||
audio_real = torch.tensor(audio_real).to("cuda")
|
||||
# Compute mel spectrogram from the ground truth audio
|
||||
x = get_mel(audio_real.unsqueeze(0), h)
|
||||
|
||||
with torch.inference_mode():
|
||||
y_g_hat_original = generator_original(x)
|
||||
y_g_hat_cuda_kernel = generator_cuda_kernel(x)
|
||||
|
||||
audio_real = audio_real.squeeze()
|
||||
audio_real = audio_real * MAX_WAV_VALUE
|
||||
audio_real = audio_real.cpu().numpy().astype("int16")
|
||||
|
||||
audio_original = y_g_hat_original.squeeze()
|
||||
audio_original = audio_original * MAX_WAV_VALUE
|
||||
audio_original = audio_original.cpu().numpy().astype("int16")
|
||||
|
||||
audio_cuda_kernel = y_g_hat_cuda_kernel.squeeze()
|
||||
audio_cuda_kernel = audio_cuda_kernel * MAX_WAV_VALUE
|
||||
audio_cuda_kernel = audio_cuda_kernel.cpu().numpy().astype("int16")
|
||||
|
||||
os.makedirs("tmp", exist_ok=True)
|
||||
output_file_real = os.path.join("tmp", "audio_real.wav")
|
||||
output_file_original = os.path.join("tmp", "audio_generated_original.wav")
|
||||
output_file_cuda_kernel = os.path.join("tmp", "audio_generated_cuda_kernel.wav")
|
||||
write(output_file_real, h.sampling_rate, audio_real)
|
||||
write(output_file_original, h.sampling_rate, audio_original)
|
||||
write(output_file_cuda_kernel, h.sampling_rate, audio_cuda_kernel)
|
||||
print("Example generated audios of original vs. fused CUDA kernel written to tmp!")
|
||||
print("Done")
|
Loading…
x
Reference in New Issue
Block a user